LA THÉORIE DE LORENTZ ET LE PRINCIPE DE RÉACTION

PAR

H. POINCARE.

On trouvera sans doute étrange que dans un monument élevé à la gloire de Lorentz, je revienne sur des considérations que j'ai présentées autrefois comme une objection à sa théorie. Je pourrais dire que les pages qui vont suivre sont plutôt de nature à atténuer qu'à aggraver cette objection.

Mais je dédaigne cette excuse parce que j'en ai une cent fois meilleure. Les bonnes théories sont souples. Celles qui ont une forme rigide et que ne peuvent la déposséder sans s'effondrer ont vraiment trop peu de vitalité. Mais si une théorie nous révèle certains rapports vrais, elle peut s'habiller de mille formes diverses, elle résistera à tous les assauts et ce qui fait son essence ne changera pas. C'est ce que j'ai expliqué dans la conférence que j'ai faite dernièrement au Congrès de Physique.

Les bonnes théories ont raison de toutes les objections; celles qui ne sont que spécieuses ne mordent pas sur elles, et elles triomphent même des objections sérieuses, mais elles en triomphent en se transformant.

Les objections les servent donc, loin de leur nuire, puis qu'elles leur permettent de développer toute la vertu latente qui était en elles. Eh bien la théorie de Lorentz est de celles-là, et c'est là la seule excuse que je veuille invoquer.

Ce n'est donc pas de cela que je demanderai pardon au lecteur, mais d'avoir exposé si longuement des idées si peu nouvelles.

§ 1.

Rappelons d'abord rapidement le calcul par lequel on établit que dans la théorie de Lorentz le principe de l'égalité de l'action et de la réaction n'est plus vrai, du moins quand on veut l'appliquer à la matière seule.
Cherchons la résultante de toutes les forces pondéromotrices appliquées à tous les électrons situés à l'intérieur d'un certain volume. Cette résultante ou plutôt sa projection sur l'axe des \(x \) est représentée par l'intégrale:

\[
X = \int \rho \, d\tau \left[\eta \gamma - \zeta \beta + \frac{4\pi f}{K_0} \right]
\]

où l'intégration est étendue à tous les éléments \(d\tau \) du volume considéré, et où \(\xi, \eta, \zeta \) représentent les composantes de la vitesse de l'électron.

A cause des équations:

\[
\rho \eta = -\frac{dg}{dt} + \frac{1}{4\pi} \left(\frac{dz}{dx} \frac{d \zeta}{dy} \right); \rho \zeta = -\frac{dh}{dt} + \frac{1}{4\pi} \left(\frac{d \beta}{dx} \frac{d \zeta}{dy} \right); \rho = \Sigma \frac{df}{dx}
\]

et en ajoutant et retranchant le terme:

\[
\frac{a \, dx}{4\pi \, dx'}
\]

je puis écrire:

\[
X = X_1 + X_2 + X_3 + X_4
\]

où:

\[
X_1 = \int d\tau \left(\beta \frac{dh}{dt} - \gamma \frac{dg}{dt} \right)
\]

\[
X_2 = \int \frac{d\tau}{4\pi} \left(a \frac{dz}{dx} + \beta \frac{d \zeta}{dy} + \gamma \frac{d \zeta}{dz} \right)
\]

\[
X_3 = \int \frac{-d\tau}{4\pi} \left(a \frac{dz}{dx} + \beta \frac{d \beta}{dx} + \gamma \frac{d \gamma}{dx} \right)
\]

\[
X_4 = \frac{4\pi}{K_0} \int f \, d\tau \Sigma \frac{df}{dx}
\]

L'intégration par parties donne:

\[
X_2 = \int \frac{d\omega}{4\pi} \alpha (a \alpha + b \beta + c \gamma) - \int \frac{d\tau}{4\pi} \alpha \left(\frac{dz}{dx} + \frac{d \beta}{dy} + \frac{d \gamma}{dz} \right)
\]

\[
X_3 = -\int \frac{d\omega}{8\pi} \alpha (a^2 + b^2 + c^2)
\]
où les intégrales doubles sont étendues à tous les éléments $d\omega$ de la surface qui limite le volume considéré, et où l, m, n désignent les cosinus directeurs de la normale à cet élément.

Si l'on observe que

$$\frac{dx}{dx} + \frac{d\beta}{dy} + \frac{d\gamma}{dz} = 0,$$

on voit que l'on peut écrire :

(1) $$ X_2 + X_3 = \int \frac{d\omega}{8\pi} [l(x^2 + \beta + \gamma^2) + 2mz\beta + 2nz\gamma]. $$

Transformons maintenant X_4.
L'intégration par parties donne :

$$ X_4 = \int \frac{4\pi d\omega}{K_0} (lf^2 + mfg + nfh) - \int \frac{4\pi d\tau}{K_0} \left(f \frac{df}{dx} + g \frac{df}{dy} + h \frac{df}{dz} \right). $$

J'appelle X'_4 et X''_4 les deux intégrales du second membre de sorte que

$$ X_4 = X'_4 - X''_4. $$

Si l'on tient compte des équations :

$$ \frac{df}{dx} = \frac{dg}{dy} + \frac{K_0}{4\pi} \frac{d\gamma}{dt}, $$

$$ \frac{df}{dx} = \frac{dh}{dx} - \frac{K_0}{4\pi} \frac{d\beta}{dt}, $$

nous pouvons écrire :

$$ X''_4 = Y + Z $$

où

$$ Y = \int \frac{4\pi d\tau}{K_0} \left(f \frac{df}{dx} + g \frac{df}{dx} + h \frac{dh}{dx} \right) $$

$$ Z = \int d\tau \left(g \frac{d\gamma}{dt} - h \frac{d\beta}{dt} \right) $$

On trouve ensuite :

$$ Y = \int \frac{2\pi l d\omega}{K_0} (f^2 + g^2 + h^2) $$

$$ X_1 - Z = \frac{d}{dt} \int d\tau (\beta \gamma - \gamma g). $$
On a donc enfin :

\(X = \frac{d}{dt} \int d\tau (\beta h - \gamma) + (X_2 + X_3) + (X'_4 - Y), \)

où \(X_2 + X_3 \) est donné par la formule (1), tandis que l'on a :

\[X'_4 - Y = \frac{2\pi d\omega}{K_0} \left[l(f^2 - g^2 - h^2) + 2mfy + 2nfh \right]. \]

Ce terme \((X_2 + X_3)\) représente la projection sur l'axe des \(x \) d'une pression s'exerçant sur les différents éléments \(d\omega \) de la surface qui limite le volume considéré. On reconnaît tout de suite que cette pression n'est autre chose que la pression magnétique de Maxwell, introduite par ce savant dans une théorie bien connue.

De même le terme \((X'_4 - Y)\) représente l'effet de la pression électrostatique de Maxwell.

Sans la présence du premier terme :

\[\frac{d}{dt} \int d\tau (\beta h - \gamma g) \]

la force pondéromotrice ne serait donc pas autre chose que celle qui résulte des pressions de Maxwell.

Si nos intégrales sont étendues à tout l'espace, les intégrales doubles \(X_2, X_3, X'_4 \) et \(Y \) disparaissent et il reste simplement :

\[X = \frac{d}{dt} \int d\tau (\beta h - \gamma g). \]

Si donc on appelle \(M \) une des masses matérielles envisagées, \(V_x, V_y, V_z \) les composantes de sa vitesse, on devrait avoir si le principe de réaction était applicable :

\[\Sigma M V_x = \text{const.}; \quad \Sigma M V_y = \text{const.}; \quad \Sigma M V_z = \text{const.} \]

On aura au contraire :

\[\Sigma M V_x + \int d\tau (\gamma y - \beta h) = \text{const.} \]

\[\Sigma M V_y + \int d\tau (\alpha h - \gamma f) = \text{const.} \]

\[\Sigma M V_z + \int d\tau (\beta f - \alpha g) = \text{const.} \]
Remarquons que
\[\gamma g - \beta h, \; \alpha h - \gamma f, \; \beta f - xg \]
sont les trois composantes du vecteur radiant de Poynting.

Si l'on pose:
\[J = \frac{1}{8\pi} \sum \alpha^2 + \frac{2\pi}{K_0} \sum f^2, \]
l'équation de Poynting nous donne en effet:
\[
\int \frac{dJ}{dt} d\tau = \int \frac{d\omega}{K_0} \begin{vmatrix} l & m & n \\ x & \beta & \gamma \\ f & g & h \end{vmatrix} + \frac{4\pi}{K_0} \int \rho d\tau \sum f^2 \xi.
\]

La première intégrale du second membre représente, comme on le sait, la quantité d'énergie électromagnétique qui entre dans le volume considéré par radiation à travers sa surface et le second terme représente la quantité d'énergie électromagnétique qui est créée à l'intérieur du volume par transformation d'énergie d'autres espèces.

Nous pouvons regarder l'énergie électromagnétique comme un fluide fictif dont la densité est \(K_0 f \) et qui se déplace dans l'espace conformément aux lois de Poynting. Seulement il faut admettre que ce fluide n'est pas indestructible et que dans l'élément de volume \(d\tau \) il s'en détruit pendant l'unité de temps une quantité \(\frac{4\pi}{K_0} \rho d\tau \sum f^2 \xi \) (ou qu'il s'en crée une quantité égale et de signe contraire, si cette expression est négative); c'est ce qui empêche que nous puissions assimiler tout à fait dans nos raisonnements notre fluide fictif à un fluide réel.

La quantité de ce fluide qui passe pendant l'unité de temps à travers une surface, égale à 1 et orientée perpendiculairement à l'axe des \(x \), ou l'axe des \(y \), ou à l'axe des \(z \), est égale à:
\[K_0 J U_x, \; K_0 J U_y, \; K_0 J U_z \]

\(U_x, \; U_y, \; U_z \) étant les composantes de la vitesse du fluide. En comparant avec la formule de Poynting, on trouve:
\[K_0 J U_x = \gamma g - \beta h \]
\[K_0 J U_y = \alpha h - \gamma f \]
\[K_0 J U_z = \beta f - xg \]
de sorte que nos formules deviennent :

\[\Sigma M V_x + \int K_0 J U_x \, d\tau = \text{const.} \]

\[\Sigma M V_y + \int K_0 J U_y \, d\tau = \text{const.} \]

\[\Sigma M V_z + \int K_0 J U_z \, d\tau = \text{const.} \]

Elles expriment que la quantité de mouvement de la matière proprement dite plus celle de notre fluide fictif est représentée par un vecteur constant.

Dans la Mécanique ordinaire, de la constance de la quantité de mouvement on conclut que le mouvement du centre de gravité est rectiligne et uniforme.

Mais ici nous n'avons pas le droit de conclure que le centre de gravité du système formé par la matière et notre fluide fictif a un mouvement rectiligne et uniforme ; et cela parce que ce fluide n'est pas indestructible.

La position du centre de gravité du fluide fictif dépend de l'intégrale

\[\int x J \, d\tau \]

étendue à tout l'espace. La dérivée de cette intégrale est :

\[\int x \frac{dJ}{dt} \, d\tau = - \int x \, d\tau \left(\frac{dJ U_x}{dx} + \frac{dJ U_y}{dy} + \frac{dJ U_z}{dz} \right) K_0 \int \beta x \, d\tau \Sigma J \xi \]

Or la première intégrale du second membre devient par l'intégration par parties :

\[\int J U_x \, d\tau \]

ou \[\frac{1}{K_0} (C - \Sigma M V_x) \]

en désignant par \(C \) la constante du second membre de la première équation (4).

Représentons alors par \(M_0 \) la masse totale de la matière, par \(X_0, Y_0, Z_0 \) les coordonnées de son centre de gravité, par \(M_1 \) la masse totale du fluide fictif, par \(X_1, Y_1, Z_1 \) son centre de gravité, par \(M_2 \) la masse totale des deux parties.
du système (matière plus fluide fictif), par \(X_2, Y_2, Z_2 \) son centre de gravité, de telle façon que l'on ait:

\[
M_2 = M_0 + M_1, \quad M_2 X_2 = M_0 X_0 + M_1 X_1,
\]

\[
\frac{d}{dt}(M_0 X_0) = \sum M F_x, \quad K_0 \int x J d\tau = M_1 X_1.
\]

Il vient alors:

\[
\frac{d}{dt}(M_2 X_2) = C - 4\pi \int \rho x d\tau \sum f \xi.
\]

Voici comment on pourrait énoncer l'équation (3) dans le langage ordinaire.

S'il n'y a nulle part création ou destruction d'énergie électromagnétique, le dernier terme disparaît; alors le centre de gravité du système formé par la matière et par l'énergie électromagnétique (regardée comme un fluide fictif) a un mouvement rectiligne et uniforme.

Supposons maintenant qu'il y ait en certains points destruction de l'énergie électromagnétique qui s'y transforme en énergie non électrique. Il faudra alors considérer le système formé non-seulement par la matière et l'énergie électromagnétique, mais par l'énergie non électrique provenant de la transformation de l'énergie électromagnétique.

Mais il faut convenir que cette énergie non électrique reste au point où s'est opérée la transformation et n'est pas ensuite entrainée par la matière où on la localise d'ordinaire. Il n'y a dans cette convention rien qui doive nous choquer puisqu'il ne s'agit que d'une fiction mathématique. Si l'on adopte cette convention, le mouvement du centre de gravité du système est encore rectiligne et uniforme.

Pour étendre l'énoncé au cas où il y a non seulement destruction, mais création d'énergie, il suffit de supposer en chaque point une certaine provision d'énergie non-électrique, aux dépens de laquelle se forme l'énergie électromagnétique. On conservera alors la convention précédente, c'est-à-dire qu'au lieu de localiser l'énergie non-électrique comme on le fait d'ordinaire, on la regardera comme immobile. A cette condition le centre de gravité se mouvrira encore en ligne droite.

Reprenons maintenant l'équation (2) en supposant les intégrales équivalentes à un volume même infiniment petit. Elle signifiera alors que la résultante des pressions de Maxwell qui s'exercent sur la surface de ce volume fait équilibre:
1°. aux forces d'origine non électrique appliquées à la matière qui est située dans ce volume.

2°. aux forces d'inertie de cette matière.

3°. aux forces d'inertie du fluide fictif renfermé dans ce volume.

Pour définir cette inertie du fluide fictif, il fait convenir que le fluide qui se crée en un point quelconque par transformation de l'énergie, naît d'abord sans vitesse et qu'il emprunte sa vitesse au fluide déjà existant; si donc la quantité de fluide augmente, mais que la vitesse reste constante, on aura néanmoins une certaine inertie à vaincre parce que le fluide nouveau empruntant de la vitesse au fluide ancien, la vitesse de l'ensemble diminuerait si une cause quelconque n'intervenait pour la maintenir constante. De même lorsqu'il y a destruction d'énergie électromagnétique, il faut que le fluide avant de se détruire, perde sa vitesse en la cédant au fluide subsistant.

L'équilibre ayant lieu pour un volume infiniment petit, aura lieu pour un volume fini. Si en effet nous le décomposons en volumes infiniments petits, l'équilibre a lieu pour chacun d'eux. Pour passer au volume fini, il faut considérer l'ensemble des forces appliquées aux différents volumes infiniment petits; seulement parmi les pressions de Maxwell on ne conservera que celles qui s'exercent sur la surface du volume fini total, mais on supprimera celles qui s'exercent sur les éléments de surface qui séparent l'un de l'autre deux volumes infiniment petits contigus. Cette suppression ne changera rien à l'équilibre, puisque les pressions ainsi supprimées sont deux à deux égales et directement opposées.

L'équilibre aura donc encore lieu pour le volume fini.

Il aura donc lieu pour l'espace tout entier. Mais dans ce cas, on n'a à envisager ni les pressions de Maxwell qui sont nulles à l'infini, ni les forces d'origine non électrique qui se font équilibre en vertu du principe de réaction applicable aux forces envisagées dans la Mécanique ordinaire.

Les deux sortes de forces d'inertie se font donc équilibre, d'où une double conséquence:

1°. Le principe de la conservation des projections des quantités de mouvement s'applique au système de la matière et du fluide fictif; on retrouve aussi les équations (4).

2°. Le principe de la conservation des moments des quantités de
mouvements ou en d'autres termes, le principe des aires s'applique au système de la matière et de fluide fictif. C'est là une conséquence nouvelle qui complète les données fournies par les équations (4).

L'énergie électromagnétique se comportant donc au point de vue qui nous occupe comme un fluide doué d'inertie, on doit conclure que si un appareil quelconque après avoir produit de l'énergie électromagnétique, l'envoie par rayonnement dans une certaine direction, cet appareil devra reculer comme recule un canon qui a lancé un projectile.

Bien entendu, ce recul ne se produira pas si l'appareil producteur envoie également de l'énergie dans tous les sens ; il se produira au contraire si cette symétrie n'existe pas, et si l'énergie électromagnétique produite est renvoyée dans une direction unique, ainsi que cela arrive par exemple si l'appareil est un excitateur de Hertz placé au foyer d'un miroir parabolique.

Il est facile d'évaluer en chiffres l'importance de ce recul. Si l'appareil à une masse de 1 Kilogramme et s'il a envoyé dans une direction unique avec la vitesse de la lumière trois millions de joules, la vitesse due au recul est de 1 cm. par seconde. En d'autres termes si l'énergie produite par une machine de 3000 watts est envoyée dans une seule direction, il faudra pour maintenir la machine en place, malgré le recul, une force d'une dyne.

Il est évident qu'une force aussi faible ne pourrait pas être décelée par l'expérience. Mais on pourrait s'imager que si, par impossible, on disposait d'appareils de mesure assez sensibles pour la mettre en évidence, on aurait ainsi démontré que le principe de réaction n'est pas applicable à la matière seule ; et que ce serait la confirmation de la théorie de Lorentz et la condamnation des autres théories.

Il n'en est rien, la théorie de Hertz et en général toutes les autres théories prévoient le même recul que celle de Lorentz.

J'ai pris tout à l'heure l'exemple d'un excitateur de Hertz dont les radiations seraient rendues parallèles par un miroir parabolique. J'aurais pu prendre un exemple plus simple emprunté à l'optique; un faisceau de rayons lumineux parallèles vient frapper normalement un miroir et après réflexion revient en sens invers. De l'énergie s'propageant d'abord de gauche à droite par exemple est renvoyée ensuite de droite à gauche par le miroir.

Le miroir doit donc reculer et le recul est mis à calculer par les considérations qui précèdent.
LA THÉORIE DE LORENTZ ET LE PRINCIPE DE RÉACTION. 261

Or il est aisé de reconnaître le problème qui a déjà été traité par MAXWELL aux §§ 792 et 793 de son ouvrage. Il prévoit aussi un recul du miroir tout pareil à celui que nous avons déduit de la théorie de Lorentz.

Si en effet nous pénétrons plus avant dans l’étude du mécanisme de ce recul voici ce que nous trouvons. Considérons un volume quelconque et appliquons lui l’équation (2); cette équation nous apprend que la force d’origine électromagnétique qui s’exerce sur les électrons, c’est à dire sur la matière contenue dans le volume est égale à la résultante des pressions de Maxwell augmenté d’un terme correctif qui est la dérivée de l’intégrale

\[\int d\tau (\beta h - \gamma y). \]

Si le régime est établi, cette intégrale est constante et le terme correctif est nul.

Le recul prévu par la théorie de Lorentz est celui qui est dû aux pressions de Maxwell. Or toutes les théories prévoient les pressions de Maxwell; donc toutes les théories prévoient le même recul.

§ 2.

Mais alors une question se pose. Nous avons prévu le recul dans la théorie de Lorentz parce que cette théorie est contraire au principe de réaction. Or parmi les autres théories, il y en a, comme celle de Hertz, qui sont conformes à ce principe. Comment se fait-il qu’elles aussi conduisent au même recul?

Je me hâte de donner l’explication de ce paradoxe, quitte à justifier ensuite cette explication. Dans la théorie de Lorentz et dans celle de Hertz l’appareil qui produit de l’énergie et l’envoie dans une direction recule, mais cette énergie ainsi rayonnée se propage en traversant un certain milieu, de l’air par exemple.

Dans la théorie de Lorentz lorsque l’air reçoit l’énergie ainsi rayonnée, il ne subit aucune action mécanique; il n’en subit pas non plus lorsque cette énergie le quitte après l’avoir traversé. Au contraire dans la théorie de Hertz, lorsque l’air reçoit l’énergie, il est poussé en avant et il recule au contraire quand cette énergie le quitte. Les mouvements de l’air traversé par l’énergie compensent ainsi au point de vue du principe de réaction, ceux des appareils qui ont produit cette énergie. Dans la théorie de Lorentz, cette compensation ne se fait pas.
Revenons en effet à la théorie de Lorentz et à notre équation (2) et appliquons la à un diélectrique homogène. On sait comment Lorentz se représentait un milieu diélectrique; ce milieu renfermerait des électrons susceptibles de petits déplacements, et ces déplacements produiraient la polarisation diélectrique dont l’effet viendrait s’ajouter, à certain points de vue, à celui du déplacement électrique proprement dit.

Soient X, Y, Z les composantes de cette polarisation. On aura:

$$\frac{dX}{dt} \, d\tau = \Sigma \rho \frac{\xi}{\gamma}; \quad \frac{dY}{dt} \, d\tau = \Sigma \rho \gamma; \quad \frac{dZ}{dt} \, d\tau = \Sigma \rho \frac{\gamma}{\zeta}.$$

Les sommations des seconds membres sont étendues à tous les électrons contenus à l’intérieur de l’élément $d\tau$ et ces équations peuvent être regardées comme la définition même de la polarisation diélectrique.

Pour l’expression de la résultante des forces pondéromotrices (que je ne désigne plus par X afin d’éviter toute confusion avec la polarisation) nous avons trouvé l’intégrale:

$$\int \rho \, d\tau \left[\eta \gamma - \frac{\zeta}{\gamma} \beta + \frac{4 \pi f}{K_0} \right]$$

ou

$$\int \rho \, \gamma \, d\tau - \int \rho \, \frac{\zeta}{\gamma} \beta \, d\tau - \frac{4 \pi}{K_0} \int \rho \, f \, d\tau.$$

Les deux premières intégrales peuvent être remplaçées par

$$\int \gamma \, \frac{dX}{dt} \, d\tau, \quad \int \beta \, \frac{dZ}{dt} \, d\tau$$

en vertu des équations (5). Quant à la troisième, elle est nulle, par ce que la charge totale d’un élément de diélectrique contenant un certain nombre d’électrons est nulle. Notre force pondéromotrice se réduit donc à:

$$\int \left(\gamma \frac{d}{dt} - \beta \frac{dZ}{dt} \right) \, d\tau.$$

Si je désigne alors par Π la force due aux diverses pressions de Maxwell, de sorte que

$$\Pi = (X_2 - X_3) + (X_4 - Y)$$
alors notre équation (2) devient :

\[(2\, \text{bis}) \quad \Pi = \int \left(\gamma \frac{dY}{dt} - \beta \frac{dZ}{dt} \right) d\tau + \frac{d}{dt} \int (\gamma g - \beta h) d\tau. \]

On a d'ailleurs une relation telle que celle-ci

\[(A) \quad a \frac{d^2X}{dt^2} + bX = f \]

où \(a \) et \(b \) sont deux constantes caractéristiques du milieu ; on en déduit aisément :

\[(B) \quad X = (n^2 - 1) f \]

et de même

\[Y = (n^2 - 1) g, \quad Z = (n^2 - 1) h \]

\(n \) étant l'indice de réfraction de la couleur considérée.

On peut être conduit à remplacer la relation (A) par d'autres plus compliquées ; par exemple si l'on doit supposer des ions complexes. Peu importe, puis qu'on serait toujours conduit à l'équation (B).

Pour aller plus loin nous allons supposer une onde plane se propagant dans le sens de l'axe des \(x \) vers les \(x \) positifs par exemple. Si l'onde est polarisée dans le plan des \(xz \), on aura

\[X = f = x = Z = h = \beta = 0 \]

et

\[\gamma = ng \frac{4\pi}{V K_0}. \]

En tenant compte de toutes ces relations, (2 bis) devient d'abord

\[\Pi = \int \gamma \frac{dY}{dt} d\tau + \int \gamma \frac{dg}{dt} d\tau + \int g \frac{dY}{dt} d\tau, \]

où la première intégrale représente la force pondéromotrice. Mais si l'on tient compte des proportions

\[\frac{g}{1} = \frac{Y}{n^2 - 1} = \frac{\gamma}{n \left(\frac{4\pi}{V K_0} \right)} \]
notre équation devient

\[\frac{1}{c^2} \left(\nabla \cdot \mathbf{B} \right) = \mu (n^2 - 1) \int \mathbf{E} \cdot d\mathbf{r} + \frac{1}{e} \int \mathbf{J} \cdot d\mathbf{r} + \frac{1}{c^2} \int \mathbf{E} \cdot d\mathbf{r} \cdot d\tau. \]

Mais pour tirer quelque chose de cette formule, il importe de bien voir comment se partage et se propage l'énergie dans un milieu diélectrique. L'énergie se divise en trois parties : 1° l'énergie électrique, 2° l'énergie magnétique, 3° l'énergie mécanique due au mouvement des ions. Ces trois parties ont respectivement pour expressions

\[\frac{2\pi}{K_0} \sum f^2, \quad \frac{1}{8\pi} \sum x^2, \quad \frac{2\pi}{K_0} \sum f X \]

et dans les cas d'une onde plane, elles sont entre elles comme

\[1, \quad n^2, \quad n^2 - 1. \]

Dans l'analyse qui précède nous avons fait jouer un rôle à ce que nous avons appelé la quantité de mouvement de l'énergie électromagnétique. Il est clair que la densité de notre fluide fictif sera proportionnelle à la somme des deux premières parties (électrique et magnétique) de l'énergie totale et que la troisième partie, qui est purement mécanique devra être laissée de côté. Mais quelle vitesse convient-il d'attribuer à ce fluide ? Au premier abord, on pourrait croire que c'est la vitesse de propagation de l'onde, c'est à dire \(\frac{1}{nV^2} \). Mais ce n'est pas aussi simple.

En chaque point il y a proportionnalité entre l'énergie électromagnétique et l'énergie mécanique ; si donc en un point l'énergie électromagnétique vient à diminuer, l'énergie mécanique diminuera également, c'est à dire qu'elle se transformera partiellement en énergie électromagnétique ; il y aura donc création de fluide fictif.

Désignons pour un instant par \(\xi \) la densité du fluide fictif, par \(\xi \) sa vitesse que je suppose parallèle à l'axe des \(x \); je suppose que toutes nos fonctions ne dépendent que de \(x \) et de \(t \), le plan de l'onde étant perpendiculaire à l'axe des \(x \). L'équation de continuité s'écrit alors

\[\frac{d\rho}{dt} + \frac{d\rho}{dx} \frac{\delta \rho}{dt}. \]
où \(\rho \) étant la quantité de fluide fictif créé pendant le temps \(dt \). Or cette quantité est égale à la quantité d'énergie mécanique détruite, laquelle est à la quantité d'énergie électromagnétique détruite, c'est à dire à \(-d\rho \), comme \(n^2 - 1 \) est à \(n^2 + 1 \); d'où

\[
\frac{\partial \rho}{n^2 - 1} = -\frac{d\rho}{n^2 + 1} \]

de sorte que notre équation devient

\[
\frac{d\rho}{dt} \frac{2n^2}{n^2 - 1} + \frac{d\rho \xi}{dx} = 0.
\]

Si \(\xi \) est une constante, cette équation nous montre que la vitesse de propagation est égale à

\[
\xi = \frac{n^2 - 1}{2n^2}.
\]

Si la vitesse de propagation est \(\frac{1}{n^2} \sqrt{K_0} \) on aura donc

\[
\xi = \frac{2n}{(n^2 - 1) \sqrt{K_0}}.
\]

Si l'énergie totale est \(J' \), l'énergie électromagnétique sera \(J = \frac{n^2 - 1}{2n^2} J' \) et la quantité de mouvement du fluide fictif sera :

\[
K_0 J \xi = K_0 \frac{n^2 - 1}{2n^2} - J' \xi = \frac{J' \sqrt{K_0}}{n}.
\]

puisque la densité du fluide fictif est égale à l'énergie multipliée par \(f' \).

Or dans l'équation (6) le premier terme du second membre représente la force pondéromotrice, c'est à dire la dérivée de la quantité de mouvement de la matière du diélectrique, pendant que les deux derniers termes représentent la dérivée de la quantité de mouvement du fluide fictif. Ces deux quantités de mouvement sont donc entre elles comme \(n^2 - 1 \) et 2.

Soit alors \(\Delta \) la densité de la matière du diélectrique; \(W_x, W_y, W_z \) les composantes de sa vitesse. Reprenons les équations (4). Le premier terme \(\Sigma M V_x \) représente la quantité de mouvement de toute la matière.
réelle; nous le décomposerons en deux parties. La première partie que nous continuerons à désigner par $\Sigma M V_x$ représentera la quantité de mouvement des appareils producteurs d'énergie; la seconde partie représentera la quantité de mouvement des diélectriques; elle sera égale à

$$\int \Delta W_{,x} d\tau$$

de sorte que l'équation (4) deviendra

(4bis) \[\Sigma M V_x + \int \Delta W_{,x} + K_0 J U_{,x} \, d\tau = \text{const.} \]

D'après ce que nous venons de voir, on aura

$$\Delta W_{,x} \equiv \frac{K_0 J U_{,x}}{\mu^2 - 1} \cdot \frac{1}{2}.$$

D'ailleurs, désignons par J' comme plus haut l'énergie totale; distinguons d'autre part la vitesse réelle du fluide fictif, c'est à dire celle qui résulte de la loi de Poynting et que nous avons désignée par $U_{,x}$, $U_{,y}$, $U_{,z}$, et la vitesse apparente de l'énergie, c'est à dire celle que l'on déduirait de la vitesse de propagation des ondes et que nous désignerons par $U'_{,x}$, $U'_{,y}$, $U'_{,z}$. Il résulte de l'équation (7) que:

$$J U_{,x} = J' U'_{,x}.$$

On peut donc écrire l'équation (4 bis) sous la forme:

$$\Sigma M V_x + \int \Delta W_{,x} + K_0 J' U'_{,x} \, d\tau = \text{const.}$$

L'équation (4 bis) montre ce qui suit: si un appareil rayonne de l'énergie dans une direction unique dans le vide, il subit un recul qui est compensé uniquement au point de vue du principe de réaction par le mouvement du fluide fictif.

Mais si le rayonnement se fait dans le vide, se fait dans un diélectrique, ce recul sera compensé en partie par le mouvement du fluide fictif, en partie par le mouvement de la matière du diélectrique.
et la fraction du recul de l'appareil producteur qui sera ainsi compensé par le mouvement du diélectrique, c'est à dire par le mouvement d'une véritable matière, cette fraction dis-je sera \(\frac{n^2 - 1}{n^2} \).

Voilà ce qui résulte de la théorie de Lorentz; comment passerons-nous maintenant à la théorie de Hertz.

On sait, en quoi consistaient les idées de Mosotti sur la constitution des diélectriques.

Les diélectriques autres que le vide étaient formés de petites sphères conductrices (ou plus généralement de petits corps conducteurs) séparés les unes des autres par un milieu isolant impolarisable analogue au vide. Comment est-on passé de là aux idées de Maxwell? On a imaginé que le vide lui-même avait la même constitution; il n'était pas impolarisable, mais formé de cellules conductrices, séparées par des cloisons formées d'une matière idéale, isolante et impolarisable. Le pouvoir inducteur spécifique du vide était donc plus grand que celui de la matière idéale impolarisable (de même que dans la conception primitive de Mosotti, le pouvoir inducteur des diélectriques était plus grand que celui du vide, et pour la même raison). Et le rapport du premier de ces pouvoirs au second était d'autant plus grand que l'espace occupé par les cellules conductrices était plus grand par rapport à l'espace occupé par les cloisons isolantes.

Passons enfin à la limite; en regardant le pouvoir inducteur de la matière isolante comme infiniment petit, et en même temps les cloisons isolantes comme infiniment minces, de telle façon que l'espace occupé par ces cloisons étant infiniment petit, le pouvoir inducteur du vide reste fini. Ce passage à la limite nous conduit à la théorie de Maxwell.

Tout cela est bien connu et je me borne à le rappeler rapidement. Eh bien, il y a entre la théorie de Lorentz et celle de Hertz la même relation qu'entre celle de Mosotti et celle de Maxwell.

Supposons en effet que nous attribuions au vide la même constitution que Lorentz attribue aux diélectriques ordinaires; c'est à dire que nous le considérons comme un milieu impolarisable dans lequel des électrons peuvent subir de petits déplacements.

Les formules de Lorentz seront encore applicables, seulement \(K_0 \) ne représentera plus le pouvoir inducteur du vide, mais celui de notre milieu impolarisable idéal. Passons à la limite en supposant \(K_0 \) infiniment petit; il faudra bien entendu pour compenser cette hypothèse, multi-
plier le nombre des électrons de façon que les pouvoirs inducteurs du vide et des autres diélectriques restent finis.

La théorie où conduit ce passage à la limite n'est autre que celle de Hertz.

Soit V la vitesse de la lumière dans le vide. Dans la théorie de Lorentz primitive, elle est égale à $\frac{1}{\sqrt{K_0}}$; mais il n'en est plus de même dans la théorie modifiée, elle est égale à

$$\frac{1}{\mu_0 V K_0},$$

n_0 étant l'indice de réfraction du vide par rapport au milieu idéal impolarisable. Si n désigne l'indice de réfraction d'un diélectrique par rapport au vide vulgaire, son indice par rapport à ce milieu idéal sera $n n_0$ et la vitesse de la lumière dans ce diélectrique sera

$$V = \frac{1}{n n_0 V K_0}.$$

Dans les formules de Lorentz, il faut alors remplacer n par $n n_0$.

Par exemple l'entrainement des ondes dans la théorie de Lorentz est représenté par la formule de Fresnel,

$$r \left(1 - \frac{1}{n^2}\right).$$

Dans la théorie modifiée, il serait

$$r \left(1 - \frac{1}{n^2 n_0^2}\right).$$

Si nous passons à la limite, il faut faire $K_0 = 0$, d'où $n_0 = \infty$; donc dans la théorie de Hertz l'entrainement sera r, c'est à dire qu'il sera total. Cette conséquence, contraire à l'expérience de Fizeau, suffit pour condamner la théorie de Hertz, de sorte que ces considérations n'ont guère qu'un intérêt de curiosité.

Reprenons cependant notre équation (4 bis). Elle nous enseigne que la fraction du recul qui est compensée par le mouvement de la matière du diélectrique est égale à

$$\frac{n^2 - 1}{n^2 + 1}.$$
Dans la théorie de Lorentz modifiée, cette fraction sera:

\[
\frac{n^2 - n_0^2}{n^2 - n_0^2} = \frac{1}{1}
\]

Si nous passons à la limite en faisant \(n_0 = \infty\), cette fraction est égale à 1, de sorte que le recul est entièrement compensé par le mouvement de la matière des diélectriques. En d'autres termes, dans la théorie de Heaviside, le principe de réaction n’est pas violé et s’applique à la matière seule.

C’est ce qu’on verrait encore à l’aide de l’équation (4 bis); si à la limite \(K_0\) est nul, le terme \(\int K_0 J^* U_x d\tau\) qui représente la quantité de mouvement du fluide fictif devient nul aussi, de sorte qu’il suffit d’envisager la quantité de mouvement de la matière réelle.

D’où cette conséquence: pour démontrer expérimentalement que le principe de réaction est bien violé dans la réalité comme il l’est dans la théorie de Lorentz, il ne suffirait pas de montrer que les appareils producteurs d’énergie subissent un recul, ce qui serait déjà assez difficile, il faudrait encore montrer que ce recul n’est pas compensé par les mouvements des diélectriques et en particulier de l’air traversé par les ondes électromagnétiques. Cela serait évidemment beaucoup plus difficile encore.

Une dernière remarque sur ce sujet. Supposons que le milieu traversé par les ondes soit magnétique. Une partie de l’énergie ondulatoire se trouvera encore sous la forme mécanique. Si \(\mu\) est la perméabilité magnétique du milieu, l’énergie magnétique totale sera:

\[
\frac{\mu}{8\pi} \int \Sigma x^2 d\tau
\]

mais une fraction seulement, à savoir:

\[
\frac{1}{8\pi} \int \Sigma x^2 d\tau
\]

sera de l’énergie magnétique proprement dite; l’autre partie:

\[
\frac{\mu - 1}{8\pi} \int \Sigma x^2 d\tau
\]
sera de l'énergie mécanique employée à rapprocher les courants parti-
culaires d'une orientation commune perpendiculaire au champ, à l'en-
contre de la force élastique qui tend à ramener ces courants à l'ori-
entation d'équilibre qu'ils reprennent en l'absence de champ magnétique.

On pourrait alors appliquer à ces milieux une analyse, tout à fait
pareille à celle qui précède, et où l'énergie mécanique \[\frac{\mu - 1}{8 \pi} \int \Sigma \varepsilon^2 d\tau, \]
jouerait le même rôle que jouait l'énergie mécanique \[\frac{2 \pi}{k_0} \int \Sigma \lambda f d\tau \]
dans le cas des diélectriques. On reconnaîtrait ainsi que s'il existait des mi-
lieux magnétiques non diélectriques (je veux dire dont le pouvoir diélec-
trique serait le même que celui du vide) la matière de ces milieux subi-
rait une action mécanique par suite de passage des ondes de telle sorte
que le recul des appareils producteurs serait en partie compensé par
les mouvements de ces milieux, comme il l'est par ceux des diélectriques.

Pour sortir de ce cas que la nature ne réalise pas, supposons un milieu
à la fois diélectrique et magnétique, la fraction du recul compensée par
le mouvement du milieu sera plus forte que pour un milieu non-magné-
étique de même pouvoir diélectrique.

§ 3.

Pourquoi le principe de réaction s'impose-t-il à notre esprit? Il
importe de s'en rendre compte, afin de voir si les paradoxes qui précè-
dent peuvent être réellement considérés comme une objection à la thé-
orie de Lorentz.

Si ce principe, dans la plupart des cas, s'impose à nous, c'est que sa
négation conduirait au mouvement perpétuel; en est-il de même ici?

Soient \(A \) et \(B \) deux corps quelconques, agissant l'un sur l'autre, mais
soustraits à toute action extérieure; si l'action de l'un n'était pas égale
cà la réaction de l'autre, on pourrait les attacher l'un à l'autre par une
tringle de longueur invariable de façon qu'ils se comportent comme
un seul corps solide. Les forces appliquées à ce solide ne se faisant pas
equilibre, le système se mettrait en mouvement et ce mouvement irait
sans cesse en s'accélérant, à une condition toutefois, c'est que l'action
mutuelle des deux corps ne dépende que de leur position relative et de
leur vitesse relative, mais soit indépendante de leur position absolue et
de leur vitesse absolue.

Plus généralement soit un système conservatif quelconque, \(U \) son
LA THÉORIE DE LORENTZ ET LE PRINCIPE DE RÉACTION. 271

d'énergie potentielle, \(m \) la masse d'un des points du système, \(x', y', z' \) les composantes de sa vitesse, on aura l'équation des forces vives:

\[
\sum m \frac{1}{2} (x'^2 + y'^2 + z'^2) + U = \text{const.}
\]

Rapporrons maintenant le système à des axes mobiles animés d'une vitesse constante de translation \(v \) parallèle à l'axe des \(x \); soient \(x', y', z' \), les composantes de la vitesse relative par rapport à ces axes, on aura:

\[
x' = x_1' + v, \quad y' = y_1', \quad z' = z_1'.
\]

et par conséquent:

\[
\sum \frac{m}{2} [(x_1' + v)^2 + y_1'^2 + z_1'^2] + U = \text{const.}
\]

En vertu du principe du mouvement relatif, \(U \) ne dépend que de la position relative des points du système, les lois du mouvement relatif ne diffèrent pas de celles du mouvement absolu et l'équation des forces vives dans le mouvement relatif s'écrit

\[
\sum \frac{m}{2} (x'_1^2 + y'_1^2 + z'_1^2) + U = \text{const.}
\]

En retranchant les deux équations l'une de l'autre on trouve

(8) \[v \sum m x_1' + \frac{v^2}{2} \sum m = \text{const.} \]

ou

(9) \[\sum m x_1' = \text{const.} \]

d' où qui est l'expression analytique du principe de réaction.

Le principe de réaction nous apparaît donc comme une conséquence de celui de l'énergie et de celui du mouvement relatif. Ce dernier principe lui-même s'impose impérieusement à l'esprit, quand on l'applique à un système isolé.

Mais dans le cas qui nous occupe, il ne s'agit pas d'un système isolé, puisque nous ne considérons que la matière proprement dite, en dehors de laquelle il y a encore l'éther. Si tous les objets matériels sont entraînés dans une translation commune, comme par exemple dans la...
translation de la Terre, les phénomènes peuvent différer de ce qu'ils seraient si cette translation n'existait pas parce que l'éther peut ne pas être entraîné dans cette translation. Le principe du mouvement relatif ainsi entendu et appliqué à la matière seule s'impose si peu à l'esprit que l'on a institué des expériences pour mettre en évidence la translation de la Terre. Ces expériences, il est vrai, ont donné des résultats négatifs mais on s'en est plutôt étonné.

Toutefois une question se pose encore. Ces expériences, ai-je dit, ont donné un résultat négatif, et la théorie de Lorentz explique ce résultat négatif. Il semble que le principe du mouvement relatif, qui ne s'imposait pas a priori, est vérifié a posteriori et que le principe de réaction devrait s'en suivre; et cependant il n'en est pas ainsi, comment cela se fait-il?

C'est qu'en réalité, ce que nous avons appelé le principe du mouvement relatif n'a été vérifié qu'imparfaitement comme le montre la théorie de Lorentz. Elle est due à une compensation d'effets, mais:

1°. Cette compensation n'a lieu qu'en négligeant v^2, à moins de faire une certaine hypothèse complémentaire que je ne discuterai pas pour le moment.

Cela toutefois n'a pas d'importance pour notre objet, car si l'on néglige v^2, l'équation (8) donnera directement l'équation (9), c'est à dire le principe de réaction.

2°. Pour que la compensation se fasse, il faut rapporter les phénomènes, non pas au temps vrai t, mais à un certain temps local t' défini de la façon suivante.

Je suppose que des observateurs placés en différents points, règlent leurs montres à l'aide de signaux lumineux; qu'ils cherchent à corriger ces signaux du temps de la transmission, mais qu'ignorant le mouvement de translation dont ils sont animés et croyant par conséquent que les signaux se transmettent également vite dans les deux sens, ils se bornent à croiser les observations, en envoyant un signal de A en B, puis un autre de B en A. Le temps local t' est le temps marqué par les montres ainsi réglées.

Si alors $V = \frac{1}{V/K_0}$ est la vitesse de la lumière, et v la translation de
la Terre que je suppose parallèle à l’axe des x positifs, on aura :

$$l' = l - \frac{vx}{v'}. \quad 3^\circ$$

L’énergie apparente se propage dans le mouvement relatif suivant les mêmes lois que l’énergie réelle dans le mouvement absolu, mais l’énergie apparente n’est pas exactement égale à l’énergie réelle correspondante.

4°. Dans le mouvement relatif, les corps producteurs d’énergie électromagnétique sont soumis à une force apparente complémentaire qui n’existe pas dans le mouvement absolu.

Nous allons voir comment ces diverses circonstances résolvent la contradiction que je viens de signaler.

Imaginons un appareil producteur d’énergie électrique, disposé de telle sorte que l’énergie produite soit renvoyée dans une direction unique. Ce sera par exemple un excitateur de Hertz muni d’un miroir parabolique.

D’abord au repos, l’excitateur envoie de l’énergie dans la direction de l’axe des x, et cette énergie est précisément égale à celle qui est dépensée dans l’excitateur. Comme nous l’avons vu l’appareil recule et prend une certaine vitesse.

Si nous rapportons tout à des axes mobiles liés à l’excitateur, les phénomènes apparents devront être, sauf les réserves faites plus haut, les mêmes que si l’excitateur était au repos; il va donc rayonner une quantité d’énergie apparente qui sera égale à l’énergie dépensée dans l’excitateur.

D’autre part il subira encore une impulsion due au recul, et comme il n’est plus en repos, mais a déjà une certaine vitesse, cette impulsion produira un certain travail et la force vive de l’excitateur augmentera.

Si donc l’énergie électromagnétique réelle rayonnée, était égale à l’énergie électromagnétique apparente, c’est à dire comme je viens de le dire, à l’énergie dépensée dans l’excitateur, l’accroissement de force vive de l’appareil aurait été obtenu sans aucune dépense. Cela est contraire au principe de conservation. Si donc il se produit un recul c’est que l’énergie apparente n’est pas égale à l’énergie réelle et que les phénomènes dans le mouvement relatif ne sont pas exactement les mêmes que dans le mouvement absolu.

ARCHIVES NÉERLANDAISES SÉRIE II. TOME V. 18
Examinons la chose d'un peu plus près. Soit \(v' \) la vitesse de l'excitateur, \(v \) celle des axes mobiles, que je ne suppose plus liés à l'excitateur, \(V \) celle de la radiation ; toutes ces vitesses sont parallèles à l'axe des \(x \) positifs. Nous supposerons pour simplifier que la radiation a la forme d'une onde plane polarisée, ce qui nous donne les équations :

\[
f = k = \alpha = \beta = 0
\]

\[
4\pi \frac{dg}{dt} = \frac{dy}{dx'} - \frac{1}{4\pi V^2} \frac{dg}{dt} \quad 4\pi V \frac{dy}{dx} + \frac{dy}{dt} = 0
\]

d'où :

\[
\gamma = 4\pi V \gamma
\]

L'énergie réelle contenue dans l'unité de volume sera :

\[
\frac{\gamma^2}{8\pi} + 2\pi V^2 g^2 = 4\pi V^2 g^2.
\]

Voyons maintenant ce qui se passe dans le mouvement apparent par rapport aux axes mobiles. On a pour les champs électrique et magnétique apparents :

\[
g' = g - \frac{v}{4\pi V^2} \gamma, \quad \gamma' = \gamma - 4\pi v g
\]

Nous avons donc pour l'énergie apparente dans l'unité de volume (en négligeant \(n^2 \) mais non \(v v' \)) :

\[
\frac{\gamma^2}{8\pi} + 2\pi V^2 g'^2 = \left(\frac{\gamma^2}{8\pi} - v g \gamma\right) + 2\pi V^2 \left(g^2 - \frac{v g \gamma}{2\pi V^2}\right)
\]

ou bien

\[
4\pi V^2 g^2 - 2 v g \gamma = 4\pi V^2 g^2 \left(1 - \frac{2 v'}{V}\right).
\]

Les équations du mouvement apparent s'écrivent d'ailleurs

\[
4\pi \frac{dg'}{dt'} = -\frac{dy'}{dx''} - \frac{1}{4\pi V^2} \frac{dg'}{dt} = \frac{dg'}{dx'}
\]

ce qui montre que la vitesse apparente de propagation est encore \(V \).
Soit \(T \) la durée de l'émission ; quelle sera la longueur réellement occupée par la perturbation dans l'espace ?

La tête de la perturbation est partie au temps 0 du point 0 et elle se trouve au temps \(t \) au point \(Vt \); la queue est partie au temps \(T \), non pas du point 0, mais du point \(v' T \), parce que l'excitateur d'où elle émane a marché pendant le temps \(T \) avec une vitesse \(v' \). Cette queue est donc à l'instant \(t \) au point \(v' T + V(t-T) \). La longueur réelle de la perturbation est donc

\[
L = Vt - [v' T + V(t-T)] = (V-v') T.
\]

Quelle est maintenant la longueur apparente. La tête est partie au temps local 0 du point 0 ; au temps local \(t' \) son abscisse par rapport aux axes mobiles sera \(Vt' \). La queue est partie au temps \(T \) du point \(v'T \) dont l'abscisse par rapport aux axes mobiles est \((v'-v) T \); le temps local correspondant est

\[
T \left(1 - \frac{v'}{v^2} \right)
\]

Au temps local \(t' \), elle est au point \(x \), \(x \) étant donné par les équations:

\[
t' = t - \frac{vx}{v^2}, \quad x = v' T + V(t-T)
\]

d'où, en négligeant \(v^2 \):

\[
x = [v' T + V(t'-T)] \left(1 + \frac{v'}{V} \right).
\]

L'abscisse de ce point par rapport aux axes mobiles sera

\[
x - vt' = (v' T - vT) \left(1 + \frac{v}{V} \right) + Vt'.
\]

La longueur apparente de la perturbation sera donc

\[
L' = Vt' - (x - vt') = (V-v') T \left(1 + \frac{v}{V} \right) = L \left(1 + \frac{v}{V} \right).
\]

L'énergie réelle totale (par unité de section) est donc

\[
\left(\frac{\pi^2}{8\pi} + 2 \pi V^2 g^2 \right) L = \frac{\pi}{4} V^2 g^2 L.
\]
et l'énergie apparente

\[
\left(\frac{v'^2}{8\pi} + 2\pi V^2 g'^2\right) L' = 4\pi V^2 g^2 L \left(1 - \frac{2\beta}{V}\right) \left(1 + \frac{v}{V}\right) = 4\pi V^2 g^2 L \left(1 - \frac{v}{V}\right).
\]

Si donc \(J \, dt\) représente l'énergie réelle rayonnée pendant le temps \(dt\), \(J \, dt \left(1 - \frac{v}{V}\right)\) représentera l'énergie apparente.

Soit \(D \, dt\) l'énergie dépensée dans l'excitateur, elle est la même dans le mouvement réel et dans le mouvement apparent.

Il reste à tenir compte du recul. La force du recul multipliée par \(dt\) est égale à l'accroissement de la quantité de mouvement du fluide fictif, c'est à dire à

\[
dt K_0 J \, V = \frac{J}{V} \, dt
\]

puisque la quantité de fluide créée est \(K_0 J \, dt\) et sa vitesse \(V\). Le travail du recul est donc :

\[
- \frac{v' \, J \, dt}{V}.
\]

Dans le mouvement apparent, il faut remplacer \(v'\) par \(v - v\) et \(J\) par \(J \left(1 - \frac{v}{V}\right)\).

Le travail apparent du recul est donc :

\[
- \frac{(v' - v) \, J \, dt}{V} \left(1 - \frac{v}{V}\right) = \frac{J \, dt}{V} \left(\frac{v'}{V} + \frac{v}{V} + \frac{vv'}{V^2}\right).
\]

Enfin dans le mouvement apparent, il faut tenir compte de la force complémentaire apparente dont j'ai parlé plus haut (4°). Cette force complémentaire est égale à

\[
- \frac{v J}{V^2}
\]

et son travail en négligeant \(v^2\) est \(- \frac{vv'}{V^2} \, J \, d\tau\).
Cela posé, l'équation des forces vives dans le mouvement réel s'écrit:

\[J - D - \frac{v' \mathcal{J}}{V} = 0. \]

Le premier terme représente l'énergie rayonnée, le second la dépense et le troisième le travail du recul.

L'équation des forces vives dans le mouvement apparent s'écrit:

\[J \left(1 - \frac{v}{V}\right) - D + J \left(-\frac{v'}{V} + \frac{v}{V} + \frac{v v'}{V^2}\right) - \frac{v v'}{V^2} \mathcal{J} = 0. \]

Le premier terme représente l'énergie apparente rayonnée, le second la dépense, le troisième le travail apparent du recul, et le quatrième le travail de la force apparente complémentaire.

La concordance des équations (10) et (11) dissipe l'apparence de contradiction signalée plus haut.

Si donc, dans la théorie de Lorentz, le recul peut avoir lieu sans violer le principe de l'énergie, c'est que l'énergie apparente pour un observateur entraîné avec les axes mobiles n'est pas égale à l'énergie réelle. Supposons donc que notre excitateur subisse un mouvement de recul et que l'observateur soit entraîné dans ce mouvement \(v' = v < 0 \), l'excitateur paraîtra immobile à cet observateur et il lui semblera qu'il rayonne autant d'énergie qu'au repos. Mais en réalité il en rayonnera moins et c'est ce qui compense le travail du recul.

J'aurais pu supposer les axes mobiles invariablement liés à l'excitateur, c'est à dire \(v = v' \), mais mon analyse n'aurait pas alors mis en évidence le rôle de la force complémentaire apparente. J'ai dû pour le faire supposer \(v' \) beaucoup plus grand que \(v \) de telle sorte que je puisse négliger \(v^2 \) sans négliger \(v v' \).

J'aurais pu aussi montrer la nécessité de la force complémentaire apparente de la façon suivante:

Le recul réel est \(\frac{J}{\mathcal{F}} \); dans le mouvement apparent, il faut remplacer \(J \) par \(J \left(1 - \frac{v}{V}\right) \) de sorte que le recul apparent est

\[\frac{J}{v'} = \frac{J v}{v^2}. \]
Il faut donc pour compléter le recul réel, ajouter au recul apparent une force complémentaire apparente

\[
\frac{\mathbf{J}}{V^2}
\]

(je mets le signe — parce que le recul, comme l'indique son nom, a lieu dans le sens négatif).

L'existence de la force complémentaire apparente est donc une conséquence nécessaire du phénomène du recul.

Ainsi d'après la théorie de Lorentz le principe de réaction ne doit pas s'appliquer à la matière seule; le principe du mouvement relatif ne doit pas non plus s'appliquer à la matière seule. Ce qu'il importe de remarquer c'est qu'il y a entre ces deux faits une connexion intime et nécessaire.

Il suffirait donc d'établir expérimentalement l'un des deux pour que l'autre se trouvât établi ipso facto. Il serait sans doute moins difficile de démontrer le second; mais c'est déjà à peu près impossible puisque par exemple M. Liénard a calculé qu'avec une machine de 100 kilo-watts la force complémentaire apparente ne serait que de \(\frac{1}{600} \) de dyne.

De cette corrélation entre ces deux faits découle une conséquence importante; c'est que l'expérience de Fitzhugh est déjà elle-même contraire au principe de réaction. Si en effet, comme l'indique cette expérience, l'entraînement des ondes n'est que partiel, c'est que la propagation relative des ondes dans un milieu en mouvement ne suit pas les mêmes lois que la propagation dans un milieu en repos; c'est à dire que le principe du mouvement relatif ne s'applique pas à la matière seule et qu'il faut lui faire subir au moins une correction à savoir celle dont j'ai parlé plus haut (2°) et qui consiste à tout reporter au "temps local". Si cette correction n'est pas compensée par d'autres, on devra conclure que le principe de réaction n'est pas vrai non plus pour la matière seule.

Ainsi se trouveraient condamnées en bloc toutes les théories qui respectent ce principe, à moins que nous ne consentions à modifier profondément toutes nos idées sur l'électrodynamique. C'est là une idée que j'ai développée plus longuement dans un article antérieur. (Eclairage Électrique Tome \(V \), N° 40).