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5. Energy balance and energy conservation

We summarize the discussion in Ref. 4, where a few additional references are discussed. The concept of
energy is an essential one in most of modern physics but, surprisingly, it can hardly be defined in
modern gravitation theory, i.e. in general relativity (GR). Indeed, an extremely important feature of the
energy is that it should be conserved, also locally, in the sense that a local balance equation without any
source ferm should apply to the total energy. Now according to GR and other relativistic theories

of gravitation based on general covariance plus Einstein's "equivalence principle" (in the standard form:
"in a local freely falling frame, the laws of non-gravitational physics are the same as in SR"), the general
"conservation equation" is the equation

(7", ) u=o,..,3 =divyT=0 (24)

for the energy-momentum tensor T 2. Buf, as emphasized in most textbooks on GR, e.g. Landau &
Lifchitz [23], this equation can not be considered as a true conservation equation (a balance equation
without source term), for there is no Gauss theorem applying to the divergence of a second-order
tensor in a curved Riemannian space. (In turn the main reason for this is that one can simply not define
the integral of a vector field in a such space.) In more explicit terms: one cannot rewrite Eq. (24) in the
form of a true conservation equation which would be valid for a generic coordinate system, i.e., which
would be consistent with the principle of general covariance. One may, however, rewrite Eq. (24) in
the form of a true conservation equation, if one accepts to restrict oneself to coordinate systems
exchanging by /inear coordinate transformations, as are Lorentz transformations in a flat space-time.
Unfortunately, one may do this in many different ways, so that it is not clear which would be the
correct way, even once one has specified the linear class of coordinate systems. Moreover, there is no
reason to introduce such particular class, unless "the space-time has a particular symmetry", which

means in fact that some background metric ¥° on the space-time manifold, distinct from the physical

metric vy, has some non-trivial group of isometries. The example of a such background metric that is
relevant to the rewriting of Eq. (24) as a true conservation equation is that of a flaf metric [4]: a such
metric admits a particular class of coordinate systems, in which it reduces to the Galilean
(Minkowskian) form. In summary, the search for a consistent concept of energy leads in GR to a
contradiction with the very notion of "general relativity", since this search leads to restrict oneself to
reference frames exchanging by Lorentz transformations of a flat background metric. In the present
preferred-frame theory, on the other hand, we do have a flat background metric y° and we do not even
demand that the energy balance equation should be covariant by Lorentz transformations of this flat
metric, so it would be hard to accept that the theory would not lead to a true conservation equation for
the energy.

The obtainment of the energy equation for a mass point (pp. 42-43 in Ref. 4) is a modification of
the elementary method used in classical mechanics to derive the energy equation in a force field
deriving from a variable potential (the modifications are due to relativistic mechanics with a variable
metric). Here, the assumed expression for g (Eq. 23)) derives from the potential U' = — ¢2 Log f. Thus,
one evaluates the rate of work per unit rest mass for a "free" mass point,

2 Semi-~colon means covariant derivative with respect to the space-time metric y.
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dw / dty =(F v/ mo= yg.(cie/dl) = e .(cte/ 9 25)

(where the point means scalar product g), using Newton's second law (19) (with F, = 0), which
involves the correct time-derivative (18). The result is
ax'  dU oU

d ax ax
—(chog7V)=g.—=(gradg U').—zU' ; = - . (26)
dr dr dr Y dr  dr  or

Using the definition of the potential U', one rewrites this as

d\y, P 2
pl_ op o
dar or
or, multiplying by nc? with n1, the rest mass:
d\F o
( ﬁ) =F p . (28)
ar orT

Equation (28) shows clearly that the total energy of the mass point must be defined as
em= Ef=cimoy, p, (29)

which is a constant for a constant gravitational field. This is the total energy of the mass point, for it
includes both its "purely material" energy £ (i.e. the energy equivalent of the relativistic inertial mass,
thus including the "kinetic" energy) and its "potential" energy in the gravitational field, which may be
defined as egm = en — £= £ (B — 1). (It is hence negative, as in NG.) It turns out that just the same
equation (28) may be derived also for a light-like particle.

The deduction of the energy equation (28) from Eq. (27) is trivial, but it rests on the essential
assumption that the rest mass 1, of the free mass point is conserved in the motion (an assumption that
is already used in the derivation of Eq. (26)). If we now consider a dust, i.e. a continuum made of
coherently moving, non-interacting particles, each of which conserves its rest mass, we may apply Eq.
(27) pointwise in the continuum. The conservation of the rest~-mass of the continuum is most easily
expressed in terms of the "background" Euclidean metric g° and the associated volume measure V0,
for it is then expressed as the usual continuity equation for the density of the rest-mass with respect to
oV, which is poo = omo/ SV°. The density, with respect to 5V°, of the total energy of the dust, is em= ¢
2poo v P, because

dem =c20mo ¥y f= 2000 OVO ¥, f= &m OVO. (30)

It turns out that ¢ is none other than the 7 ©, component of the energy-momentum tensor T for the

dust, whose 77, components are 779 = 7°¢ ui/c, with ui= dx’ /dT the "absolute velocity" (with respect
to the preferred frame, and evaluated with the absolute time 7°) 3. Using this and rewriting Eq. (27)
with the help of the continuity equation, one gets the local balance equation for the continuum:

0
% &
cT o zc(div 0 T) 1098 ooy, 31)
’ v o BT

% In this paper, we shall use the energy units for tensor T, whereas mass units were used in Refs. 4 and 7.



13

where the identity applies when the spatial coordinates in the preferred frame are Cartesian (at least at
the point considered), i.e. such that g°;= dyand g°; x= 0.

To rewrite this as a true conservation equation, we must use the field equation of the theory (Eq.
(13)) so that the r.h.s. of Eq. (31), which in this form is a source term, be recast as a 4-divergence with
respect to the flat metric y°. In other words, we have to make the gravitational energy and its flux

appear. To do this, we adapt the reasoning that leads to a conservation equation in NG: we observe that,
due to Egs. (12) and (13), one has [4]

87 G
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pPLo= leO fog ElL , divo=div g, 82=90°g,8), x°=cT. (32)
c?

On the other hand, using the condition jo,; = 0, the r.h.s. of Eq. (31) may be rewritten as *

0B T°% or T°° o ¢
f_Toof T 0f Croo, (33)
ﬁ ot 2f or 2 or 2

Since c2p is "the mass-energy density" (in the preferred frame), it should be equal to 7%, or to 70, or
still to Too. But Egs. (32) and (33) show that the source term on the r.h.s. of Eq. (31) can be rewritten as
a flat 4-divergence, if and only if c¢2p = T . Therefore, we must precisely define c¢2p as the 7
component (in coordinates bound to the preferred frame, and such that x° = ¢7T’). This also means that
the gravitational field reinforces itself, whereas, if we would assume ¢ 2p =T 9 or ¢ 2p =T oo, the
gravitational field would have a weakening effect on itself [4]. We therefore obtain the Jlocal
conservation equation for the continuum:

1 Jr C4 fO 2—| 2 L
(divyo T]o+8ﬂG[ g +TL’7 Jl +divo(c £y g) =0 (x°=cT). (34)
0

2

Although this equation has been derived for a dust, we assume that it holds true with T the fofal energy-~
momentum tensor of any kind of continuum (involving material particles and/or non-gravitational
fields). This assumption is justified by the mass-energy equivalence and the universality of the
gravitation force. Equation (34) rules the exchange between the total energy of matter, whose density is
given by em = 79 (cf. Eq. (30)), and the purely gravitational energy, whose density &, is defined by

1 | 04(f0\2—|

Eq = %{gz +TL’7J J (35)

This exchange occurs through the intermediate of the flux of the total matter energy, defined as the
space vector with components c77o, and the flux of the gravitational energy, defined as the space vector

c3f, 0 g/(8 m (). Note that the total energy of matter contains also the negative potential energy of
matter (and/or non-gravitational fields) in the gravitational field: for a dust, 770 = & is the density of
the total energy of the individual particles, defined by em = c2moy, £ (cf. Egs. (29) and (30)). Of course,

4 Indices are raised and lowered with the help of the physical space-time metric vy, unless explicitly mentioned
otherwise.
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the local conservation of the energy implies a global conservation (of the global amount of fofal energy,
i.e. gravitational energy plus total energy of matter), under asymptotic conditions ensuring that the
global energy is finite [4].

6. Continuum dynamics and matter creation/destruction

By the foregoing induction (from a dust to a general continuum), we have got one scalar local equation
for a continuous medium, i.e. the energy conservation, which, for a general continuum, is substituted
for the mass conservation. However, for a point particle, we have four equations: the three equations of
motion (19), plus the conservation of the rest-mass, and it is easy to convince oneself that one also
needs exactly four independent dynamical equations for a continuum, in addition to the state equation.
For instance, there are indeed four dynamical equations in classical continuum mechanics: Newton's
second law plus the continuity equation. The same number applies also in GR, where the dynamical
equations make the well-known 4-vector equation (24).

In order to get the required four scalar "equations of motion" for a continuous medium, we may
again use the general principle of induction from a dust to a general behaviour, once the equation for
dust has been expressed in terms of the energy-momentum tensor T. The most expedient way to operate
this principle turns out to be passing through the expression of the 4-acceleration [7]. The latter
expression has been obtained for a free particle [5]. (The spatial components of the 4-acceleration and
its time component were deduced from Newton's second law (19) and the energy equation (27),
respectively, by using the relation between the Christoffel symbols of the spatial metric and those of the
space-time metric.) It happens to be simpler in covector form 4:

1 ; 1
AOZEQJMUJU](, A== 9o U US. (36)
(By the way, Eq. (36) shows at once that, in the present theory, Einstein's geodesic motion is recovered
only for a gravitational field that is constant in the preferred frame: A = O is true for whatever 4-
velocity U if and only if g;; 0 =0.) For a dust, the T tensor has the form 7" = ¢2p* U* U" with p* the
proper rest-mass density, and, for any material continuum, the 4-acceleration may be expressed as 4*

= U" U" ,. Using this and the mass conservation, assumed valid by definition for a dust, one may
rewrite Eq. (36), for a dust, as

— v —
T w=T pv=bu (37)
where b, is defined by
1 ; 1
D=0 r*, b= G0 o (38)

Now the induction principle means simply that Eg. (37) is the genecral equation for contfinuum
dynamics in the present theory. It thus plays the role played in GR by Eq. (24). The r.h.s. of Eq. (37), b,
as defined by Eq. (38), is a 4~covector for transformations of the group (7), and so is also Eq. (37). The
time component of Eq. (37) (u = 0) is equivalent to the energy balance equation (31), hence also to the
energy conservation equation (34) [7]. Moreover, for a dust, i.e. the case 7" = c2p* U* U", Eq. (37)
impilies the mass conservation, i.e.
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(pr0Y) =o, (39)
5V
and (again for a dust), Eq. (37) implies also the expression (36) for the 4-acceleration, which is
characteristic for free motion in the present theory, i.e. Fo = 0 in Newton's second law (19) [7]. Thus,
Eq. (87) plus the relevant definition of the energy-momentum tensor as a function of the state variables
(which, for dust, consist of the single variable p*) characterize completely the dynamical behaviour of
dust. This is an important consistency test.
A general continuum may thus be phenomenologically defined by the expression of tensor T as
a function of some state variables, and Eq. (37) determines how the continuum couples to gravitation in
the present theory (of course, Eq. (37) reduces to the equation valid in SR, i.e., 7" , = 0, if there is no
gravitational field). But, for a general continuum, the energy is conserved, and this is in general
incompatible with the exact mass conservation: in the case of a variable gravitational field, there are
exchanges between the gravitational energy and the total energy of matter, so one may a priori expect
that, in general, the rest-mass will not be conserved — except for the special case of a dust. One may
already verify this for the simple case of a perfect isentropic fluid. The energy-momentum tensor of a
perfect fluid isin general

Thia"" = W+ p U U"— py", (40)

with p the pressure and w* the volume density of the rest-mass plus internal energy in the proper
frame: in energy units,

wE=pt(cz+ 1D, 410
where IT is the internal energy per unit rest mass. For a perfect fluid, the isentropy condition is simply
dIl+ pd1/p*) =0. (42)

For instance, for a barotropic fluid, one assumes g* = p*(p); then, p* and I also depend on p only, I'1
being given by [18]
p_dq p

II(p) = — . 43)
®) IO P (@) p*(p)

Due to Eq. (43), a barotropic fluid is automatically isentropic.
For any isentropic fluid, Eq. (37) leads to the following equation for mass creation/destruction:

( T+p/p*) vl f
P
v c 2c¢° f

which indeed shows that, except for the limit case of a dust (p = 0) and for the limit case of a constant

gravitational field (£, o = 0), the rest-mass is not conserved — according to the present theory [7]. In
contrast, GR and other relativistic theories are based on Eq. (24), which, for an isentropic fluid, implies
the conservation of the rest-mass, Eq. (39) (¢f Chandrasekhar [15]). On the contrary, the present
theory predicts that matter may really be produced or destroyed, due to the variation of the
gravitational field. Prigogine ef al [32] consider that matter should be produced by a such exchange
(albeit in an irreversible way, excluding matter desfruction), and this exchange would indeed seem a
priori natural in a theory with conserved energy, due to the mass-energy equivalence. However, matter
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production can hardly happen so in GR: we insist that, due to the equation for continuum dynamics

that goes with geodesic motion, i.e., 7*",, = 0, matter can only be produced if one phenomenologically
inserts an additional term, which is nof determined by the set of the state equation plus the Hilbert-
Finstein equations [12, 19, 32]. Roughly speaking, this "creation term" appears thus as an ad hoc,
adjustable source term, which is used to allow production of matter in some cosmological models. It
seems interesting to investigate the possibility that matter might be produced (or destroyed ) by an
exchange with the gravitational field (a more complete discussion of this question is given in Ref. 7,
that includes in particular a discussion of the thermodynamical constraints). Yet in our opinion, such
exchange should not be considered merely in a cosmological context, but actually for any gravitational
field.

Precisely, the way in which matter production occurs in any variable gravitational field, as
implied by Eq. (44), may seem dangerous for the present theory, because it would mean that matter is
continuously produced or wasted away under our eyes. However, the rates would be extremely small
and often the mean gain would be rather close to zero [7]. If the absolute velocity V of the solar system
is of the order 300 km/s, the main contribution in Eq. (44) would come from that variation of the
gravitational field which is due to the translation of any celestial body through the ether, giving a
creation rate (the amount produced per unit time in some material domain, divided by the mass of that
domain)

C=—n—— — — — (V}EV.Cr), (45)

with A and R the mass and radius of the spherical celestial body, whose attraction g (¢ = GM/r?
outside the body) dominates in its near environment (e, is the unit radial vector). At a fixed point on the
surface of a body in self-rotation (as it is indeed the case for the planets), the corresponding
contribution would be exactly cyclic at the equator, and instead would constantly accumulate
production of matter (resp. destruction) at one pole (resp. at the other pole). Near the surface of the
Earth, for instance, the ratio p/(c2p) can hardly take values much higher than 10 ~ 12 (which is its
value in the air at the atmospherical pressure). A ratio equal to 10 ~ 12 leads to a maximum value of the

creation rate Guax = 3. 10 ~23 s~ ! (obtained for e, parallel to V, and with V= 300 km/s), which seems
very difficult to detect [7]. Hence, it might be the case that this new form of energy exchange be a real
phenomenon. Needless to emphasize, this would be interesting.



