Reference frames in a general spacetime and the notion of space

Mayeul Arminjon^{1,2}

¹ CNRS (Section of Theoretical Physics)

² Lab. "Soils, Solids, Structures, Risks", 3SR

(CNRS & Grenoble Universities), Grenoble, France.

3rd International Conference on Theoretical Physics "Theoretical Physics and its Applications" Moscow State Open University, June 24-28, 2013

Motivation and State of the Art

- A reference frame: essentially a three-dimensional network of observers equipped with clocks and meters.
- \blacktriangleright \exists an *associated space* in which the observers are at rest.
- Clearly, both are fundamental notions for physics!
- In Newtonian physics, consideration is usually (not always) restricted to *rigid* reference frames (w.r.t. Euclidean metric).
- In special relativity also: there one considers mainly the inertial frames. Each of them is rigid w.r.t. the spatial metric.

Motivation and State of the Art (continued)

- Relativistic theories of gravitation: the metric is a field, i.e. it depends on the spacetime position.
- Hence, rigid reference frames are not relevant any more.
- Relevant notion: reference fluid. The 3D network is defined by a time-like vector field v on spacetime (Cattaneo 1958, Massa 1974, Mitskievich 1996): v = unit tangent vector field to the world lines of the points belonging to the network.
- For Landau & Lifshitz (1951) and Møller (1952), a coordinate system (or chart) defined a reference frame. The link with the definition by a 4-velocity vector field v was done by Cattaneo, 1958:

Motivation and State of the Art (continued)

$$v^0 \equiv \frac{1}{\sqrt{g_{00}}}, \qquad v^j = 0 \quad (j = 1, 2, 3).$$
 (1)

The vector (1) is invariant under the "internal changes"

$$x'^0 = \phi((x^\mu)), \quad x'^k = \phi^k((x^j)) \quad (j,k=1,2,3).$$
 (2)

This is valid only within the domain of definition of the chart χ — an open subset U of the whole spacetime manifold V.

Motivation and State of the Art (end)

Moreover, the notion of the space associated with a reference fluid/network was missing in that context. Only a notion of a "spatial tensor" had been defined (Massa 1974, Jantzen-Carini-Bini 1992):

Namely, a spatial tensor at $X \in V$ was defined as a *spacetime tensor* which equals its projection onto the hyperplane $H_X \equiv v(X)^{\perp}$.

A number of time derivatives along a trajectory can then be introduced. Difficult to choose among them.

if we change the chart?

- The 3D space manifold N associated with a reference fluid *F* (network of observers) was introduced as <u>the set of the</u> world lines of the points of the network (MA 1996).
- Thus an *element* (point) of N is a *line* of the spacetime manifold V. Spatial tensor fields were defined simply as tensor fields on the spatial manifold N.
- "Sketch" at that time: because the network, hence also N, was defined "physically" and it was not proved that N is indeed a differentiable manifold.

Applications of that notion of a space manifold

- It was noted that the spatial metric defined in Landau & Lifshitz (1951) and in Møller (1952) endows this manifold N with a time-dependent Riemannian metric, thus with a one-parameter family of metrics.
- Then, just one time derivative along a trajectory appears naturally (MA 1996). This allowed us to unambiguously define Newton's second law in a general spacetime.

A rigorous and practical definition of a reference frame

- One may define a reference frame as being an equivalence class of charts which
 - are all defined on a given open subspace U of the spacetime V;
 - and are related 2-by-2 by a purely spatial coordinate change:

$$x'^{0} = x^{0}, \quad x'^{k} = \phi^{k}((x^{j})).$$
 (3)

 This does define an equivalence relation (MA & F Reifler 2011a)

A definition of a reference frame (continued)

► Thus a reference frame F, i.e. an equivalence class for this relation, can indeed be given by the data of one chart $\chi : X \mapsto (x^{\mu})$ with its domain of definition U (an open subset of the spacetime manifold V):

Namely, F is the equivalence class of (χ, U) . I.e., F is the set of the charts χ'

- which are defined on U
- and such that the transition map $f \equiv \chi' \circ \chi^{-1} \equiv (\phi^{\mu})$ corresponds with a purely spatial coordinate change: $x'^0 = x^0, \quad x'^k = \phi^k((x^j)).$

The associated space manifold

The physics in the former definition: any world line

 $x^{j} = \text{Constant} (j = 1, 2, 3), x^{0} \text{ variable}$

11

(4)

is that of an observer.

The corresponding 4-velocity field is given by (1).

This is invariant under the "internal changes" (2). \Rightarrow a fortiori invariant under the purely spatial coordinate changes (3).

The space manifold $M = M_F$ is the set of the world lines (4).

▶ In detail: let $P_S : \mathbb{R}^4 \to \mathbb{R}^3$, $\mathbf{X} \equiv (x^{\mu}) \mapsto \mathbf{x} \equiv (x^j)$, be the spatial projection.

A world line l is an element of M_F iff there is a chart $\chi \in F$ and a triplet $\mathbf{x} \equiv (x^j) \in \mathbb{R}^3$, such that l is the set of *all* points X in the domain U, whose spatial coordinates are \mathbf{x} :

$$l = \{ X \in U; P_S(\chi(X)) = \mathbf{x} \}.$$
 (5)

- For the model of the model of the matrix of
- One then shows that the set of the mappings $\tilde{\chi}$ defines a structure of differentiable manifold on M_F : The spatial part of any chart $\chi \in F$ defines a chart $\tilde{\chi}$ on M_F .

Applications of this result

A Hamiltonian operator of relativistic QM depends precisely (MA & F Reifler 2010) on the reference frame F as just defined here. The Hilbert space H of quantummechanical states is the set of the square-integrable functions defined on the associated space manifold M_F (MA & F Reifler 2011b).

Prior to this definition, \mathcal{H} depended on the particular spatial coordinate system. This does not seem acceptable.

The full algebra of spatial tensors can be defined in a simple way: a spatial tensor field is simply a tensor field on the space manifold M_F associated with a reference frame F. E.g., the rotation rate of a spatial triad (MA 2011).

Questions left open by that result

- These definitions of a <u>reference frame</u> and the associated space manifold apply to a domain U of V, such that at least one regular chart can be defined over the whole of U. Thus these are *local* definitions. Whence the questions:
- Can the definition of a <u>reference fluid</u> by the data of a <u>global</u> four-velocity field v lead to a global notion of space? If yes, what is the link with the former local notions?

The global space manifold N_v associated with a non-vanishing vector field v

• Given a global vector field v on the manifold V and $X \in V$, let C_X be the solution of

$$\frac{dC}{ds} = v(C(s)), \qquad C(0) = X \tag{7}$$

that is defined on the *largest possible* open interval I_X containing X. Call the *range* $l_X \equiv C_X(I_X) \subset V$ the "maximal integral line at X". If $X' \in l_X$, then $l_{X'} = l_X$.

We define N_v as the set of the maximal integral lines of v:

$$N_v \equiv \{l_X; \ X \in \mathcal{V}\}.$$
 (8)

Local existence of adapted charts

A chart x with domain U ⊂ V is said "v-adapted" iff the spatial coordinates remain constant on any integral line l of v — more precisely, remain constant on l ∩ U:

$$\exists \mathbf{x} \equiv (x^j) \in \mathsf{R}^3 : \forall X \in l \cap \mathsf{U}, \quad P_S(\chi(X)) = \mathbf{x}.$$
(9)

For any v-adapted chart χ , the mapping

 $\bar{\chi}: l \mapsto \mathbf{x} \text{ such that } (9) \text{ is verified}$ (10)

is well defined on $D_U \equiv \{l \in N_v; l \cap U \neq \emptyset\}$. Call the *v*-adapted chart χ "nice" if the mapping $\overline{\chi}$ is one-to-one. • **Theorem 1.** Assume the global vector field v on V is non-vanishing. Then (under some reasonable technical assumption regarding the flow of the field v), for any point $X \in V$, there exists a nice v-adapted chart χ whose domain is an open neighborhood of X.

Manifold structure of the global set N_v

- Main thing to prove is compatibility of any two charts $\bar{\chi}$, $\bar{\chi}'$ on N_v, associated with two adapted charts χ , χ' on V.
- In the case of the space manifold M_F associated with a local reference frame F, the compatibility of two associated charts $\tilde{\chi}$ and $\tilde{\chi}'$ on M_F was \simeq easy to prove: any world line $l \in M_F$ is included in the common domain U of any two charts $\chi, \chi' \in F$. It follows that $\tilde{\chi}' \circ \tilde{\chi}^{-1} = (\phi^k)$.
- In contrast, in the present case, two adapted charts χ and χ' have different domains U and U' and we may have

$$U \cap U' = \emptyset, \quad l \cap U \neq \emptyset, \quad l \cap U' \neq \emptyset,$$
 (11)

so the charts χ and χ' don't compose, but $\overline{\chi}$ and $\overline{\chi}'$ do.

The mapping $I: \mathrm{M}_\mathrm{F} o \mathrm{N}_v, \ l \mapsto l'$ is an immersion.

• We may identify: $M_F \simeq I(M_F) \subset N_v$. That is: The local space associated with a (local) reference frame is part of the global space associated with a (global) reference fluid.

- Defining a <u>reference fluid</u> from its 4-velocity field has been done since a long time but is not very tractable by itself.
- Defining a <u>reference frame</u> as a class of charts exchanging by spatial coordinate change: both practical and correct.
- Associated space with given ref. fluid or given ref. frame: needed to define classical trajectories and quantum space of states. A precise notion did not exist. Here defined from the charts adapted to the ref. fluid or frame.
- Adapted charts with a common domain \rightarrow "local" space. This is a part of a global space associated with the ref. fluid.

References

(Cattaneo 1958) C. Cattaneo, "General relativity: relative standard mass, momentum, energy and gravitational field in a general system of reference," *il Nuovo Cimento* **10**, 318–337 (1958).

(Massa 1974) E. Massa, a) "Space tensors in general relativity. I. Spatial tensor algebra and analysis," *Gen. Rel. Grav.* 5, 555–572 (1974); b) "Space tensors in general relativity. II. Physical applications," *Gen. Rel. Grav.* 5, 573–591 (1974).

(Mitskievich 1996) N. V. Mitskievich, *Relativistic physics in arbitrary* reference frames (Nova Science Publishers, Hauppauge, NY, 2007). (arXiv:gr-qc/9606051v1)

(Jantzen-Carini-Bini 1992) R. T. Jantzen, P. Carini, and D. Bini, "The many faces of gravitoelectromagnetism," *Ann. Phys. (New York)* **215**, 1–50 (1992). (arXiv:gr-qc/0106043)

(MA 1996) M. Arminjon,"On the extension of Newton's second law to

theories of gravitation in curved space-time," Arch. Mech. 48, 551–576 (1996). (arXiv:gr-qc/0609051)

(MA & F Reifler 2011a) M. Arminjon and F. Reifler, "General reference frames and their associated space manifolds," *Int. J. Geom. Meth. Mod. Phys.* **8**, 155–165 (2011). (arXiv:1003.3521 (gr-qc))

(MA & F Reifler 2010) M. Arminjon and F. Reifler, "Basic quantum mechanics for three Dirac equations in a curved spacetime," Braz. J. Phys. 40, 242–255 (2010). (arXiv:0807.0570 (gr-qc)).

(MA & F Reifler 2011b) M. Arminjon and F. Reifler, "A non-uniqueness problem of the Dirac theory in a curved spacetime," Ann. Phys. (Berlin) **523**, 531–551 (2011). (arXiv:0905.3686 (gr-qc)).

(MA 2011) M. Arminjon, "A solution of the non-uniqueness problem of the Dirac Hamiltonian and energy operators," *Ann. Phys. (Berlin)* **523**, 1008–1028 (2011). (Pre-peer-review version: arXiv:1107.4556 (gr-qc)).