
Reference frames in a general spacetime
and the notion of space

Mayeul Arminjon 1,2

1 CNRS (Section of Theoretical Physics)
2 Lab. “Soils, Solids, Structures, Risks”, 3SR

(CNRS & Grenoble Universities), Grenoble, France.

3rd International Conference on Theoretical Physics
“Theoretical Physics and its Applications”

Moscow State Open University, June 24-28, 2013



Reference frames in a general spacetime and the notion of space 2

Motivation and State of the Art

I A reference frame: essentially a three-dimensional network
of observers equipped with clocks and meters.

I ∃ an associated space in which the observers are at rest.

I Clearly, both are fundamental notions for physics!

I In Newtonian physics, consideration is usually (not always)
restricted to rigid reference frames (w.r.t. Euclidean metric).

I In special relativity also: there one considers mainly the
inertial frames. Each of them is rigid w.r.t. the spatial metric.
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Motivation and State of the Art (continued)

I Relativistic theories of gravitation: the metric is a field, i.e. it
depends on the spacetime position.

I Hence, rigid reference frames are not relevant any more.

I Relevant notion: reference fluid. The 3D network is defined
by a time-like vector field v on spacetime (Cattaneo 1958,
Massa 1974, Mitskievich 1996): v = unit tangent vector field
to the world lines of the points belonging to the network.

I For Landau & Lifshitz (1951) and Møller (1952), a coordinate
system (or chart) defined a reference frame. The link with
the definition by a 4-velocity vector field v was done by
Cattaneo, 1958:
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Motivation and State of the Art (continued)

I Namely, any admissible chart on the spacetime,
χ : X 7→ (xµ) (µ = 0, ..., 3), defines a unique reference fluid,
given by its four-velocity field v: the components of v in the
chart χ are

v0 ≡
1
√
g00

, vj = 0 (j = 1, 2, 3). (1)

The vector (1) is invariant under the “internal changes”

x′0 = φ((xµ)), x′k = φk((xj)) (j, k = 1, 2, 3). (2)

I This is valid only within the domain of definition of the chart
χ — an open subset U of the whole spacetime manifold V.
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Motivation and State of the Art (end)

I Moreover, the notion of the space associated with a
reference fluid/network was missing in that context. Only a
notion of a “spatial tensor” had been defined (Massa 1974,
Jantzen-Carini-Bini 1992):

Namely, a spatial tensor at X ∈ V was defined as a
spacetime tensor which equals its projection onto the
hyperplane HX ≡ v(X)⊥.

I A number of time derivatives along a trajectory can then
be introduced. Difficult to choose among them.



Reference frames in a general spacetime and the notion of space 6

Need for a better definition of a reference frame

I Defining a “reference fluid” through its 4-velocity field is
correct but unpractical.

I Fixing a “reference frame” by the data of a chart is
practical but:

What is physical here? Is there an associated space? What
if we change the chart?
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A sketch of the definition of a space manifold

I The 3D space manifold N associated with a reference fluid
F (network of observers) was introduced as the set of the
world lines of the points of the network (MA 1996).

I Thus an element (point) of N is a line of the spacetime
manifold V. Spatial tensor fields were defined simply as
tensor fields on the spatial manifold N.

I “Sketch” at that time: because the network, hence also N,
was defined “physically” and it was not proved that N is
indeed a differentiable manifold.
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Applications of that notion of a space manifold

I It was noted that the spatial metric defined in Landau &
Lifshitz (1951) and in Møller (1952) endows this manifold N

with a time-dependent Riemannian metric, thus with a
one-parameter family of metrics.

I Then, just one time derivative along a trajectory appears
naturally (MA 1996). This allowed us to unambiguously
define Newton’s second law in a general spacetime.
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A rigorous and practical definition of a
reference frame

I One may define a reference frame as being an
equivalence class of charts which

• are all defined on a given open subspace U of the
spacetime V;

• and are related 2-by-2 by a purely spatial coordinate
change:

x′0 = x0, x′k = φk((xj)). (3)

I This does define an equivalence relation (MA & F Reifler
2011a)
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A definition of a reference frame (continued)

I Thus a reference frame F, i.e. an equivalence class for this
relation, can indeed be given by the data of one chart
χ : X 7→ (xµ) with its domain of definition U (an open
subset of the spacetime manifold V):

Namely, F is the equivalence class of (χ,U).
I.e., F is the set of the charts χ′

• which are defined on U

• and such that the transition map f ≡ χ′ ◦ χ−1 ≡ (φµ)

corresponds with a purely spatial coordinate change:
x′0 = x0, x′k = φk((xj)).
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The associated space manifold

I The physics in the former definition: any world line

xj = Constant (j = 1, 2, 3), x0 variable (4)

is that of an observer.

The corresponding 4-velocity field is given by (1).

This is invariant under the “internal changes” (2).
⇒ a fortiori invariant under the purely spatial coordinate
changes (3).

The space manifold M = MF is the set of the world lines (4).
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I In detail: let PS : R4 → R3,X ≡ (xµ) 7→ x ≡ (xj), be the
spatial projection.

A world line l is an element of MF iff there is a chart χ ∈ F

and a triplet x ≡ (xj) ∈ R3, such that l is the set of all points
X in the domain U, whose spatial coordinates are x:

l = {X ∈ U; PS(χ(X)) = x }. (5)
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MF is a differentiable manifold: sketch of the proof

I Let a chart χ ∈ F. With any world line l ∈ MF, let us
associate the triplet x ≡ (xj) made with the constant
spatial coordinates of the points X ∈ l:

χ̃ : MF → R3, l 7→ x such that ∀X ∈ l, χj(X) = xj (j = 1, 2, 3).

(6)

I Through Eq. (5), the world line l ∈ MF is determined
uniquely by the data x. I.e., the mapping χ̃ is one-to-one.

I One then shows that the set of the mappings χ̃ defines a
structure of differentiable manifold on MF:
The spatial part of any chart χ ∈ F defines a chart χ̃ on MF.
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Applications of this result

I A Hamiltonian operator of relativistic QM depends
precisely (MA & F Reifler 2010) on the reference frame F as
just defined here. The Hilbert space H of quantum-
mechanical states is the set of the square-integrable
functions defined on the associated space manifold MF

(MA & F Reifler 2011b).

Prior to this definition,H depended on the particular spatial
coordinate system. This does not seem acceptable.

I The full algebra of spatial tensors can be defined in a
simple way: a spatial tensor field is simply a tensor field on
the space manifold MF associated with a reference frame
F. E.g., the rotation rate of a spatial triad (MA 2011).
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Questions left open by that result

I These definitions of a reference frame and the associated
space manifold apply to a domain U of V, such that at
least one regular chart can be defined over the whole of
U. Thus these are local definitions. Whence the questions:

I Can the definition of a reference fluid by the data of a
global four-velocity field v lead to a global notion of
space? If yes, what is the link with the former local notions?
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The global space manifold Nv associated with a
non-vanishing vector field v

I Given a global vector field v on the manifold V and X ∈ V,
let CX be the solution of

dC

ds
= v(C(s)), C(0) = X (7)

that is defined on the largest possible open interval IX
containing X. Call the range lX ≡ CX(IX) ⊂ V the
“maximal integral line at X”. If X′ ∈ lX , then lX′ = lX .

I We define Nv as the set of the maximal integral lines of v:

Nv ≡ {lX ; X ∈ V}. (8)
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Local existence of adapted charts

I A chart χ with domain U ⊂ V is said “v–adapted” iff the
spatial coordinates remain constant on any integral line l
of v — more precisely, remain constant on l ∩U:

∃x ≡ (xj) ∈ R3 : ∀X ∈ l ∩U, PS(χ(X)) = x. (9)

I For any v–adapted chart χ, the mapping

χ̄ : l 7→ x such that (9) is verified (10)

is well defined on DU ≡ {l ∈ Nv ; l ∩U 6= ∅}. Call the
v–adapted chart χ “nice” if the mapping χ̄ is one-to-one.
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I Theorem 1. Assume the global vector field v on V is
non-vanishing. Then (under some reasonable technical
assumption regarding the flow of the field v ), for any point
X ∈ V, there exists a nice v–adapted chart χ whose
domain is an open neighborhood of X.
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Manifold structure of the global set Nv

I Main thing to prove is compatibility of any two charts χ̄, χ̄′

on Nv , associated with two adapted charts χ, χ′ on V.

I In the case of the space manifold MF associated with a
local reference frame F, the compatibility of two
associated charts χ̃ and χ̃′ on MF was ' easy to prove:
any world line l ∈ MF is included in the common domain U

of any two charts χ, χ′ ∈ F. It follows that χ̃′ ◦ χ̃−1 = (φk).

I In contrast, in the present case, two adapted charts χ and
χ′ have different domains U and U′ and we may have

U ∩U′ = ∅, l ∩U 6= ∅, l ∩U′ 6= ∅, (11)

so the charts χ and χ′ don’t compose, but χ̄ and χ̄′ do.
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Manifold structure of the global set Nv (continued)

I Solution: Consider x ∈ χ̄(DU), thus ∃l ∈ Nv and ∃X ∈ l ∩U:
x = χ̄(l) = PS(χ(X)). Let χ(X) = (t,x). We use the flow of
the vector field v to associate smoothly with any point Y in
some neighborhood W ⊂ U of X, a point g(Y ) ∈ U′.

I Then we may write for y in a neighborhood of x:(
χ̄′ ◦ χ̄−1

)
(y) = PS(χ′(g(χ−1(t,y)))), (12)

showing the smoothness of χ̄′ ◦ χ̄−1.

I It follows that the maps χ̄ deduced from the adapted
charts χ build an atlas on Nv , making it a differentiable
manifold.
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The local manifold MF is a submanifold of Nv

I Let v be a non-vanishing vector field on V, and let F be a
reference frame made of nice v–adapted charts, all
defined on the same open set U ⊂ V.

I Let l ∈ MF, thus there is some chart χ ∈ F and some x ∈ R3

such that l = {X ∈ U; PS(χ(X)) = x }.
Then for any X ∈ l we have l′ ≡ lX ∈ Nv and l = l′ ∩U.
The mapping I : MF → Nv , l 7→ l′ is an immersion.

I We may identify: MF ' I(MF) ⊂ Nv . That is:
The local space associated with a (local) reference frame
is part of the global space associated with a (global)
reference fluid.
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Conclusion

I Defining a reference fluid from its 4-velocity field has been
done since a long time but is not very tractable by itself.

I Defining a reference frame as a class of charts exchanging
by spatial coordinate change: both practical and correct.

I Associated space with given ref. fluid or given ref. frame:
needed to define classical trajectories and quantum
space of states. A precise notion did not exist. Here defi-
ned from the charts adapted to the ref. fluid or frame.

I Adapted charts with a common domain→ “local” space.
This is a part of a global space associated with the ref. fluid.
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