Reference frames in a general spacetime and the notion of space

Mayeul Arminjon $1,2$

¹ CNRS (Section of Theoretical Physics)

 2 Lab. "Soils, Solids, Structures, Risks", 3SR

(CNRS & Grenoble Universities), Grenoble, France.

 $3rd$ International Conference on Theoretical Physics "Theoretical Physics and its Applications" Moscow State Open University, June 24-28, 2013

Motivation and State of the Art

- \triangleright A reference frame: essentially a three-dimensional network of observers equipped with clocks and meters.
- ► ∃ an *associated space* in which the observers are at rest.
- \blacktriangleright Clearly, both are fundamental notions for physics!
- \blacktriangleright In Newtonian physics, consideration is usually (not always) restricted to rigid reference frames (w.r.t. Euclidean metric).
- In special relativity also: there one considers mainly the inertial frames. Each of them is rigid w.r.t. the spatial metric.

Motivation and State of the Art (continued)

- \blacktriangleright Relativistic theories of gravitation: the metric is a field, i.e. it depends on the spacetime position.
- \blacktriangleright Hence, rigid reference frames are not relevant any more.
- \blacksquare Relevant notion: *reference fluid*. The 3D network is defined by a time-like vector field v on spacetime (Cattaneo 1958, Massa 1974, Mitskievich 1996): $v =$ unit tangent vector field to the world lines of the points belonging to the network.
- **For Landau & Lifshitz (1951) and Møller (1952), a coordinate** system (or chart) defined a reference frame. The link with the definition by a 4-velocity vector field v was done by Cattaneo, 1958:

Motivation and State of the Art (continued)

 \blacktriangleright Namely, any admissible chart on the spacetime, $\chi: X \mapsto (x^\mu)$ $(\mu = 0, ..., 3)$, defines a unique reference fluid, given by its four-velocity field v : the components of v in the chart χ are

$$
v^0 \equiv \frac{1}{\sqrt{g_{00}}}, \qquad v^j = 0 \quad (j = 1, 2, 3). \tag{1}
$$

The vector [\(1\)](#page-3-0) is invariant under the "internal changes"

$$
x'^0 = \phi((x^\mu)), \quad x'^k = \phi^k((x^j)) \quad (j, k = 1, 2, 3). \tag{2}
$$

This is valid only within the domain of definition of the chart χ — an open subset U of the whole spacetime manifold V.

Motivation and State of the Art (end)

 \blacktriangleright Moreover, the notion of the space associated with a reference fluid/network was missing in that context. Only a notion of a "spatial tensor" had been defined (Massa 1974, Jantzen-Carini-Bini 1992):

Namely, a spatial tensor at $X \in V$ was defined as a spacetime tensor which equals its projection onto the hyperplane $\mathrm{H}_X \equiv v(X)^\perp$.

 \triangleright A number of time derivatives along a trajectory can then be introduced. Difficult to choose among them.

- Defining a "reference fluid" through its 4-velocity field is correct but unpractical.
- Fixing a "reference frame" by the data of a chart is practical but:

What is physical here? Is there an associated space? What if we change the chart?

A sketch of the definition of a space manifold \triangleright The 3D space manifold N associated with a reference fluid F (network of observers) was introduced as the set of the world lines of the points of the network (MA 1996). \blacktriangleright Thus an element (point) of N is a line of the spacetime

- manifold V. Spatial tensor fields were defined simply as tensor fields on the spatial manifold N.
- "Sketch" at that time: because the network, hence also N , was defined "physically" and it was not proved that N is indeed a differentiable manifold.

Applications of that notion of a space manifold

- \blacktriangleright It was noted that the spatial metric defined in Landau & Lifshitz (1951) and in Møller (1952) endows this manifold N with a time-dependent Riemannian metric, thus with a one-parameter family of metrics.
- \blacktriangleright Then, just one time derivative along a trajectory appears naturally (MA 1996). This allowed us to unambiguously define Newton's second law in a general spacetime.

A rigorous and practical definition of a reference frame

- \triangleright One may define a reference frame as being an equivalence class of charts which
	- are all defined on a given open subspace U of the spacetime V;
	- and are related 2-by-2 by a purely spatial coordinate change:

$$
x'^0 = x^0, \quad x'^k = \phi^k((x^j)).
$$
 (3)

This does define an equivalence relation (MA & F Reifler 2011a)

A definition of a reference frame (continued)

Inus a reference frame F , i.e. an equivalence class for this relation, can indeed be given by the data of one chart $\chi: X \mapsto (x^\mu)$ with its domain of definition U (an open subset of the spacetime manifold V):

Namely, F is the equivalence class of (χ, U) . I.e., ${\rm F}$ is the set of the charts χ'

- which are defined on U
- and such that the transition map $f \equiv \chi' \circ \chi^{-1} \equiv (\phi^\mu)$ corresponds with a purely spatial coordinate change: $x^{\prime 0} = x^0$, $x^{\prime k} = \phi^k((x^j))$.

The associated space manifold

The physics in the former definition: any world line

 $x^j = \text{Constant} (j = 1, 2, 3), x^0 \text{ variable}$ (4)

is that of an observer.

The corresponding 4-velocity field is given by [\(1\)](#page-3-0).

This is invariant under the "internal changes" [\(2\)](#page-3-1). \Rightarrow a fortiori invariant under the purely spatial coordinate changes [\(3\)](#page-8-0).

The space manifold $M = M_F$ is the set of the world lines [\(4\)](#page-10-0).

 \blacktriangleright In detail: let $P_S:\mathsf{R}^4\to\mathsf{R}^3, \mathbf{X}\equiv (x^\mu)\mapsto\mathbf{x}\equiv (x^j)$, be the spatial projection.

A world line l is an element of M_F iff there is a chart $\chi \in F$ and a triplet $\mathbf{x} \equiv (x^j) \in \mathsf{R}^3$, such that l is the set of *all* points X in the domain U, whose spatial coordinates are x :

$$
l = \{ X \in U; \ P_S(\chi(X)) = \mathbf{x} \}.
$$
 (5)

- uniquely by the data x. I.e., the mapping $\widetilde{\chi}$ is one-to-one.
- \blacktriangleright One then shows that the set of the mappings $\widetilde{\chi}$ defines a structure of differentiable manifold on M_F : The spatial part of any chart $\chi \in F$ defines a chart $\widetilde{\chi}$ on $\rm M_F$.

Applications of this result

 \triangleright A Hamiltonian operator of relativistic QM depends precisely (MA & F Reifler 2010) on the reference frame F as just defined here. The Hilbert space $\mathcal H$ of quantummechanical states is the set of the square-integrable functions defined on the associated space manifold $\rm M_F$ (MA & F Reifler 2011b).

Prior to this definition, H depended on the particular spatial coordinate system. This does not seem acceptable.

 \blacktriangleright The full algebra of spatial tensors can be defined in a simple way: a spatial tensor field is simply a tensor field on the space manifold $\rm M_F$ associated with a reference frame F. E.g., the rotation rate of a spatial triad (MA 2011).

Questions left open by that result

- These definitions of a reference frame and the associated space manifold apply to a domain U of V, such that at least one regular chart can be defined over the whole of U. Thus these are local definitions. Whence the questions:
- \triangleright Can the definition of a reference fluid by the data of a global four-velocity field v lead to a global notion of space? If yes, what is the link with the former local notions?

The global space manifold N_v associated with a non-vanishing vector field v

 \blacktriangleright Given a global vector field v on the manifold V and $X\in\mathrm{V}$, let C_X be the solution of

$$
\frac{dC}{ds} = v(C(s)), \qquad C(0) = X \tag{7}
$$

that is defined on the *largest possible* open interval I_X containing $X.$ Call the *range* $l_X\equiv C_X(\mathrm{I}_X)\subset \mathrm{V}$ *the* "maximal integral line at X ". If $X' \in l_X$, then $l_{X'} = l_X$.

We define N_v as the set of the maximal integral lines of v :

$$
N_v \equiv \{l_X; X \in V\}.
$$
 (8)

Local existence of adapted charts

 \blacktriangleright A chart χ with domain $U\subset V$ is said " v –adapted" iff the spatial coordinates remain constant on any integral line l of v — more precisely, remain constant on $l \cap U$:

$$
\exists \mathbf{x} \equiv (x^j) \in \mathbb{R}^3 : \forall X \in l \cap U, \quad P_S(\chi(X)) = \mathbf{x}.\tag{9}
$$

For any v -adapted chart χ , the mapping

 $\bar{\chi}: l \mapsto \mathbf{x}$ such that [\(9\)](#page-16-0) is verified (10)

is well defined on $\mathrm{D}_{\mathrm{U}}\equiv\{l\in \mathrm{N}_v;\ l\cap \mathrm{U}\neq \emptyset\}$. Call the *v*–adapted chart χ "nice" if the mapping $\bar{\chi}$ is one-to-one. **Iheorem 1.** Assume the global vector field v on V is non-vanishing. Then (under some reasonable technical assumption regarding the flow of the field v), for any point $X \in V$, there exists a nice v-adapted chart χ whose domain is an open neighborhood of X.

Manifold structure of the global set N_v

- \blacktriangleright Main thing to prove is compatibility of any two charts $\bar\chi$, $\bar\chi'$ on N_v , associated with two adapted charts χ , χ' on V_v .
- \blacktriangleright In the case of the space manifold $\rm M_F$ associated with a local reference frame F, the compatibility of two associated charts $\widetilde{\chi}$ and $\widetilde{\chi}'$ on $\rm M_F$ was \simeq easy to prove:
any warld line $l\in M$ is included in the ecompan demotion any world line $l \in M_F$ is included in the common domain U of any two charts $\chi, \chi' \in F$. It follows that $\widetilde{\chi}' \circ \widetilde{\chi}^{-1} = (\phi^k)$.
- In contrast, in the present case, two adapted charts χ and χ' have different domains ${\rm U}$ and ${\rm U'}$ and we may have

$$
U \cap U' = \emptyset, \quad l \cap U \neq \emptyset, \quad l \cap U' \neq \emptyset,
$$
 (11)

so the charts χ and χ' don't compose, but $\bar\chi$ and $\bar\chi'$ do.

 \blacktriangleright We may identify: $\mathrm{M_{F}}\simeq I(\mathrm{M_{F}})\subset \mathrm{N_{\upsilon}}$ That is: The local space associated with a (local) reference frame is part of the global space associated with a (global) reference fluid.

- \triangleright Defining a reference fluid from its 4-velocity field has been done since a long time but is not very tractable by itself.
- \triangleright Defining a reference frame as a class of charts exchanging by spatial coordinate change: both practical and correct.
- \blacktriangleright Associated space with given ref. fluid or given ref. frame: needed to define classical trajectories and quantum space of states. A precise notion did not exist. Here defined from the charts adapted to the ref. fluid or frame.
- Adapted charts with a common domain \rightarrow "local" space. This is a part of a global space associated with the ref. fluid.

References

[Cattaneo 1958] C. Cattaneo, "General relativity: relative standard mass, momentum, energy and gravitational field in a general system of reference," il Nuovo Cimento 10, 318–337 (1958).

[Massa 1974] E. Massa, a) "Space tensors in general relativity. I. Spatial tensor algebra and analysis," Gen. Rel. Grav. 5, 555-572 (1974); b) "Space tensors in general relativity. II. Physical applications," Gen. Rel. Grav. 5, 573–591 (1974).

[Mitskievich 1996] N. V. Mitskievich, Relativistic physics in arbitrary reference frames (Nova Science Publishers, Hauppauge, NY, 2007). [\[arXiv:gr-qc/9606051v1\]](http://arxiv.org/abs/gr-qc/9606051v1)

[Jantzen-Carini-Bini 1992] R. T. Jantzen, P. Carini, and D. Bini, "The many faces of gravitoelectromagnetism," Ann. Phys. (New York) 215, 1–50 (1992). [\[arXiv:gr-qc/0106043\]](http://arxiv.org/abs/gr-qc/0106043)

[MA 1996] M. Arminjon,"On the extension of Newton's second law to

theories of gravitation in curved space-time," Arch. Mech. 48, 551–576 (1996). [\[arXiv:gr-qc/0609051\]](http://arxiv.org/abs/gr-qc/0609051)

[MA & F Reifler 2011a] M. Arminjon and F. Reifler, "General reference frames and their associated space manifolds," Int. J. Geom. Meth. Mod. Phys. 8, 155–165 (2011). [\[arXiv:1003.3521 \(gr-qc\)\]](http://arxiv.org/abs/1003.3521)

[MA & F Reifler 2010] M. Arminjon and F. Reifler, "Basic quantum mechanics for three Dirac equations in a curved spacetime," Braz. J. Phys. 40, 242–255 (2010). [\[arXiv:0807.0570 \(gr-qc\)\].](http://arxiv.org/abs/0807.0570)

[MA & F Reifler 2011b] M. Arminjon and F. Reifler, "A non-uniqueness problem of the Dirac theory in a curved spacetime," Ann. Phys. (Berlin) 523, 531–551 (2011). [\[arXiv:0905.3686 \(gr-qc\)\].](http://arxiv.org/abs/0905.3686)

[MA 2011] M. Arminjon, "A solution of the non-uniqueness problem of the Dirac Hamiltonian and energy operators," Ann. Phys. (Berlin) 523, 1008–1028 (2011). [Pre-peer-review version: [arXiv:1107.4556 \(gr-qc\)\]](http://arxiv.org/abs/1107.4556).