ATHEORY OF GRAVITY AS A PRESSURE FORCE

11. Lorentz contraction and “relativistie’” eifects
by M. ABMINION *

In & foregoing paper, gravity has been interpreted as the pressure force exerted
nn matter at the seale of elementary particles by o perfoct fluid. Under the eondition
thal Newtonian gravity mnst be recovered in the incompressible cuse, a sealar
field equation has thus been proposed for dgravity, giving a new theory in the
eompressible ease. Here the theory is reinterpreted so as Lo describe the relativistic
effects, by extending the Lorentz-Poincard interpretation of speeial pelativity
which Is first recalled. Gravitational spuce-conlraction and time-dilutalion ape
postulated, as a consequence of the principle of local equivalence between {he
cffeets of motion and gravitation, The spage-time metrie (expressing (he proper
Lime along a trajectory) is hence curved also in the proposed Lheory. As the pesull
of a modified Newlon law, It is proved that free Lest particles follow meodesi
lines of this metric. In the spherieal stotie situation, Sehwarzschild's exterior
metric is exactly recovered and with §r the experitmental support of general
relativity, but the interior solution as well as the problematic of singularities npe
different in the proposed theory, e.g. the radins of the bedy cannot be smallep
than the Schwarzschild radius.

1. INTRODUCTION

In a foregoing paper [1] a new, sealar theory of gravitation has
been proposed within purely classical concepls of space and time. In
order to obtain a more complete theory, it is necessary to have a des-
cription of the Yrelativistic” effects, i.e. the effects of motion and gravi-
lation on the measurement of distances and time intervals, the depen-
dence of inertial mass on the veloeity, and the mass-energy equivalence.
These effects are so called because they are unilied within, and several
of them were first predicted by Einstein’s special and general theogries
of relativity, but the effect of uniform motion on the distances and times,
a8 well as the mass increase with the veloeity, were first predieted as
sabzolute’” effects in Lorentz's theory of ether; the appearance of s
wlocal” time in a uniformly moving frame was snggested by Poinecaré
and defined by him as empirically relevant [2]. The ether postulated
here, scen at a macroscopie seale, is suitable for the modern version of the
Lorentz-Poincaré electromagnetic ether, developed by Builder [3]1, Prok-
hovnik [4] and others. This means that all the results of Einstein's special
relativity will be available in the corresponding “'absolute” interpretation
which will be briefly recalled. Of course, in the presence of a gravitational
field, special relativity holds only locally, i.e. here in domainz where the
{imacro-} ether pressure may be considered as uniform., Then an analysis
of the equivalence principle”;, which concerns here. the equivalence
between the local effects of & motion with respect to the ether and those
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of a gravitational field i.e. a field of ether preszure, will lead to postulate
a gravitational space-contraction and time-dilatation. As a consequence,
the equations of the proposed gravitation theory are reinterpreted in
terms of the physical space metric (a riemannian one) instead of the
euclidean metric. After an analysiz of the status and meaning of a space-
time metric and of Einstein's geodesic assumption in the proposed theory,
the static problem with spherical symmetry is reexamined. Schwarzs
child's exterior space-time metric (and thus the experimental support of
general relativity) is exactly recovered in the proposed theory, but this is
not the caze for the interior metrie, and also the question of singnlarities
ia. not poscd in the same ferms.

2. THE LORENTZ-FOINCARE INTERPRETATION OF SPECIAL RELATIVITY

The decisive change from clastical to modern physics came when it
was realized that the need for operative definitions of physical quantities
also applies to space and time, Since this idea has been expressed with a
greal lucidity by Einstein and since his theory gives the first place to the
requirement of frame indifference, this essential change is generally known
as Einstein's relativity. It is important for our purpose, however, to recall
that the precursors of Einstein (who were not less than Lorentz and Poin-
caré) derived a significant part of the results of sepecial relativity within a
theory based on ether. Even the synchronization of the clocks in a rigid frame
in uniform motion (relative to the ether) with the help of light signals was
first introduced by Poincaré in 1900, as currespnndingﬁtu a “local time”
(i. e. in the moving frame) [2];

=1 —= (1)

Here { is the “absolute time” (i.e. in the rigid ether), v is the constant
velocity of the moving frame, the axis of the abscissa x being in the di-
rection v, and ¢ is the light velocity ¥Eq. (1), which is given in [2] without
proof, is the well-known time-cumpon"gnt of Lorentz's transformation. This
latter was yet introduced by Lorentz in 1904 only, and independently by
Einstein in 1905. The Lorentz-Poinearé ether theory, which at their time
was less convineing than Einstein’s special relativity, has been rigorously
presented and developed by Builder [3] and Prokhovnik [4] with the game
logical thrift that has made the succes of Einstein’s theory. The two main
assumptions of the latter are well known : (a) the physical equivalence of
all inertial frames, and (b) the constancy of e, in particular itz invariance
by change of the inertial frame (the first assumption contains in fact the
program of changing usual kinematics and newilonian mechanicz so that
at the same time they keep, as before, the same form in all inertial frames,
and Maxwell’s electrodynamics also wins thiz invariance property).

The assumptions of Prokhovnik [4]are : (i) the existence of a reference
frame & in which the energy-propagation is isotropic and Newton’s second
law holds in the form

dapP
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without assuming, however, that the inertial mass m does not depend on
v (note that the relativistic assumption (a) is stronger, since it actually
demands that (2) holds in any inertial frame) ; and (ii) the Fitzgerald-Lo-
rentz contraction, understood as afrue contraction of all material objects
after they have been transported from & toa frame &, having uniform and
constant velocity u with respect to &, in a ratio 5 assumed to depend only
on u = |u|. This occurs only on lines parallel to u, in the sense that a rod
A B atrestin &, and making the angle 8 with u, has the length I’ with

(I cus0/B)* 4 (V' &inf)* = 12, (3)
when 0 and I’ are measured by au observer in & (who measures the eucli-

dean metric of the physical space, in the sense of (1], §2), and [ is the length
of an identical rod, at vest in £ [4]. Thus :

yle2re = SOl : 4
'E VI —{1 —p%sinif 2

Consider A B (with a mirror at 4 perpendicular to 4 B and the like at B)
as a “light clock”, its time unit being the interval during which the light
goes from 4 to B back and forth [3 —4). The usual addition formula for
the velocities holds, provided that all velocities are defined from the same
frame (it is merely the additivity of derivation). If evaluated from & where
light propagates at the same speed ¢ in all directions, the velocity of the
light ray with respect to the rod 4 B at rest in &, is hence, depending on
its direction AB or BA :

) =l|rc|3 —u?sin® 0 — ucosh, ¢, = |e* —u*sinif - 1w cosh. (3)

Thus, as measured with the clock of &, the time period of the light clock at
rest in &, i :

T 1 213 V1 — u®gin?h/e
Afa st e SRR 2 B
s (cx i 'cs) o(l —u¥/e?) JT — (1 — B°) sin®6 (92

Now the negative result of the Michelson-Moreley experiment means pre-
cisely that this period does not depend on angle 6 and thus is a constant in
the moving frame &, . This is true if, and only if, one has

B=V1 =% t=uye, (7)

as follows immediately from () (in [4], the value (7) is assumed from the
beginning and the “only if” part is not obtained). The negative Michelson
experiment means that light clocks are correct clocks, and this implies the
Lorentz contraction. Moreover, the time wnit of &, iz ““dilated” : (A1), =
= At/f. Prokhovnik [4] shows precisely, and with a lot of crossed caleu-
lations, that these results imply all the kinematics of special relativity in
the usual (einsteinian) form, i.e, imply the standard Lorentz transformation
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and the constancy of e (as this is measured, necessarily, on to-and-fro paths,
with elocks and rods of any frame in uniform motion £, ). The great impro-
vement with respeet to the usual version is the perfectly clear interpre-
tation of the space contraction and time dilatation as abszolute effects :
the rods of &, arve really shorter, the clocks there go really slower as com-
pared with &. This agrees with inodern time-measurements (e.g. that of
Hafele & Keating [5] who adopt a frankly “absolute” way of relating
their results, althongh they defend conventional relativity). The relativity
of simultaneity iz interpreted as a clear consequence of the anisotropic
Hirue” propagation of light, Eq. (3), in a frame that moves with respect
to the propaguting medinm & [3 —4]. It concerns only the operative defi-
nition of this netion in different frames with the help of light signals and
does not forbid to think the absolute simultaneity, which is defined in
the time of &,

Until now, Eq. (2) has not been used. Actually the obtainment of
relativistic mechanies requires to suppose further that : (iii) if a system of
material particles conserves in & its total momentum P = Y P, and the
individoal rest imasses mf(v =0), then P, =% Pu= Em'{ DuilWu; 15
vonserved in any frame &, where v, is the velocity defined with rods and
cloeks of &, (i.e. by using the relativistic velocity transformation). This as-
sumption expresses the natural requirement that the prineciple of inertia
tin a weaker form than in [1], seet. (3.3)) still holds in presence of the
Lorentz contraction : obviously, the relativistic transformation of velo-
cities precludes that the momentum conservation passes from & to &, if the
mass is velocity-independent. Then the well-known relations for the mass
and the kinetie energy are obtained in the classical way [4]:

n(z) = m(e =0)/3(e), T = 5 Fdx = (m(o) —m(0)et.  (8)

vl

It is alzo well known that thiz expression of m(v) makes Eq. (2) covariant
with respect to Lorentz transformations; hence the approach based on
ether gives this result consistently, i.e. the lorentzian equivalence of the
frames £, follows from rather “absolute” assumption (in [1], sect. (3.3),
the same has been found for the galileian equivalence). Thus these frames
&y may be called inertial frames since a test particle has uniform and cons-
tant velocity in one of these, &, (and hence in all of them) if and only if
F., = 0. Moreover, the momentum eonservation may be postulated for
isolated systemns al=o in the case where the individual rest masses are not
conserved (i.e. in presence of creation or annihilation of particles) : just like
in eonventional relativity, one finds that the momentum conservation ap-
plies in any inertial frame if and only if the total mass of the isolated sys-
tem iz couserved :

v N
E. m{e;) = fEi i (T]). (9)

Together with Eq. (8),, thiz gives the classical argument of Einstein’s
special relativity for atiributing to any particle the ,rest energy’ m(0)e*
and identifying mass and energy, up to the factor ¢2 In a theory based on
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ether, however, the actio-reactio principle can Lbe postulated in the fun-
damental frame & (though it does not pass to the moving frames &, sinee
it is not-Lorentz-covariant). This prineiple is 1elated to the isotropy of
physical interactions and i= thus conzistent with assumption (i). It im-
plies that any isolated system conserves its total momentum, whereas this
property is practically a definiton of isolated svstems in the usual version
of special relativity. However a set of material particles is here, strictly
speaking, never an isolated system since it is emhedded in the ether which
is disturbed by the particles | 2], This gives an intuitive version of the clas-
sical warning in relativistie textbooks, that the enerzy of the field has also
to be considered. A first disturbance is the drageing of an amount of the
fluid ether together with the particle — an amwsunt which should inerease
with the velocity of the particle [6]. With the hereconsidered eonstitutive
ether, the mass increase with velocity should be a real increase of the
amount of ether which defines the material partiele. If the particle is a
vortex ie. a special loeal flow in ether, the “amount” to consider is the
kinetic energy in the local flow, divided by 2, thus explaining the mass
increase [7]. Then the mass-energy conservation for an isolated system of
particles (9) would express simply the conservation of the total amount of
ether {or kinetic energy, up to the ¢ factor} in this set of vortices.

4. EQUIVALENCE PRUNCIPLE WITH LORENTYZ COATRACTION

Mechanics and the gravitation theory hased on ether have now to be
modified so as te fake into account the foregoing 1elativistic effects,
which all follow from the Lorentz contraction, The theory [1] introduces
the ether az a perfect barotropic fluid, i.e. its pressure depends only on
its density, and the frame defined by the mean motion of the ether defines
the fundamental inertial frame, which is thus a deformable frame. The
gravity acceleration is the transeription of the macroseopic pregssure p,
into the force per unit “mass™ e of the macro-ether (ie. p: is the volume
density of the macro-ether) :

g= — 2 grad p,, (10)
Pp{Pu}

and the pressure p, is assumed to obey the field equation :

i o; gt? =dnGpp, po = Pelpe); € = L _'j““"':- (11}

where iz Newton’s gravitation constant and ¢ is the volnme density of
‘matter. A

As in general relativity, the guide for the modification will be the
principle of local equivalence between the effecis of a gravitational field
and thoze of an “inertial field”. Here “local” means : in a domain where
the field may be considered.as uniform, it correponds thus to the newtonian
eguivalence between the effects of inertial and gravitational forces on a

mass point (cf. [1], sect. (3.1)). The inertial effects come from the motion
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with respect to the inertial frame, i.e. the macro-cther #. The important
difference with newtonian theory as well as with usual relativity is that
the true Lorentz contraction destroys the complete equivalence between
€ and the other “inertial frames” &, with ust 0. This means that uniform
motion also has “‘inertial” effects, and since the equivalence between gra-
vitational and inertial fields is local i.e. for uniform fields, these effects are
precizely the essential ones. In a the orybaged on ether we may transpose the
effects of uniform motion ag such, into effects of a gravitational field (in
constrast, general relativity is forced to adopt an indirect way — the fa-
mous rotating dise — because in its conventional form special relativity
is exactly builded to obtain a perfect equivalence between all inertial
frames). Now the effectz of uniform motion are on the “space-time me-
tric”, i.e. concern the behaviour of rods and clocks : more precisely, the
rods are eontracted in a ration  in the direction of motion and the clock
periods are dilated in the same ratio. The principle of equivalence would
thus be simultaneously taken into account and physically explained if we
would admit that : (iv) in & grevitational field, the rods are contracted only
in the direction of the field (that of the ether pressure gradient) and the
elook periods are dilated in the same ratio 8. From now on, we investigate
the consequences of this assumption, which concerns of course clocks and
rods af rest in &.

What should be the value of ¥ It must obviously depend on the
field of macro-ether pressure p, or equivalently on the fields,, but one
has to ask if the relevant field is that which refers (e.gz. for the volume eva-
luation) to the euclidean metrie, not affected by motion and gravitation,
or that which would be measured with physieal rods — the corresponding
metric will be called hereafter the physical metric. Moreover one has to
determine if the field intervenes directly by its local value or by some deri-
vatives. To answer these questions, let us investigate the equivalence more
deeply. Consider the ideal situation of special relativity : there is no gra-
vity i.e. no pressure gradient. For an observer at rest in a uniformly mo-
ving frame &, , the macro-ether (which by definition is at rest in &) has
a lower density g.. = g - 8(%) (see Eq. (7)) ; indeed, its “mass" iz unchan-
ged (since the mass increase with velocity concerns material particles)
while its apparent volume increases by the factor 1/3(Z), due to the Lo-
rentz contraction of the measuring rod in direction u. Hence the equiva-
lence is perfectly understood, only if 8 depends merely on z. as evaluated
with the physical metric, namely

P= pel ¢ (12)

where ¢° is the macro-ether density in a region where no gravity is
present. This ocours at large distances from massive bodies. Since p, de-
creases towards the gravitational attraction, we must thus take for =
the largest value of g, in the (model of) universe : and we must assume that
this value is attained (asymptotically) in volume domains, i.e. corresponds
to regions where the ether density is indeed uniform, so that the physical
metric iz indeed euclidean there. In [1], §2, it was assumed that the eucli-
dean metric of the reference manifold coincides with the physical one in
“undisturbed regions"; now we may precise that these correspond to
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those domains where the physical ether density g is equal to p=. The
trangitive ratio § determines the spatial variation of the eumclidean size
of & given measuring rod and of the rate of a given clock, assuming that
such equivalent standards exist at any point bound with ether (if one forgets
this specification, assumption (iv) is meaningless due to the Lorentz
space-contraction and time-dilatation). It thus becomes clear that when
accounting for Lorentz and gravilational space-contraction and time-dilatation,
the reference body M must be the macro-ether itself, hence eliminating the
arbitrary motion of the ether in M. Inview of the transitivity of 8, always
the same variation of the rate of clffics will be predicted by Eq. (12) (with
Fi = pdX,) instead of ¢¥) if one selects any arbitrary point x, of ether.
But in order to deduce the relation between the physical space metric g and
the euclidean metric q° from assum};tian {iv) we must take the point x

outside the gravitation field g, i.e. g = g2, so that § coincides with '{]’g
at x, : otherwise it would be impossible to determi® two physical directions
orthogonal to g(x,) according to §” and to apply assumption (iv). In treati-
ses on general relativity, The gravitational time-dilatation is evaluated
early in the construction of the theory (well before obtaining Einstein's
equations), at least for weak fields [8], [11]. This is based only on Einstein’s
assumption that test particles follows the geodesic lines of the physical
space-time metric. Recently, it has heen proved by Mazilu [9] that already
in pure newtonian theory one can build a space-time metric, the geodesic
lines of which are exactly the newtonian trajectories. In the quoted trea-
tises, it is shown that if U is the potential of a weak newtonian field (g =

grad U with U < ¢* the arbitrary constant being so determined that
U/ cancels at large distances from massive bodies), the geodesic assumption
gives the slowing up :

gz 20
=—=11 "0 40
P di o2 4 (

where ¢ is the time measured outside the field {far from the masses) and
= is that measured with the dilated clock period in the filed. In our theory,
@ weak gravitational field derives from the potential ([1], Eq. (38Db)):

1
o

)::el-—E-c:l, (13)
¢ o3

' U:-—cilng% gt b — :p',
Pa Pa
(14)
I_E.;g_PL_
G pe

Until now, nothing has been assumed for the value of ¢,, the “sound?” velo-
city in the compressible ether, Clearly, if material particles are ether vor-
tices, one may expect that their velocity is limited precisely by e, (since
they should be destroyed by shock waves if exceeding this veloeity). On the
other hand, the relativistic mechanics implied by the Lorentz contraction
give a different limit, namely the light velocity ¢ (Eqgs. (7) and (8)). Thus
we assume ¢, = ¢, and Eqs. (12) — (14) show that assumption (iv) gives
the same slowing up of the clocks as does the geodesic assumption (for
weak fields),
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4, REINTERPRETATION OF THE FIELD EQUATION FOR ETHER TRESSI'RDE

When applied now to the space contraction, the value {12) for B
turns out to imply that as evaluated with respect to the euclidean metrie,
the ether density s wniform (indeed, an amount dm, of ether occupies the
volume dV = dm,/p, when this volume is evaluated with physieal rods,
contracted in the direction of gravitational attraction : thus this volume
i8 AV, =dVp = dVp,/p” = dm,/p? as evaluated with the enclidean
metrie). Since our gravitation theory assumes a finite ether compresibility,
this means that when accounting for the Lorentz contraction, the equativn
Jor the field ether pressure (10) — (11) {and [1], seets. (4. 1) and (4.2)} must
be written in terma of the physical metric. Is that possible ? First, it is easv
to see that all these equations have a sense, since they involve the div,
grad and rot operators (along with combinations) which may be defined
for a 3-I riemannian metric as well [10}. However the time which appears
in some of them has to be defined, because with the slowing down of clocks
in the field, one may either use the local time (of clocks at rest in the ether,
but in the field) or the “absolute’ time which may be defined as that of a
clock at rest in the ether and far from massive bodies (i.e. in those regions
where p. = o). Since these equation are loeal and are intended to relate
physileal effects, observable locally, we assume that the time also ig local
. the equations (in the case of a motion in the ether, one thus has to use
the time f, of a clock that momentarily coineides with the moving point
X(#) ; the chain rule implies that the time deivatives of order 2 involve all
derivatives with respect to the parameter s on the trajectory, up to the
order #). Now in small domains where p, may be considered as uniform,
the phy=zical space metric, as evaluated by an observer bound with the
ether , is an euclidean one, since it is deduced from the euclidean metric
of -the reference manifold M by a point-dependent ‘orthogonal affinity
(aniyhow, a riemannian metrie becomes euclidean in the infinitesinal — but
here one gets a feeling of what is infinitesimal : the spatial variation of
p. must be small as compared with p,). Thus we ean take it for granted
that the mechanics of special relativity hold true in these small dom ainsg, in
the interpretation based on ether (§ 2): in particular Newton's second law
applies with Einstein's modification (Eqs. (2) and (8),). In static situations
this amounts to usual newtonian theory : hence all the arguments of [1],
sects. (4.1) and (4.2), apply equally with the riemannian physical space
metrie, up to (but not including) the discussion of the unsteady situation ;
one just has to note that the requirement of regaining newtonian theory
for an incompressible ether remains as such, becanse with an incompres-
sible ether the euclidean metric is regained at the same time as Poisson’s
equafion. One may now raise the guestion of how far the gravitation field
g Eq. (10)) can still be considered as a force per unit (passive gravitational)
mass, acting on moving test particles in the sense of Eq.(2), and if the rest
masgs or the velocity-dependent mass must he multiplied by g. Clearly,
if Newton's second law may still apply, the time variation of the momentum
miust be evalualed with the time t. of the momentarily coineiding clock defined
aliore, and with respect to the non-cuclidean physical spavce mciric (sec Ap-
pendix). As far as the velocity u=dx/d¢, of the test paaticle is small egough,
one can neglect the contribution of the variation in ¢ alung the trajectory
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(dp./dt; = u-grad g.), i.e. the variation in both the physical metric and
the rate of the coinciding clock ; then Eq. (2) applies in the usual sense,
also wilh the gravitalional force — though the permissible velocity range
is reduced when the latter increases. It is clear also that the gravitational
force must he F=m{u)y, with u=|un| and m(u) from Eq. (8), in order to
save the identity Dbetween inertial and passive gravitational mass. This
is consistent with the interpretation of gravity as the macroscopic pressare
action in the constitutive ether, since this interpretation demands that
Lthe muss density p, of the elementary partieles (or at least their average
density) coincides with the macro-ether density 5, ([1], Eqs. (31) — (32)).
Since the innss inerease with veloeity is interpreted as a real increase of
the amount of ether constituting the material particles (or of the kinetic
energy of the corresponding vortices) (§2), the mass density g, to be consi-
ilered must be the velocity-dependent one : then the pressure force acting
on & (sel of) moving material particle(s) is indeed (Eq. (10)) : £

Flu) = — Viu) grad p. = T{u) s = Viu)galu)g = miny. (15}

Asswming that 5, = g, 13 consistent with the very low ether compressibi-
lity, K = dpg/dp, = 1/¢* Thus our modified Newton law writes :

i d dx d pep i
F=F = : i e L __ﬂ.__! 16
o =+ miuhy 5 [m{ul o ) v T = i ~ (18)

where F, is the non-gravitational force and x; is a fixed point of ether with
density p.g. SRl

Furthermore, it is natural to admit that, as in newtonian theory, the
active gravitational mass equals the passive one. The former is the source
of the disturbance in the ether pressure or more formally the mass, the
density g of which enters the right-hand side of Eq. (11). Thiz assumption
may be considered, also in owr theory, s a consequence of the actio-reactio
principle which has been assumed to remain valid in the rest frame & of the
macri-ether (§2), Indeed, whether active or passive, the gravitational force
is the transcription of the pressure force into a volume force through the
assumption p, = . The erucial consequence is that g in ke equations
Jor the field p. 18 the mass-encrgy density (relative to the frame &), in other
words : light and (kinetic) pressure also produce gravitation. This is a well-
known novelly of gunemf’ relativity ; in our theory thie result follows
simply from the interpretation of material particles, including photons,
as gpecial local flows (vortices) in the fluid ether, the mass or energy {up
to the ¢* factor) being the amount of ether opfkinetic energy in the consi-
dered [low, : al

The discussion of the unsteady situaltion can hardly be transcribed
in the same wey. Az has been stated in [1], §2, the continuity eguation
may be derived also for a riemannian manifold, and even if its metric
varies. More precisely, let 3 be an otientable dilferentiable manifold, 5, a
metrie on I, depeuding sioothly on the parameter or time /, 4, a time-de-
pendent diffeomorphism of M and ;, a time-dependent zealar funetion
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defined on M, which is “conserved in material volumes  i.e. for any vo-

Ilime domain 0 :
d ( S F,d}r,) =0 (17)

df
it

where V', is the volume defined with the metric . Then the velocity field,
defined in the eulerian description as the chart-independent vector

VX, t) = %— (4 (=), (18)

A g LY i
$&t-iﬁfiﬂﬁ\:‘llh=ﬂ=ﬂ'l continuity equation. The proof is not given, since it
consists in adapting an argument of Landan & Lifshitz [11, § 29] in the
space-tie A/ X [R. The remaining arguments for obtaining Eq. (11) fol-
low the lines of the classical derivation of d’Alembert’s equation for the
sound propagation and are less easy to check in the present context of a
riemannian and time-dependent metric, However, d’Alembert’s equation
(in domains without massive bodies, i.e. Eq .(11) with nil right-hand side)
mmeans that pressure waves in the compressible ether propagate with g
speed ¢, that is determined by the local ether compressibility I and obey
the superposition prineiple : these features are purely local and should be
conserved in the case of a time-and space,-dependent metrie. The fact that
now ¢, = ¢ and thus K is the constant 1/e¢* isirrelevant when examining
the validity of this equation. Since Eq. (11), (with nil time derivative) also
is still appliying in the steady situation, there does not seem to be other
porsible etiluat,iun in the general case than the complete Eq. (11), with e, =
= ¢ and thus p, = z,¢* —and this i3 what we postulate. A further dis-
cussion is deferred until later, but it is important fo note, as a consequence
of our assumption (iv) of a space-contraction and time-dilatation in the
ration (12), that ether pressure (or density) waves are precisely waves of
the space-time metric. Such waves are predicted by general relativity.
In the present theory their appearance and their meaning are very clear,

3. EPACE-TIME METRIC AND GEODESIC ASSUMPTION

In its reinterpretation allowing for Lorentz contraction, the proposed
gravitation theory consists in the field equation (11) with Pe = po* for
the (macro-) ether pressure, determining the slowing up of clocks and the
contraction of measuring rods in the ratio (12}, plus our modified Newton
law (16) for the motion of a test particle in the_ether. Note, however,
that Eq. (18) makes sense only if the pyhsical space metric is time-inde-
pendent (in the frame &), for otherwise the time variation of the momentum
cannot be defined as a vector. In general relativity, Newton's second law
iz replaced by Einstein's assumption that free test particles follow the
geodesic lines of the “space-time metric”. This latter measures simply the
proper time < along a trajectory {or line in space-time), i.e. the time nea-
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sured with a clock bound with the considered test particle. The proper time,
as compared with the time ¢ measured with a fixed clock at rest in a given
point X, of ether, iz affected by two effects : (a) since special relativity
holds true locally, if the test particle has a velocity w, with modulns u =
= |ul, with respect to the momentarily coincident point x of ether (u is
measured with elorks and rods of x), = i2 slowed up in the ratio

d=fily = fu= (1 — u¥fet)Ve, (19)

with respect to the local time £, ; and () the Iatter is affected in the ratio
(Eq. (12)) :
Atefdl = pdX, B}/ po(Xyy 1) = pofpuo = Bay (20)

(with the help of light signals from observerz hound with ether, all the
events may be referred to the time f of the point x, of ether). The proper
time of the test particle flows thus differently from the time{, in the ratio :

dr de d
ar E]‘?‘—Vu — wifel); = VB — (dijdt. (difdtfe? ,  (21)

_ where difdi, = w is measured with the physical space metric Prut =
="(u, u), Setting 2 = et, the space-time metric v is then defined by

ds? = o'd<? = F(da)? — Az, (22)

in the sense that modulus of the **4-velocity” of the tesf particle, U=
= (0" w) with U° = da”/ds and w = dx/ds = udt,/ds, is given by:

Ut = (U, U) = BT —glw, w). *‘ (23)

Eq. (23) defines the square U/ for any vector U in the tangent space at
(29 x) to the space-time [R X M, although if U is not defined as the 4-ve-
locity of an ordinary test particle or **time-like line in space-time, U* ma
be negative or nil. The latter case corresponds to a light ray and the former
to a “space-like’ line in space-time.

1t is proved in Appendix 2 that the trajectories of “free" test partieles
(Fy = 0) according o the modified Newton law (16) are geodesic lines of the
space-time melrie (22), with dI as deduced from the euclidean metric by the
space-contraction in the ratio (12); this result is valid for & constant gra-
vitation field i.e. a constant ether density p,. It is really a crueial result,
for it at the same time establishes the necessary link between “‘classical”
and reinterpreted ether theory and gives afirm basis to the gravitational
space-contraction and time-dilatation in the ratio (12); here ‘‘classical
refers to the conception of uniform space and time. See Mazilu [9] for an
assezsment of the geodesic formulation in pure newtonian theory and in

general relativity. In the unsteady situation where g, varies in time, there

(=1 fo o tua G ‘ﬂh.e_)
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can be no Newton law any mote and we asswme by induction that the
trajectories are geodesic lines of the metric (22). For an ordinary test par-
ticle, the geodesic asswmption means that the interval of proper time along
the followed line i3 marimal among the lines which join two given events
(@}, x;) and (a2, x;). This is due to the nature of the indefinite pseudo-rie-
mannian metric (22) — (23) ; since we are speaking here of local geodesic
lines, it may be verificd for the flat Minkowski metrie where the result is
classieal [4], [11]

An essential difference between the “‘classical” and reinterpreted
versions of the present ether theory is that, in the former, the euclidean
metric is assumeid to be the physical one — otherwise the “classical”
version, giving no standard of space-interval, would not be a physical
theory ; in the same way, the “classical” version must neglect the influence
of motion and gravitation on cloks.

6. CEXTRAL STATIC SOLUTION REVISITED

As a fumndamental test of the theory, let us determine the space-time
metrie in thestatie and spherically symmetrical situation already analyse din
[1], but there with the cuclidean interpretation of the field equations. Thus
the mass-energy density p as well as the ether pressure p. are time-inde-
pendent and spherically symmetrical around the origin x = 0. From as-
suniption {iv), it follows that one may always select a sistem of curvilinear
space coordinates (o) such that ap,/ dr2=dp./dx?=0, and with the natural ba-
sig (¢;) being orthogonal in the sense of both the euclidean metrie @ and the
physical onefj(=ee App. 2). Due to the spherical symmetry, we can evaluate
the spatial variation of the metrie with respect to ““the"” point of ether at
r = oo, where the two metrics must coincide: g} = 3507 and g, =
= §gaih, with 2, = 1/8% = (5®/s.)2 and »,= »;=1). Thus ‘one has
here :

V{dmlr d'rt! {]y:}’g}i_”_d_r ey %dr!l {24}
dr it

which implies that r depends only on &', hence e, is a radial veetor. Thus
one may take here the spherical coordinates sl =p, 2% =0, 27 = @,
With di}? = db§* + sin*6dd?, the spatial metric writes then :

A = (1/p%) Ar* 4 r?d0?, (23)
and the space-time mettic (Eq. (22)) is given by ;
ds® = Bo%eRdf® — (1/8%) dr* — p? a0 (26)

The grad operator (relative to jj) expresses for a sealar field f depending
only on »:

grad f = gYof 0’ e, = 82 dfjdr e, .[3 = po oo . (27)
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———e,

(where ¢ = (§7')) and the div operator, applied to a such radial field
8 = a(rie,, iz caleulated as
aiv & =TT ot V0w = (Bir) afar ek,
7= det § = rsin®f/pz. E

Hence the field equation {11) (in this steadv case, and with Pe == g%
WIites ’

B 4 f . . dy ) Aty c
el B —— :A, A =— 29
Ap e (?’ a l.l'r] Pep, ot (29)
and with g = 5,/s7 = p./p2 it takes the form:
o (e ) = e ran (30)
dr dr o

which by a first quadrature, involving the integration constant €, is equi-

valent to

d(p3) - C 4 A(pF)® Mir)
dy 4

s M(ry = 41':81{.3 glue) dat, (31)

¥}

This gives the gravitation field g : setting g = — gir) e, obtains with Egs.

(10) and (27): . . ; :
d.'pe ooy a o)

gir) = c¥grad p.)./p. = ¢p, g L o0 I8 (32)

thus Eq. (30) is just Poisson's equntihn for g(r). Inserting Eq. (32) into
Eq. (31} gives

@M(r) = Ce '
= A ' 33)
;‘;I'{?.*} 2 -+ Anr¥ptr - ! (

Assuming that e(r) does not increase faster than 1/r as r — 0, ensures that
M{r)/v* remains bounded there. Then, just like in newtonian theory, the
requirement that g(r) remains bourded as r — 0, implies that ¢ = 0 = and
moreover gir) is then exactly the newtonian solution, However this has not
the same significance sinee here gravitation has the additional effect to
alter the physical metrie. Assuming that the whole mass-energy is finite ;
M(r) = M < oo, 88 r — oo, gives with Eq. (31)

M)
H'E

==1F] ;
e SSEL wlr) + D, wir)= du,  (34)
2rr o*

Ay I
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where the constant € was left. Eq.(34) informs us that, in the case where
#lr) would increase faster than 1/r as » — 0, then either u(r) would become
infinite at » = 0; in that case the constant ¢ would have to be negative
instead of nil, and further u(r) would have to be at most in 1/r (otherwise
the mathematical absurdity of a negative value p: would oceur); or u{r)
would be bounded, in which case (' again should be nil. In any ease, p?
is equivalent to D a8 r — oo, thus p, indeed becomes uniform at infinity
and the non-euclidean character of the physical metric is measured by the
value (3 Returning to the “normal” situation where M(r)/»? is bounded
{as well az A(r)) and € = 0, we have :

B* = (pdr)[p?)? =1 — 2 G u(r)/es (35)

As 7 — co, this admits the asymptotic expansion

B2 =1— 2 -} u(i). (36)
ctr T

The expansion (36) iz exact, as soon as r > R, if ¢lr) iz assumed to
eancel for r > K. This means that the space-time metric (Eq. (28)) :

2Gu(r) 1
: e I o W0 (1T | e e e . Sy 2
ds (1 - )c e ) drt — r2dQ2, (37)
o2

i3, for r > R, exactly Schwarzschild's exterior metric (w{r) = M/r) in the
case where p(r) = 0 for r > R. Moreover this solution is asymptotically
obtained at large r, in the case where p does not cancel outside a finite
radins but the whole mass-energy is finite (this case is not considered in
relativistic treatises). A striking difference with general relativity is that
the whole solution (exterior and interior) is obtained at once and for a
general mass distribution g(r), and furthermore the inierior solution does
not coincide with Schwarzschild’s interior solulion (the latter is obtained in
general relativity when ¢ is a constant for 0 < » < R and nil for r > R).
Indeed, the present theory yields then Eq. (37) with

M 3 r2
et

),ﬂﬁrﬁﬂ, (38)

whereas Schwarzschild’s interior solution is - "

__,.: 2 1
ds? = (A = HV: -—) ctde —
R

—-drt—rtd0r,  (39)
ey

E’s

1/R'® = 86 py/(30%)



15 A lheory of gravily as a pressure fopce 121

where the coefficients 4 and B are determined by assuming that the metric
is continuous at r = R and that the kinetic pressure p cancels there [12],
Yet the most interesting difference with general relativity iz perhaps the
following one. In the case where ; = 0 for r > R, the exact value e =
=1 — 2@ M|(c*r) for r > R precludes that the radius R of the spherical
body is smaller than the “Sehwarzsehild radius” », : one must have

R = 2(;-1{.1"‘-,2 = Vi, {:I:ﬂ;]

since otherwize a negative value B*=(p,/p?)* would oceur at r = B In
general relativity, this inequality is in no way imposed. On the contrary,
the relativistic analysis of gravitational collapse for very masgive stars
predicts the inevitable implosion of the star until a rading B < r, is rea-
ched, from which stage a bizarre situation is encountered, implying that
£ finally cancels, i.e. the star becomes a singularity . . . (e.z. [12]). This
cannot happen in the proposed theory. To be complete, there is still the pos-
sibility that ¢ < 0; this must be so if the mass-energy density increases
50 fast (as r — 0) that u(0) = + co and uir) = O(1/r) (see after Eq. (34)).
This means that the newtonian behavieur (g(r) = GM[r?) is not recovered
at large r, where the physical metric becomes euclidean : the field g (Eq.
(33)) is indeed like 1/r* ar large r, but with an active gravitational mass

M, = g(r) G = M + C c*[(4r=G(p™)%) = M — m (41)

which is smaller than the inertial or passive gravitational mass M. Also, an
unbounded repulsion occurs when r — 0. Moreover the ether pressure p,
tends towards infinity there (unless if u(r) admits the asymptotic ex-
pansion : u(r) =mjr + E - 0(1) as r — (). In such cases {which zeem
wholly unphysical), the exterior metric would be Eq. (26) with ,

2 2

ﬂ==(%:) =122 (o — m, (42)
i oir

i.e. a Schwarzschild metric with a smaller active mass M. < M would be

obtained. In summary, if p(r) = 0 for r > R, the exterior metric predicted

by our theory is always a Schwarzschild metric, though perhaps with a

smaller effective mass in very “pathological” cases, and in no case the
Schwarzschild radius 26 M, /c® is greater than the radius E.

Thus the proposed theory is definitely not equivalent to general
relativity. However it does produce Schwarzschild’s exterior metric which
supports all the essential tests of general relativity : the gravitational red
shift of electromagnetic spectra, the delay of radar signals, the deviation
of light rays and the advance in the perihelion of planetary orbits. By the
way, this predicted advance, which agrees well with observations [12], is
exactly six times greater than the advance which was predicted by our
theory ([1], Eq. (60) where one assumes ¢, = ¢) when the equation were
first interpreted as relative to the euclidean metric. Surprisingly, the same

& = e 3728
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underestimated prediction for this effect was obtained a long time ago by
Poincaré [6] in the frame of his “electromagnetic” theory of gravitation,
accounting for kinematic Lorentz contraction and assuming that gravi-
tation propagates with the velocity of light. It is however clear that the
basie principles and equations are very different in both theories.

7. CONCLUSIONX

In the view of Lorentz, Poincaré, Builder, Prokhovnik and others,
the “relativistic” effects are in fact due to the absolute Lorentz contraction
in the uniform motion with respect to the ether, Here the arsuments for
this interpretation of special relativity are presented afresh and briefly, but
principally graviiational space-contraction and time-dilatation are postulated,
based on the equivalence principle : in a theory based on ether, the abso-
lute effects of uniform motion may be transposed into effets of a gravita-
tional field ie. a field of ether pressure. Thiz is easily set into the
most gimple Eq.(12) which implieg the geodesic characterization of trajectories
and a conservation of a potential plus kinelic energy for a constant gravita-
tion field. With the gravitational szpace-contraction, the bagic equations
of the proposed gravitation theory must be reinterpreted as relative to the
‘physical™ metric, i.e. that which is affected by the contraction, Thus the
proposed unique scalar field equation (11) has the mathematical peculia-
rity that the invelved differential operator is relative to a metric deduced
from the euclidean metric by a transformation which depends on the nn-
known function. However this in fact reduces to a different operator, this
time relative to the euclidean metric, :

For the spherical static problem, Schwarzschild's exterior space-time
metric of general relativity is easily and exactly recovered, and with it all
the experimental verifications of this latter theory. But differing from
general relativity, the radius of the sphervical body cannot be smaller than
Schwarzschild's radius, and this is likely to prevent from any occurence of
singularity — at least a “naked” one (the difficult question of gravitational
collapse is a dynamical one and has not been discussed so far in the pro-
posed theory). Moreover, the space-time metrie, which is ecalculated af
once and for a general spherical mass-energy distribution, is not Schwarzs-
child’s interior metric inside a body with uniform mass-energy density,
_Another striking point is that the gravity “acceleration” field of the spherical

static problem i exactly the Newtonian one (though it does not give the zame
motion sinee gravity alters the physical space-time metric also in the
proposed theory).

The theory is not, and does not need to be formulated in a covariant
way, since it assumes from the beginning a privileged frame (the fiuid ether :
the deformability of the ether iz in terms of-the physical metric,
which differs from the euclidean one in the reinterpretation of the proposed
theory allowing for Lorentz contraction). However it is fully consistent
with the local Lorentz invariance and could clearly be transcribed in a
covariant form, in the same way as a diagonal tensor may be rewritfen in
any base, thus filling the empty squares. Just in the spirit of Newton’s
theory, the motion of the ether with respect to a frame that is relevant for
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a given problem may be either postulated or empirically determined (as
far as we today know, a large-scale expansion of the ether should give the
correct deseription for all problems. Of course the author has not proved
the exsitence of any ether, but perhaps he has coatribnted to make the
assnmption of an ether nseful again.
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APPENDIX 1 : time derivatlve of a vector In a riemannian manifold

The time derivalive dufdf a vector u{t) attached to the point P(t)
(u(t) & TMpd) moving in the manifold M equipped with the metric ¥may be
defined in the following way : for any vector W in the tangent space T W4,
let w{z) be the parallel transport of W on the trajectory = — P{t)(z = 1),
relative to the metrie §. Then du/df is the unique vector of T M m, which
verifies :

du !
Ywe T} W= | — u:w),
f pin e ( i )T_:{ ] (AD)
where the scalar product is defined by §. This definition coincides with the
usual one if { M, ) is eaclidean (hecause then w'(<) = W), and it is the only
one which verifies Leibniz's rule. Thus it is the right one (zee below), but
it i3 apparently not given in the literature.

TueorREM 1. Lel M be a riemannian manifold and t — (P(t), u(t)) a
differentiable mapping from an open interval I = R into the langent bundle
TM. Then Eq. (A0) indeed defines, for any t< I, o unique vector v = du/dt
in_ the tangent space T M py, which is a time dertvative in the sense of Leibniz’s
formula. Moreover thiz formula and the requirement that the derivative cancels
for any parallel vector imply Eq. (A0). The expression of y = du/dt in a
given local system of coordinales is : -

du™

o+ Tawe, (A1)

where v = dPdf iz the velocity vector of the trajectory {—= P(t) and the s
are the Christoffel symbols.

This result justifies and precises the definition given by Eq. (A0), and
proves that this time derivative i3 caleulated (Eq. (A1) just as the left-hand
gide of the equation of parallel transport which may thus be written du/di = 0.

It did not seem obvious, however, that the time derivative of a vector may be
consiztently defined as a vector in the general case and thatit is given by Eq.(A1).

Proof. The right-hand side of Eq. (A0) defines a linear form w — L{w}
on T M sy, because the parallel transport is a linear operation ; thus a unique
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vector du/di € TM gy is azsociated to this linear form by using the rieman-
nian metrie 3(“raising up the indices"). Let u, be another time-dependent
vector on the same trajectory in M, i.e. the differentiable application #
— (Pit), w,(t)) from I to '} has the same projection P on M. Leinbniz's
formula :

du,

A_q-_}
i (42)

i du
&‘; r_J{'.-l ‘) = ‘E () 4 u(t) -

implies that if u,- = w' is parallel to itself on the trajectory F (duy/di = 0),
then Eq. (A0) holds. Conversely, let us show that Leibniz’s rule applies
with the definition (A0). Selecting an orthonormal basis (eg) in T M ey, and
transporting each vector e, parallel to itself on the trajectory P:e = ey,
we obtain an orthonormal basis of TM pxy (= 2 1), since the 2ealar product
of parallel veectors iz conserved [8]. Then the definition (AD) gives dey
(dt = 0 and Leibniz’s rule obviously applies for any pair (e, ;). It is also
eagy to verify that the definition (A0) implies that d/d? (& u) = u da/dz +
+ @ du/dt for any scalar function «(t). Then the general rule (A2) follows
as in the euclidean space. Let us caleulate the contravariant coordinates
y™ of y = du/dt in a given coordinate system (we adopt the standard
notations, see e.g. [8]. The time derivatives of the components of the paral-
lel transport W' of w verify -

'
w’f == _d: = — F‘;l WRT-:, {A’a}
T =i

where v' = dg'/dt are the components of the velocity veetor v(z' are the
coordinates of P(t)). Developing Eq. (A0) with this, leds to

V(w), (g %' + gau' — gaw' The' — guy'he’ = 0, (A4)

thus at fized j, the expression in parentheses cancels. Hence y™ = ¢™g, v,
EXpTresses |
' y" = — ggaut D' + g™ g’ (A5)

In Eq. (A5), the time veriation of the metric is due only to the motion of
P: gy = gge®. Since the covariant derivative of the metric cancels :

Giish = Fuix — Dagu — Thge = 0, _ (A8)
it follows thus from Eq. (A5) that : :
y™ — u™ = g™ Diger™u’ + Thger'v' — gaThu's"), (AT)

but since the sum of the two last terms in parenthezes iz nil, Eq. (A1) is
proved.
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APPENDIX 2: Geodesic formulation of the modified Newlon law

TuEorEM 2. If the gravitation field is constant in the frame &, then the
solulion trajectories of the modified Newton law with purely grarvitational
Force

d [[x d o Pe d A
s y ; e e S e ey 8
w1} i (m[r!«} dt:] ar, e Oh B BE, i

are geodesic lines of the space-time metric (22) involving the physical space
metric di* affected by the gravitational space-contraction in the ratio (12).

Proof. Substituting the natural parameter s for {; in (A8),:8 = e<
with ds/dt; = 3, = em{0)/m{u) (Eqgs. (19) and (8),) obtains

_ g m{0)? d fdx A9
i b g miu) ds [ds]. e

The field g is given by Eq. (10} with p. = p.® and the grad operator is
relative to the phvsical space mefric dI® Thus in & local coordinate eystem
(x*) where the bilinear form § associated with df* has matrix (gy) with
inverse matrix (g") :

_pgradp

i
—p? y__:ﬂ'i‘ (A10)
D D

=

henceforth omitting the index ¢ in p and p for simplicity. Using the ex-
pression (A1) of the “time™ derivative dv/ds (with v=dx/ds), we get from
(A9) and (A10) :

Bk k i
o AN L SRR
ds® ds ds e?—u*t P

= ), {Al11)

where the (second -kind) Christoffel’s I" refer to the space metric §. We may
select the coordinate system such that p = Const is equivalent to 2' =
= Const, and such that the euclidean metric 7 is diagonal in the natural
bagis : (§%) = diag (al, ai, a3). Assumption (iv) and Eq. (12) with p =
= p¢® traduce in that § also is diagonal, and that :

(g.) = diag ((ff) a8, o, a;) = diag {ahcics, (412)

with p®= p(x,); X, is fixed point in M (i.e. X, is at rest in the ether), out
gside the gravitation field (i.e. far enough). Introducing the time coordinate
a° = ¢t with ¢ = ., the space-time metric (22) writes in the local coordi-
nates (2% (a = 0,3) of the space-time B X M :

(ap) = mag((;;m)*, i (%)Eai, ) aé'] = diag (bJocsesy (A13)

T m——————
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with b = — g, for 1 =1 £ 3; henceforth, greek indices vary from 0 to 3
and latin ones from 1 to 3. From the general formula for the first-kind
Christoffel symbols :

1
D= = (Fusn + Ques — Gl (A14)

it thus comes that the first-kind syinbols T of the space-time metrie verify :
FrU# T Pi!"{i!j:k =1, 3}r {5115}

Tiee = = bue, Tiay = 0if (2 o Band « % rand 8 # 1)

&

(A16)

1
L st h:. 1 2
Vezg = — bas if w#p

' | 1
rnﬂ Il == rEn: = T

The assumption of a constant gravitational field means that the field p is
independent on t = t.,. So also are the coefficients b, (Eq. (A13)) and we
obtain from (A16) ;

P:u: = F‘;‘T‘ — P.::us = up r_—:ga = ;ﬂ.n = Pil.'l!ﬂ- =0
(A1T)
if (x#0 and « ¥ 3 and B # 0).

Thus all Ty symbols with at least one index equal to zero cancel, except
perhaps :

i ' J 1
Pes = Lo = — Tioa = — byps = ppe/(p%)* (A1)

which again is nil, unless if 1 =1. The second-kind Christoffel’s are
defined by

The = ¢"Tip = 0 T, ' = b3 Tagye {A19)
Since, by =— a; for 1 £ 4 g 3, we thus have from (Al3):
T = IR, §, k=1, 3) (A20)

from where the left-hand side of the geodesic equation writes fori = 1,3 :

g — 1 T da® da® _ %' LT dz! dz*
ds? dy ds ds* ds ds
(A21)
da® da” dz*

2
ri (=) + 2
+ w(d&) + 2@ T i



21 A theory of gravity as a pressurc [oree 127

Thus we may insert the neo-newtonian Eq. (All), in which we note that :

) if £ %1
palp/p®Pal ifi=1

g pi=07tp, = { {A29)

From (A22) and (A17), it follows that (A21) cancels for i= 2,3, ie the
geodesic equation iz trivially satisfied for i =2, 3. Fori =1 (A21) re-
dures to

¢ PPa e [ 827YE :
7 S, g ( : (A23)
d ¢ — ut alp=z = "\ ds

Now we have from (A18) — (A19) and (21) (and since da®/ds = dit/d=):

r _ PP (d-"*" )’s (ﬂ)a_.__"q' , (A24)
fp“"‘]*u‘," da P c® — ul

Hence the geodesic equation holds also for 1 = 1. The last one, ie. for
i = 0, writes in view of (Al7) and (A19) :

d2a? de* d® d {d2® w5 G2 da®
b= LM — = — | — 2 —. [AZ5
it T g L da(d3)+ e

It comes from (A18) and (A19) that:

I8 = bi'Toy = pufp (1 = 1,3) (A26)

Using (A24),, we thus rewrite (A25), with v = 1/}/{1 — u?/e?), as :

. Gu=i(jr= Tu)"‘gp_.lﬂ'p“ A =
ds \ p p ds p

(A27)

1 dy. dp dp v ] Ta d
e B et L2 M NP . e | = p*—— —(log vu 1 :
p[( ) d3113+ﬁsp3 dea{g*f+ugp)

The last equation will thus be obtained, and with it the proof of theorem
2, if we prove the following lemma which in itgelf is an essential result :

LEMMA. Any solution trajectory of the “fiee fall” motion (Eq. (A8))
admitz the constant of motion :

1

—_— . [T = Const fAzE
}’1 — u?fet ¢ )

e log

where U = — c*leg p i3 the potential (1, (38D) with p = g
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Thus with any constant gravitation Jield, we have the exact conservation of a

potential plus Linetic energy — but the latter is not the kinetie energy (8); of
special relatieity.
Proaf. Extracting g = grad T from {A9) we get

£ 2
i—UEgmd {_.'_f:_-‘f={fg ‘_{{a}i[@),ﬁ_u E(_‘I_’.‘.J, (A29)

8 ils de | ds S - 2 ds | ds

where the scalar products and sqpuare are defined with the metrie ﬁ" Since
(da/dt)® = o* (1 — u?fe?) (Eq. (19)) and since u? — {dx/dt;)?, we have thus

dalfr e ( ud ]

ds . dy | g2 — u2
o ot : ol [n?) — - & el : {A30)
2 (e —u? ds Ao* — w¥) ds

which is alto (dfds) {e*log [{1 — wu?/e?) 7%}, The proof is complete,

Recoived September 21, 1092
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