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A THEORY OF GRAVITY AS A PRESSURE FORCE
I. NEWTONIAN SPACE AND TIME

par M. ARMINJON *

Gravity is interpreted as the pressure force exerted on matter at the scale of ele-
mentary particles by a perfect fluid, the rest frame of which delines the inertial
frame, The first task is thus to extend newtonian mechanics so that it allows a
deformation of the Enertial frame. An application to the stability study of an ex-
panding, rigid or contracting universe is given. The pressure of the inertial fluid
Is equivalenl to a mass force, if the elementary particles have the same (average)
mass density, depending only on the Muid pressure. Hence stable particles should
be permanent flows in the [luid, such as vorlices. Gravily should be only the
macroscopic part of the pressure [oree. Newlonian gravity propagales with infi-
nite speed and is interpreted g the incompressibie case. In the compressible case,
gravil.ulimm] (pressure) woves are predicted as well as qualitatively correct mo-
difieations to planetary maotlon. In o forthcoming paper the theory is reinterpre-
ted so os to defscrike Lhe relativistic effects.

1. INTRODUCTION

Through the assumed existence of inertial frames, Newton's me-
chanics and Newton's gravitation - theory need absolute space, without
saying where it could come from. On the other hand, general relativity
introduces an absolute space-time by its unique, covariantly defined me-

- trie [1], and seems to deny absolute space-but it needs Newton's theory :

not only are Einstein's equations derived under the requirement that
Newton's theory must be 1ecovered for weak fields and low  velocities,
but also the zolution of the simplest problem (the motion of a test par-
ticle in the gravitational field of a spherical massive body) is interpreted
a8 a correction to the rewtonian =olution [2]—[4]. Consistently with
general relativity, but ditiering from usuval newtonian theory, the inertial
frames are then desciibed as purely loeal: they are ‘“freely falling”
[4]—[6]. Newton's first and second laws can indeed be formulated in a
treely falling frame, but the actio-reactio prineiple requires a global iner-
tial frame (the same for each pair of interacting particles), and the new-
tonian analysis of a motion with several bodies implies the validity of
this principle for the gravity interaction. In the newtonian analysis of
the solar system as a molion with several bodies the common inertial
frame is thus not only the frame in which the mass center of this system
falls freely with respect to the distant stars. However, the relativistic
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caleulation of the motion in a central gravitational field is nsed to refine
this analysiz. In summary, the nature of the inertial frames as they appear
in newtonian theory is obscure in that theory, and still not clear in gene-
ral relativity.

Another question which passes unsolved from elassical to relativis-
lic gravitation theory is the meaning of action at a distance, in so far
as the lield which is supposed to play the role of a propagator is not a
physical substratum but an abstraction : in this regard, the change from
classieal to relatlivistic theory in essence is a substitution of a space-time
tensor for a space vector. Of course, the modern theory is superior in
that the interaction at least Propagates with finite velocity. Recently,
a theory of gravity with finite wave gpeed has been proposed by a me-
chanicist in a neo-classical framework [7] ; a8 observed by Mazilu, a finite
velocity of propagation is compatible with action at a distance only if
the actio-reactio principle is modified so that the relation between action
and reaction is atfected by some inertia. With such a modification, howe-
ver, it becomes desirable that newtonian mechanics should be modified
accordingly.

A third reason may encourage mechanicists to atfempt the cons-

truction of another gravitation theory, closer to the newtonian one :
perhaps a theory starting from a more classical point of view could throw
some new light on the question of gravitational collapse, which in general
relativity leads to curious catastrophes — due to the inevitable singula-
rities which appear there [4], [8]. Whereas in classical physics singula-
rities only mark the limits of an approximate model, general relativity
is forced to give to some of them the status of a physical reality, in some
erucial cases the theory simply cannot remove them. Would any sensible
theory of gravitation lead to such *’physical singularities™

In this spirit, a tentative new version of the old theory of ether

Semms to be permissible, along the following lines. Tf mechanics must be

first formulated in the rest frame of a postulated fluid subatratum, this
will be a natural inertial frame ; if gravity is interpreted simply as Archi-
medes’s thrust in the fluid substratum, there will be no action at a dis-
tance; and if this can work, it is unlikely that endless implosion can oceur
in guch a fluid, since 1ts pressure will obviously decrease in the direction
of attraction. A preliminary investigation will be to make newtonian
mechanies compatible with the notion of a fluid inertial frame; as an
application, the stability of an expanding, rigid or contracting universe
with nil gravity will be examined. Before doing so, since the idea of a
fluid implies somg deformability, some words need to be gaid on how to
interpret .the newiinian notion of space, independently of the substratum.

Hereafter, a simple analysis will show that onr postulated ether must be

constitutive at the finest scale, i.e. the particles of matter themselves

must be ether — perhaps permanent vortices in this perfect fluid, as was
envisaged by von Helmholtz and Kelvin, and was more recently deseri-
bed by Romani [9] with some degree of detail on today’s elementary
particles, In his ambitious and inventive (though not Very rigorous)
work, Romani introduced the ether as a linearly compressible fluid whose
“sound" velocity is that of light, ¢, but did not propose a definite theory
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of gravitation, while making some interesting suggestions: e.g. the
gravity would be a density gradient in the ether, and light de-
flection, caused by an increase of ether density towards the massive body
(the contrary of what we find), would obey the Fermat principle. As will
be shown, with an incompressible constitutive ether {(and thus without
any density gradient), Newton's gravitation receives a satisfying inter-
pretation in terms of pressure forces — more precisely those forces which
come from the macroscopic part of the pressure gradient. With a com-
pressible ether however, a new gravitation theory can already be obtai-
ned within purely classical concepts of space and time, and the corree-
tions it makes to the newtonian theory for the static spherical problem,
have a form which is similar to those of general relativity.

4. EUCLIDEAN OR RIEMANNIAN SPACE?

Essential to the newtonian theory is the notion of solid reference
frame and thus of a 3-D manifold M with a time-invariant metric a0,
but of less importance that such solids may exist only approximately as
physical bodies (and rather small ones). The classical conception is also
prepared, and this already since the work of Newton [10], to accept that
the “common” distancefand times, i.e. the measured omes, do not auto-
matically eoincide with the ‘‘true” ones, i.e. the distance evaluated with
¢° and the intervals of the absolute time #. As long as kinematies alone
are ditussed, only the absolute simultancity is of importance, in the sense
that ¢ can be replaced by any increasing function of it. Let us note that
relativistic cosmology must also introduce a “cosmic time” [4] without
which, among other things, any speculation on the age of the universe
would be a nonsense; and that in general relativity the cosmological
assumptions are of importance also for “local” questions, since they de-
termine the gross structure of the space-time curvature.

The space M can first be represented with only a differentiable
structure, as a fictitious body which at any time contains all physical ob-
jects. Thus M may be replaced by a body of the same kind, the motion
of which (relative to M) is given in the lagrangian description by a time-
dependent diffeomorphism ¢, of M onto itself. Ma tically, this
second body is defined as the set M’ of the trajectories, i.e. an element
of M’ is the mapping 6(X):t — §,(X) for a given X in M, and the ma-
nifold structure of 1’ is obtained by the transport of that of M by the
one-to-one correspondence §. This means that if we think of M as being
& deformable body in a riemannian space (the euclidean space, for exam-
ple...), we can redress this inappropriate choice and take as the reference
manifold a body which is rigid with respect to the metric. In other words,
the physical space is supposed to be a manifold M with a natural metric
4’ and a large group @ of isometries, but this natural metric might be diffi-
cult to eatch at the global scale. On the other hand, it is assumed that
lnoa.ﬂg and at a large distance from perturbations, the natural metric is
the physical one : that one which is measured with light rays and atomic
clocks. Now the metric ¢’ can be qualified as absolute, but this is not at
all true of the reference solid M, which may be replaced by M’ as above,
yet this time with ¢, €G. This iz a very different situation from thut of
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general relativity where the 4-D space-time manifold M* is equipped
only with the physical space-time metrie v which can hardly be assumed
to admit nen-trivial isometries and which makes thus M? absclute (uni-
que) : in particular, when & cosmic time ¢ may be defined, the 3-D sur-
faces t = const. could be qualified as absolute, somehow reminding the
ether. The fact that no isometry can be assumed in general relativity (ex-
cept a5 an approximation introduced by a simplified model of gur uni-
verse), is the cause of the eerious difficulties in the formulation of conser-
vation laws, as pointed out by Trautman [11]. This does not concern the
mags conservation because the continunity equation may be derived for
an arbitrary riemannian manifold, and moreover special relativity alzeady
abandons the genmeral mass conservation of classical mechanics. It is in-
teresting to note, however, that a continuity equation in the sense of dis-
tributions has been proved by Moreau [12] in the sparer mathematicnl
context of two differentiable manifolds in relative motion with a time-
independent measure (e.g. the mass) given on the “moving” one.

In what follows it is assumed that the reference manifold M (and
hence any other possible reference M’) is diffeomorphic to R?: this has
the status of a pleasant working assumption, which seems rather Qiffi-
cult to invalidate (nevertheless, if this happened, the classical conception
would remain tractable : riemannian geometry also is a bit simpler in three
dimensions that in four). Thus M may be equipped with the euclidean
metric and the euclidean displacement group (translations plus orthoge-
nal transformations), and we suppose further that M could, and has in-
deed been chosen such that the euclidean metric coincides with the phy-
sical one in undisturbed regions, as explained above. The usnal conven-
tions of elementary mechanics are adopted : the position of a peint in
physical space is & point Pe M or a vector x e E, E being the vector
space to which M is identified once an origin O € M has been selected. A
solid reference frame # (or a fluid one #) is a time-dependent isometry
7y (or diffeomorphism ;) of M onto itself.

3. NEWTONIAN MECHANICS WITH FLUID INERTIAL FRAMES

3.1. NEWTON'S SECOND LAW WITHOUT INERTIAL FRAME, AND
. " 'THE EQUIVALENCE PRINCIPLE

Everyone knows that Newton’s second law may be written in any
solid reference frame 2, simply by adding the “‘fictitious” inertial forces,
fiay, per unit mass : B : |

Fg =mag, Fg =Fg + mig la =0, —a,, 1)

where m is the mass of the test particle, a, is the acceleration relative to
the frame # and &, is an inertial frame. Also, if forces are phenomeno-
logically defined, i.e. by their effects, the inertial forces (e.g. the centri-
fugal force in a merry-go-round) have clearly the same reality as the
others. They are only fictitious for an ‘‘inertial” observer, but this notion
is obscure precisely from a rigorous phenomenological point of view. The
quest of inertial frames leads naturally to enlarge the observation scale
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from the laboratory to the Barth, the Sun, stars, galasies... [13] but if
the universe is really expanding, at a still larger seale our sample of uni-
verse must have a high acceleration with respect to other, vory distant
gamples : in that case what will people there think of our inertial frames?

It is possible to start with a newtonian theory without assuming
that inertial frames do exist, nor even that the inertial and (passive) gra-
vitational masses m® and m™® coineide,] simplyj by modifying (1) so a8 to
ohtain the following covariant from o Newton's second law :

F, — mOng, Fo=F, + 0P 1 (2)

in which F, is an invariant part of the force (in the macroscopic world of
usnal newtonian theory, this would always be a force of an electromag-
netic origin) and {4 is the “mass force field"”, a function only of the posi-
tion x of any test particle and of its relative velocity vg. The require-
ment that this relation holds true in any solid frame # with the same va-
lues mY, m*) aud F, is eguivalent to ask that :

m (1gr — L) = m (a0 — 82) (lar = 1a'(X, var)y T2 = Ta(x, va)). (3)

The assumption Iz = (X, va) 18 consistent with (3) and the well-known
transformation rule of acceleration, which depends on the same argu-
ments :

a,(P) — 2a(P) = 82(A) + & A AP+ o A (©A AP) + 204 e,

where A’ is apy point which is bound with @', o is the spin rate vector of
&' with respect to & and the upper dot signifies time derivative. Thus in
(3) and (4),i4' —1a and ag, — ns depend only on xand vg (or x and vg') for
two given frames # and #'. The consequence iz that the ratio m(® /m(#
(which is of course assumed independent jof x and vg) i8 & constant,
in particular it does not depend on the nature of the test particle:
writing Newton's second law in the form (2), assumed covariant, implies the
identity between inertial and passive gravitational mass. In other words
this form expresses in a self-consistent way the principle of equivalence
between gravitational and inertial forces — and this in & purely classical
framework.

Now Eq. ( 2) (with m® = m/)has to be completed by assumptions
regarding the form of the mass force i, and the field equations it is sub-
jected to. From empirical observations such ag those of Galileo and Fou-
coult (and trying to forget Newton's theory ), it could seem natural to
postulate the following Loreniz form :

fa(x; va) = gax) + va A Palx). (2)

Since this form must hold in any solid reference. frame &, (3) and {4)
imply that g and p must transform in this way :
‘¥
gar — o = —(82(A") 6+ AX + @ A(0 A X) + Pa AV aalx))

Pa’ — Pa = 20, (x = A'P) (6)
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Since o is uniform, this transformation rule allows to set the additional
assumption that By is uniform, p, = Palt). In that case there is a frame
#p, whose 2pin @, = —f,/2 is uniguely defined with respect to any given
frame &, such that P, = 0, i.e. there is no Corielis force in 22, However,
Ty is still not a newtonian inertial frame, since it is only defined up to
an arbitrary motion of one origin point bound with it, say A,. If &', is
another of these frames, the gravity acceleration fields g and g in &,
?I!]d in &', differ by the (space-)Juniform acceleration of @, relative to
Ro: g —q= —afl).

To see the meaning of this residual arbitrariness independenily of
the particular form (5), let us consider an isolated system of two interac-
ting particles P, and P, with maes my; and m, and analyse the forces in
two frames # and 4, the latter having the uniform acceleration alt)
with respect to the former. The interaction force of P, on P, is the total
force over P, and thus in & it decomposes in accordance with (2) as -

Fi =F& + my 13 = Ff +m, Lz, i) (5 o i3 6i=12), (7)

and the like in #’. Now suppose that the actio-reactio principle holds
n F:

FI..!: = Fg = F§* +m, 1e(x?, 1’;"}‘!‘ Fi' + mfq(x!, "fﬁ'} =0. (8)

From (3) and our assumption, we have fXx’, v/) —fa(x’, vi) = — an)
and since the Fy are invaiiant, we obbain in &' -

A (m; +m)a. (9)

The actio-reactio principle cannot hold in @' also, unless it has L acre-
leration relative to @, The result is also true for any finite gystem of par-
ticles, provided that the field forces F, and fi(x’, v}) generated hy the
individual particles PYi =1, N) obey (2), and (3) separately — which
is consistent with {he rewtonian superpesition prineiple of the ‘forces.
Thus ihe actio-reactio principle can hold only in one galileian class of solid
reference frames. Mechanics should have to restrict to very special pro-
blems if it could not mse this principle, hence we come bacik to the gues-
tion of a privileged class of reference frames. However, we have learned
that Newton's second law can be ‘written without using the notion of
inertial framé (and integrating instead the equivalence principle). The
covariant form (2)—(3) ean be used also in Jluid reference frames, provi-
ded we are able to define the acceleration with respeet to a fluid. Then
4 natural application will be to extend the actio-reactio principle so that
?ne may assume its validity in a particular, not neceszarily rigid reference
rame. : y

4.2 z'iCI'IG~RE.-‘LE'I_'I{} PRINCIPLE IN A FLUID REFERENGE FH..*U:[E.

The veloeity of a moving point P with respect to a fluid reference
frame, #, is a well-known notion : it is the velocity of P with respect to
the fluid “‘particle™ @ (in the sense of continuum mechanics) which mo-
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mentarily coincides with P; if the motion of & is given with respeci to
the 1eference solid # in the ]ajlangmn deseription : x = §,(X), and the
position veclor of P is ¥{t) = AP, one wiites

VAP = [%P) ) AQ = x(7) = L7 (y(0), (1)

N1 -

which leads to the addition formmla
T.i'{P: I'} = \-...F{IJ: ” IF "'1-*1:@! i’} o "-.i‘l:fil ” T T}'J..#[IJ“J: E:’ [l.]-]-}

Defining the acceleration of P, relative to #, is less obvious £nd mmote am-
higuous, becanse acceleration is a metric notion (in order io conpare vec-
tors at different poiuts of a manifold M, it is necessary that a licear con-
nection be given on JI : the simplest connections are metrie connections).
Henee the “acceleration with respect to the fluid”, a (P, t}, depends on
the considered metiic. Possible, non-euclidean metrics g 0L the iluid
manifold (the set of the trajectories of the fluid particles) aie chtained by
convecling the metric which is induced on the fluid at a given time 1; by
the euclidean one ¢°; if u and v are vectors attached to x at time t, their
riemannian scalar produet is then defined by :

[8v] = gy - uv = (DD, X)) (1) - (D, wl X))y, Ppog = P E';‘s]'lf“a‘:l

where the expression on the right of the second sign = is the euclidean
scalar product of the vectors u, and v, attached to x, = $yp(x) at time
fo (Dfi) is the linear mapping tangent to f at z): u and v are convected
from 1, and v,. In order to define a,(P,1), there are only. two natuial
choices : one takes either (i) the euclidean metric i, or (ii) g, which at
any later time < is convected from the metric induced on the fluid by the
euclidean one at the current time 7.

Although the foregoing may appear somewhat formal, it has a sim-
ple interpretation : choice (i) amounts to defining a,; with reference to
the rigid motion which is locally tangent to the fluid motion, whereas
choice (i) makes reference to the locally tangent homogeneous fluid mo-
tion. This second choice was made by Moreau [14], and it is imposed if
one wants to define a, with reference to the fluid considered as an in-
dependent manifold M’ with time-independent metrit i the euclidean
distance between two points bound with the fluid depends on time. As
discussed in chapter 2, the notion of a metrie that iz insensitive o the
physical objects and their motion, is essential in newtonian mechanies,
so that the first definition will be adopted here; one Teason will appear
more clearly in the next section. Thus a, is defined by ;' '

dv dv : !
el (-Ef_)ﬂ'f{f'.q :( —f.-i?’)a — Oazrna NV (13)

where #5(P,t) iz the solid reference frame whose infinitesimal motion
for = > t is tangent to the local motion of the fluid, and g7 i8 the spin
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rate f @' relative to ®. The frame #4(P, ) has a franslation velocity
vealP(t), 1) and a spin rate @ = (rot v, P(f),t)/2 relative to &, From (17)
and (13) it follows thus: :

a4

1
. + — (ot Vyra) AVS.

(14)
The particle derivative (with right d) expreszes through the chain rule as

ua(P, 1) = 0P, 1) + ([ )a (v P(=), f}})

T

Vgr2

[yrad v a( L0, )] - valP t) + (P(L), & (13)

which is identical to the classical formula giving the acceleration of the
fluid particle, az; o P(t),1), except for the fact that here the gradient ten-
sor applies to vai( 2, 1) instead of vz a( P(t),#). The acceleration [transfor-
mation rule for a moving point rewrites thus :

1
A =ag | 85 -+ (grad Vi) ve + -;{rut. Viia) AV

(16)
= 84 + Bz7 + Dsz- vy + (tob Ve Avs.

It differs from the Corioliz formula for two solids by the additional term
Dyss - vy (where the strain-rate D is the symmetric part of the velocity
gradient). Consistently with his different definition, Morean [14] has this
term multiplied by 2. The transformation rule for two fluid reference fra-
nllles F and #' iz obtained Iy the same way of reasoning and it is exactly
the same :

1
8y = e+ Apyp + (Prad vyys) - Vsl (106 Veyg) A Ve
(17)
=85+ 8z + Dy - var + (ot Veyse) AVe

Now Newton's second law can be wiitten in the covariant form

(2)—(3) for fluid reference frames also. It does not change the physical

content of this formulation which is to unify gravitational and ineitial
forces under the common definition of mass foreces, but it takes into
aceount the empirical difficulty in defining exact =olid reference frames.
Moreover, it makes sense now to postulate the existence of one particular,
possibly fluid reference frame &, in which the actio-reactio principle is
valid — and this does change mechanies, because the new term in (16)
shows that in (approximate) solids, it would then ex’st a pew kind of
inertial forces, which would systematically work against or with the rela-
tive motion. The discuszion of thiz effect seems to be important in con-
nection with the assumption of an expanding universe, because certainly
an expanding privileged frame &(Dgz = all) I, 1 the identity tensor)
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would be a better desciiption of thigs situation thah a rigid one; an ex-
panding ether was already cousidered by Prokhovnik [15]. Such a dis-
cussion is beginning at the end of the next zection.

3.3, THE PRINCIPLE OF INERTIA AND TIHE FLUID VORTHITY.
APPLICATION TO AN EXPANDING UNIVERSE

In its usmal form, the prineiple of inertin states that a particle which
is “subjected to no foree' keeps a constant velocity with respect to zome
special frames (which form thus a galileian class). Since in physieal world
this situation never happens, such a definition is unpiactical : it should
introduee the inertial frames, but their actual definition is that Newton's
second law and the actio-reactio principle apply in them. In pure new-
tonian theory an inertial frame & (in the latter sense) is suppoted to be
a solid. Then it is immediate that any solid ¢’ havipg uniform and cons-
tant velocity with respect to & is also an inertial frame — in the rense
that assuming that the force is unaltered when passing from & to &', is
consistent with the invariance of the acceleration. With a fluid ine:tial
frame, however, this is no longer obvious. We thus postulate, and this
geems to be a correct formulation of the principle of inertia, that & ix
such that there are other fluid reference frames &°, depending on an ar-
bitrary veetor u (in the case where & is a solid, this is the uniform and
constant velocity vg.,), in which the acceleration of any moving peint
is the game as in &. Let us examine the restrictions to be imposed to the
velocity field v of & with respect to some solid reference frame @, in or-
der that this is true. In (17) where we substitute & and ¢’ for F and I, the pcsi-
tion x of the moving point and its veloecity v, are independent vaiiables.
The requirernient that a, = a, holds for any moving point is hence equi-
valent to

VE Vi gy, 1) = 0, grad ve.(x, t) =0, (18)

the second of which means that v, , is a uniform field u(?). The first one
writes thus:

du du 1
' = — =_— ] — _—— F H =10,
804(%, 1) [ = )m_ﬂ (di )’ 5 (r0t v (x ) Am=0.  (19)

If the field v(x, f) is given, this isa differential equation in w, which must
be solved as a differential system involving the other vector equation
dx/dt = u(t). In general, the solution will depend on the initial value
x(f,) as well az on wu(t;), which is unwanted. At a given time ¢, (19) may be
conversely regarded as an equation with w = rot v as unknown : it has
only a solution if 2u - du/di = d{u*)/d? = 0, hence the relative velocity
u is constant in norm. Moreover, the general =olution is then

we=iot v = ﬂ[u A f}—:‘} ,f'u= + a(x, ) u, (20)

(where the unknown function =« is restricted by the requirement that
w =rot v,i.e.

div(rot v) = u - grad « = 0). (21)
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Sp, the spatial variation of the veector field w is along u, the relative ve-
locity of & with respeet to #£. Since we want that u iz arbitrary, w =
= rot v must be a uniform field :

rot v = w(t). 22}

1t rot v iz uniform, Eq. (19) for the evolution of the uniform velocity u has
always a unigue solution, constant in norm: (22) is the searched res-
triction. Thus there is a =olid reference frame (and those having time-
-dependent translation with respect to it, which form a class %) in which
rot v = 0. We have thereby identified the restriciion tmposed by the principle
of tnerita to the velocily field v of a fluid tnertial frame. Romani [9] who
did not regard hiz ether as an inertial frame (but rather left newtonian
mechanics as such, thug with rigid inertial frames) observed that it should
have a curl-free velocity field, based on the classical argument of “‘isen-
tropic” flow of a perfect fluid : for a barotropic perfect fluid, the “isen-
tropy’ holds for any flow since no entropy intervenes ; however, this ar-
gument does not apply to the motion of the inertial frame itself, but only
to the motion of any fluid with respeet to this (fluid) inertial frame. It
will he used in sect. (4.2). '

Let us select one solid reference frame in the class % in which
rot v = 0. Then Eqg. (19) means that the fluid reference frames &, in which
the acceleration is the same than in &, have a uniform and constant ve-
locity n with respect to &, as in usual newtonian theory. From the con-
dition of covariance (3), it comes that the mass force fields f and i, in
& and in &,, verify:

Yu ¥x Yv, fu(x, V. — u) = I(}, v,). (23)

Note that the galileian prineiple of relativity (the mechanical equivalence
of all inertial frarnes) would demand that f{x, v') = f%(x, v') for all x and
v', which with (23) would imply that f does not depend on the velocity
v of the test particle. Instead, we postulate on physical grounds which
will be given in secl. (4.1), that the mass force field { in one particular
inertial frame & (the ether) is indeed independent of v, and we note
1 = gix) in accordance with (3). Then (23) implies that i, also is indepen-
dent of v, = v, —u and thus iz equal to g, i.e. the galileian equivalence is
- obtained as a conscquence of an “‘absolute’’ assumption. Exactly the same
occurs in @pecial relativity [15]. Now the mass force field in any solid
reference frame #® follows from (3) and the acceleration transformation
rule {17) where we get &' = @ and F =&

falx; va) = glx) + (2, —a;) =
= g(X) — (0a7a(%) + Doggelx) * vir + (Y06 Vaars) A V). (24) .

We know from (22) that rot vg, = —rof vy 2 = B(t) iz uniform, hence
{24) differs from the newtonian form, i.e. the Lorentz one (5) with § =
:= fi{t), only by the third term. Thus the Lorentz form (3) of the mass force
field is obtained only with rigid inertial frames, but also in the general case
tle “magnelic’” part iz uniform, i.e. corresponds fo a Coriolis force. Thiz re-
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sult iz obtained under the mere assumption that Newton’s three laws
hold in the proposed form, which is more general than the usual ope since
it allows flnid inertial frames (the assumption that the mass force field
ir & has the form f = g{x) playing the role of the galileian relativity prin-
ciple which iz a part of newtonian mechanics). In particular, the gravita-
tion theory, understood as a model to get equations for the field g, is still
enmpletely free.

The simplest generalization of newtonian mecharies is thus to allow
# uniform expansion of the inertial frame &, ie. Dgg = — Dge = Ddll)
and moreover D,(1) = a(f) I. In any =olid frame of the elass ¥, where
rot v == 0, thizs pgives

v = w(f) + Df) - x, (23)

and ir. one frame 2, v, cancels: v ({) = 0. Let us assume that the fielid
g is nil (at a large scale where the universe would be homogeneous ; see
gect. (4.2)), whence a, = (. The motion of a test particle {perhaps a gza-
laxy ... this is common practice in cosmology [4]) is then given in the
frame #,, owing to (16) (with & in the place of #) and (25), by

i=a=(%‘f+{umdv} )+ 20 -G~
(26)
X _[Du'i_}"i}c'xj = ([

With D, = a(t) I, the solution of (26) with initial value x({,) = x, and
(dx/dt — D-x){t,) = V,, is:

x(f) = x, ~exp At} 4+ Y, Sexp (A(t) — Afs)) ds, A(t) = Sa[s} ds.
f s (27)

If the test particle, subjected only to the mass force (nil in ), is initially
at rest in the expanding inertial frame &(V, = 0}, it remains so at any
later time — this was obvious and shows only that our acceleration trans-
formation rule i3 correct. The etability of the equilibriom in &, ie. of
the global expansion, should be characterized by the relative difference
r = (x — y)/o between the position X(f) of a particle having a perturbed
initial value V, # 0 and the position y{f) of particles bound with & : one
has to determine if there is a fluid particle y for which r cancels at large 1.
The absolute differences are not relevant : for true expansion (contrac-
tion), the distance between any two particles bound with & tends towards
+ oo (evanesces) a8 { increazes. Thus:

ul[:t} = x(t) — y(f) = (xu — ¥y =+ fngex.p{ — A(3)) ﬂs) exp A(f). (28)

Consider first the case a(t) > « > 0 (expansion). Then the inegral in
(28) has a finite limit I as t — oo, Henece, with v, = x; + V, I, r evanes-
ces at large {. Consider now the case a{l) < = << 0 (contraction), and =et
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g(t) = exp (—A(t)) which tends towards co. We have g'(#)/g(t) = —alt),
which is >0 and » 1/t as t —» oo, If a'(t) <a(t)?, the intemal in (28)
diverges and is equivalent to g{t)2/g’(t) = —g(t)/e(t) at large ¢ [16, p. 96].
Thus uit) - —Vg/a(t} a& { — co, independently of y,, exactly like x: the
periurbed pariicle “stays apart from the eontraction”, and » is equiva-
lent to 1, even if a(t) - —oo.

Of course & = 0 iz unstable (if a small velociiy is given to a particle
at rest in a rigid inertial frame, it will got to infinity). We conclude that
an expanding universe with nil gravity would be stable, a contracting or rigid
one unatable. This goes in the same direction with 1elativistic models [4],
though with different (and simpler) arguments.

4. ETHER l'IiESSL‘RE_ AS THE CAUSE OF GHAYITY

4.1 PRESSURE FORCES IN A PERFECTLY FLUID CONSTITUTIVE SUBSTRATUM
(OR ETHER)

It is desired now to give some physical existence to the preferred
fluid inertial frame &, and to relate the gravity acceleration qin & to
the local state of this physical subsiratum : this seems to be the only
way to understand the nature of global inertial frames as well as to avoid
the puzzling idea of an action at a distance, It has long been recognized
that Poisson’s equation for thefield g in newtonian theory gives to its
‘‘propagation” the character of a contact action [10] : in an inertial frame,

ig yadl =§{uvgdv = —4z @m(Q), M(Q) = S pdV,  (20)
d

fu}

where o is the mass density and & is Newton’s gravitation constant. In
newtonian theory the propagation is in fact instantaneous, and we have
seen that newtonian mechanics may be conciled with fluid inertial fra-
mes. This leads to the idea that newtonian gravity could be a pressure
action in an incompressible fluid, and that a compressible fluid could lead
to a gravity with finite wave speed. Since this imagined fluid does not
brake our motion, it should have no viscosity. Then the fluid would exert,
over a hody 0, the force \

F=j~p¢nd3= —‘ngdp.dF =§Fuﬂ‘7= (30)

where for the moment the lazt equality iz merely wished. If we think of
{1 as being a macroscopic body, this equality cannot held, since g and
grad p. should not depend on the kind of matter which constitutes the
body, while ¢ of course does, However, the macroscopic matter is made
of partieles which are already subjected to the gravitation, hence the
fluid pressure would have to act only on a small part of the macroscopie
volume Q: the union of the volumes w(i =1, N(Q)) occupied by the
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e onstitutive particles. In other words, the fluid wenld fill the place left
by the particles, Let g, be the mass density of partiele (i). In order that
(30) hold with Q = w, and g = g, it is necessary that p, be independent
of the particle (i). Then in a domain where g may be considered uni-
form (and for the real gravity this is true even with rather large domains),
the following would be true for any kind and state of macroscopic matter,
provided that grad p. also be uniform :

F = —3 Vi) grad p. = Em, g = g I p; Vi (31)
Te arrive thus at the conclugion that one stitfld have :

g = —grad p./pa (32)

with ¢, the assumed common density of the particles — which could still
depend on the pressure p, in the thought ether. Now the identity between
inertial and passive gravitational mass does nof seem to be known with
the same precision for elementary particles than for maeroscopic matter.
Thus the density in the particles might be dllowed to vary from one par-
ticle to another, and g, will be the average mass density in the different
particles of a macroscopic domain 0:p, = X e, V(@) /EV({w,). But in
orier that g in (32) remains independent of the kind of present matter,
it is necessary that g, be a funetion of p, only. This would be somewhat
miraculous, unless the particles themselves are made of ether and the ether
is a barotropio fluid, i.e. its density p, depends only on its pressureé p.. The
assumption of a constitutive ether was made by RBomani [9] on a more
philozophical basis, and its barotropie character was justified by the fact
that no temperature ¢an be defined for such a true continuum (since the
temperature is known to be the kinetic energy, averaged over the diffe-
rent particles). Romani has explained with a great amount of details
(including numerical ones) how the known elementary particles could be
identified with stable vortices in the perfectly fluid ether, or with (stable
or unstable) complexes of several vortices : e.g. the electron would be a
gimple ring-vortex and its antiparficle the position would be the same
vortex with opposite helicity ; the photon would be a pair of an electron
and a positin having common central axe, mutually accelerating in
what it called a “leap-frog” in the classical mechanics of vortices, 20 a3
to rapidly reach the limit, light veloecity ; and so forth. In that way, the
appearance of quantum numbers is geometrically explained [9, vol. 2].
Dizcussing this theory of matter is beyond the scope of thiz work. It will
be assumed that all material particles are made of ether, that the average
pp of their individual densities in & macroscopic volume equals the ma-
croseopic density g of the ether “minus the particles”, and that the gra-
vity acceleration is a function only of the macroscopic pressute p,, given by

grad pe . (33)

AR pelDe)

Thus, under the assumption g, = pe, the gravitation force can indeed be
interpreted as a pressure force due to the macroscopic part p. of the pre-
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ssure. Yet the local (or “tiuve™) ether pressure p, contains also a short-
1ange spatial fluctvatien ¢ mcund 0, assumed such that:

ik
P =P+ 4o {D}Slgﬂ dS < |grad p, |, (34)

independently of the spatial position of the sufficiently large (and sim-
ple-form, e.g. cubie) domain 2. This condition ensures “that P and gla.-:l
p, are well-defined, the latter Leing the macro-volume average grad p,
CIE grad p, (not pwulmling that g, ctm have macroscopic effects, but

~grad g, € z -grad p, if div z =0) 17]—[18]. In partial agreement
v. ith Nomani's conceptions, the ﬂutmatmn g, i3 thought to be responsible
for the shorter range physieal interactions between material particles :
clecivomagnetic, strong and weak nuclear interactions; in view of the
preceding remark, this is compatible with the macmsmyin effects of the
electromagnetic interaction. It is clear also that the ether pressure, either
P or p,, is completely different from the usual pressure p in material
bodies, which i3 a kinetic energy of material particles, per unit volume
[9]. In particular, it results from our Eq. (33) that p. decreases towards
the direction of gravitational atfraction, whereas the equilibrinum of a
material fluid, assumed perfect, under a gravitation field g and the kine-
tie pressure fnrces — grad p, writes g = --(grad p)/p and thus, of course,
the contrary oceurs for p. That p, decreases as g increases, is consistent
with the assumption that material particles are ether vortices, because
the pressure of a perfect fluid is known to be lower in the vieinity of a
vortex [19]; after all, this is common observation in meteorology. At first
sight, Fq. (33) looks as an equilibrium equation for the ether at the ma-
croscopic scale (this will be called hereafter “macroether™), but it is not
troe : the mﬂrm‘g -ether as a whole is subjected only to the macropressure
force — grad p,; contidering the macro-ether “minus the particles” does
not improve the situation, e.g. because the gravity acceleration (33) can
be the same in two domains, only one of which contains matter. The equi-
librium of the macro-ether & itself is beyond the capacity of this mecha-
nics, since & defines the inertial frame. Yet the microscopic motion of
the ether relative to it mean rest frame & obeys Newjon's second law.
The motion of material particles is a particular kind of such microscopic
motion.

Let us note finally that the foregoing microscopic considerations
have an explanatory and explﬂmt.ne character but are logically unne-
cessary to the proposed gravitation theory. This, for the moment, redu-
ces to Eq. (33), mg‘ether with the tr&nafurma.tmn rule (24) of the mass force
tield entering the covariant form (2) of Newton’s second law.

4.2 EQUATIONS FOR THE FIELD OF MACROSCOPIC ETHER PRESSURE

In the preceding section, the matter was passive under the gravi-
tation (the field y, Eq. (33)), because the spatial domain, though large as
compared with the size of material particles, was assumed small enough
to congider that grad p, is uniform in it ; this waz the often discussed re-
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presentative macro-element of statistical physics. However, the presence
of material particles (ether vortices) is related to a variation. of the pre-
ssure p., as explained above. Without trying to find the law of this varia-
tion by a homogeneization process (which one day could become rele-
vant), it remains to build a law by phenomenological considerations. First,
newtonian gravilation must be regained for an incompressible ether. This 18
immediate, since Poisson's equation gives with (33) :

divigrad p,) = — g divg = 4n G g p = Aps {33)

whenever . is uniform. Now it is readily seen that the last equation also
haz a sense for a compressible ether where p, Varies in space. The great
aceuracy of newtonian gravity means that the ether conpressibility plays
little role in “usual” situations, in the sense that Egs. (33) and {35), with
uniform p,, are a very good approximation of the equation we are loo-
king for, at least for weak and slowly varying gravitational fieldz. Thus
the spatial variation of p. is expected to be scarce, =o that the p. — ¢.
relationship may be linearized around some reference pressure and den-
sity pi(¢f*f). Introducing the “sound” velocity ¢ in the ether (depen-
ding on g, for non-linear p,— g, relationship), obtains

Pe — pif =0, (p*)* (o — i)y el pe)® = dpifde. (386)
Eq. (36) allows to eliminate the ether density from Bq. (35):
Ap, = (4= Glel) (p. + E™)p, K™ = 6P — e, 6= ef ™). (37)

As the compressibility 1/¢}. tends fowards 0, one may obviously expect
that the solution of (37) with given boundary conditions for pJe.g. plr=
= w) = p'F = pi’f for a problem with spherical symmetry), fixed i
and given material density p, tends towards the solution of Eq. (35) with
imposed uniform ether density g = ci*f and the same p and boundary
conditions. A precise mathematical study (which could use perhaps a
penalty method) is not our purpose here, but it will be seen in the next
section that this indeed happens in the crucial case of gpherical symmetry.
It seems unlikely that another second-order linear equation in p, as (37)
which is deduced from (35) by linearization of the p, — p. dependence,
could have the same property. We thus postulate that the mon-linear Eq.
(35) s the field equation relating the pressure p, = pp.) tn the baretropic
ether to the material densily o, in the static case where the fields are time-
-independent. Note that in the linearized compressible ecase, the field g
(Eq. (33)) derives from a potential which, contrary to the incompressible
case, i3 rot proportional :tl:'r the ether pressure any more :

: o .

g~ Egmﬂ A" _cigrad{p.l T (38a)
P. B g Pe

U = —ci Log () o = el ol®). (8b)

2—¢, 3691
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Moreover, taking the divergence of thé€quation in Eq. (38a), we get
using Eq. (37):

divg — L = —in @ ;. (38¢c)

S5

As a first application, let us examine the case of uniform material
density. The newtonian theory is known to give meaningful results in
that case, only after it has been modified in a rather artificial way
[4]—[5]. It seems that a reasonable gravity field g in such case should
be g = 0. For a uniform densily g, Eq. (35) has one solution giving uni-
form pressure, namely p, = 0 (assuming of course that p,(p = 0) = 0).
Then Rgs. (33) and (37)—(38) do not apply, but clearly the macroscopie
pressure forces cancel and hence g = 0. We thus get the important result
that the theory allows nil gravity g for uniform material density ¢ = p,.
Of course, it makes more sense to assume a macro-uniform density: p =
= py + p With p, fluctuating around 0; apparently this case has not
been investigated in newtonian theory. In that case it is expected that g
will fluctnate around 0. This is not immediate to check, since Eqs. (35) or
(37) imply a non-linear dependence of p, on g and Eq. (38¢) shows directly
the non-linear dependence of g on .

Let us turn to the unsteady situation where the fields p, and
depend on the time #. Then the continuity equation for the velocity field
v of the ether, not yet stated, plays an important role. It is asswmed that
the macro-ether is conserved. The usual continuity equation holds thus in
any solid reference frame : :

%‘:—'-l-div{p,v}zﬂ. " (39)

As in usual acoustics, consider the perturbation of a large-scale flow of
the macro-ether by a vibration of a small amplitude and low velocity
(e.g. [20, § 63)]. We can use Eq. (39) with v being the velocity of the dis-
turbed motion with respect to the undisturbed one, the latter being assu-
med to define the fluid inertial frame #. Referring the spatial position x
and the velocity v to the salid reference frame @®, which is tangent to the
undisturbed motion at a given point x, (this latter being bound to the
undisturbed motion i.e. to the frame &), we make a local decomposition :

Pe = Peo T Py Pe = Pag + Doty P € Pegi Pa € Doy V] € Clpeg). (40)

Since 2, follows the local undisturbed fluid motion which is assumed to
be very slow (as the today accepted expansiom), the time derivatives of
Peo DA ey are negligible with respect to those of p,, and p., as far as x
remains in a small neighborhood of x,. Thus Eq. (39) rewrites up to the
first-order terms :

EEFTH + pog div v =0. (41)
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The disturbed motion is assumed to obey Newton's law, as the microsco-
pic motion ; to write this, we consider that the pressure force (here the
mere force in Newton’s law) is due only to the deviation of the pressure
from the pressure in the undisturbed fluid :

=3 g’rﬂ.d Per g gmd Pa =t EE. =} ?-‘—r, {42]
- fe di it
v, gadpy _ o (43)
at Beg

With (41) and since v is curl-free (this has been proved for the motion of
the inertial frame with respect to a solid; for the disturbed motion it
follows from the argument of “isentropy” : see after Eq. (22)), this gives
in the classical way d'Alembert’s equation :

_ 1 ¥pa
& ot

S

= ak 44
dp,EF ) (44)

Apy

The undisturbed fields p,, and g, of the local decomposition (40) are assu-
med to obey Eq. (35). Summing this and (44) gives to the first order :

: 1 &%,
Ap, — .c_f -_ﬂ‘f;_ =dnGp py P = Pdes)s €= e pe) (45)

This is the general equation which is stated for relating the fields of ma-
terial density g and macro-ether pressure p,. It clearly admits gravita-
tional (pressure) waves propagating at the sound velocity efp,) in the
compressible ether, which varies with g, and thus in space, unless if the
barotropie relationship p. = p.(p.) is linear. In deriving these equations,
1o restriction was imposed on the large-scale motion of the macro-ether
and {his motion iz not defermined by any equation of the theory. As in newto-
nian theory, the motion of an inertial frame is phenomenologically deter-
mined from the absence of inertial forces in it — but here this motion is
an arbitrary (curl-free) fluid motion. In the present state of knowledge,
a uniformly expanding ether is expected to give a good description at
a large (inter-galactical) scale, and this amounts to nearly rigid motion
at smaller scales [15] becaunsze the acceleration due to expangion (Eg.
(26)) is negligible as compated with the relevant accelerations (of the
stars, planets, vehicles...). .

4.3 CENTRAL STATIC SOLUTION FOR LINEARIZED ETHER COMPRESSIBILITY

Since the Lorentz form (5) of the mass force field (necessarily with
uniform magnetic part, sect. (3.3)) is known to be a very good approxi-
mation in our solar system, we already can state that the macro-ether (or
privileged inertial frame) has very nearly a rigid motion in this region.
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This is connected with the other empirical fact that the solar system is
nearly an isolated system, with the Sun alone having the main gravita-
tional sffeets. If all matter were concentrated in one and alone body at
equilibrium, there wounld be no reazon for the ether 10 move relative to
this body. Let us thus consider the case of one spherical body with mags
M and radius R, at rest in the rigid ether, and refer the space to spherical
coordinates r, 6, ® from the centre. Of course the equations of sect. (4.2)
are written in terms of the euclidean metric and the newtonian equation
(2, = g) is used. In the forthcoming paper another interpretation is stu-
died. For r > R, Eq. (35) is Laplace's equation, with spherically symme-
trical solution :

P, = A + Bjr = p=(1 — r,jr). (46)

The linearization (36) of the p, — ¢, relationship, not used for obtaining
(46), may hence be made with pI** = p{™, and the field g (Eq. (38 a))
writes :

= G CRER: S S /) 47
e I e I T e - 7 i f(e2r)) ol

This shows that g is like 1/»* at large r, and equivalent to the newtonian

expression if

= GH F (48)

but this way of obtaining the value of r, is not entirely satisfying, althonugh
it is often used also in general relativity [1]—[4]: once the equations are
stated, the form of which is *“‘close’ to the newtonian form, it would be
degirable that the adjustment of the constants be internal to the theory.
This is possible here, at least. when the material density in the central
body is assumed to be uniform. Eq. (38¢) writes for spherical symmetry :

boay

L g g s s - X S

i R R el sl Gl ot

a Riccati equation which by the change g — ci(y — 1/r) takes the form <
: V+r=k (50)

If g(r) = ¢, or k = Const (for 0 < r < R), Eq. (50) admits y = % th
(r}%) as a particular solution. The general solution of Eq. (49) is then
found to be

ﬂ:_’j e ﬁ » [
6 sh(r{%) ch(rYk) + 4 eh? (r k)

+Ee VD -2, 1)
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As 7 — 0, this is equivalent to —1/r and gives thus unbounded repulsion,
unless if A = 0 in which case it tends towards 0. Similarly, in the newto-
nian (incompressible) theory the solution is uniquely determined by the
requirement that g remains bounded as r — 0. Here the exterior solution
(47) has a singularity at

7o = 1o P €2). 62)

It is obvious that r, cannot be in the range of the exterior solution (46)
for the ether pressure, since p, ard hence g, would then change sign at
r = r,. Contrary to geveral relativity, there is no question about the rea-
lity of the singularity at r,, because the present theory would not apply
to & spherical massive body whose the radius R at equilibriom would be
less than r,. In the same way, an unbounded repulsion would occur for
r << r, and Eqs. (47) and (38a-b) imply that the ether density would can-
cel at r;; hence the field of the central body at equilibrium has no singu-
larity (if the theory applies), it is:

or) {r.;f{r’ (1 —7y/r)) Hr>=R
ot VE I pot i MOhiie E.
T yn TR k=T 0er <

(83)

Assuming that & = r VF = (36U (r)/(c? ))* < 1 (with M(r) = (4/3)mp,r),
the interior solution is expimded ::a{s o ;

gtr)= &V (- + 20 8 4+ 008y ) = S0 (14 43 ST0) 4 i Roe.

_ (54)
The continuity of g at r =R gives then :.
" ro=R(c+33¢ +‘_¢i'é=)},'_.'s.=%, : {.55]
Goxilr) = — e M, = M(1 + 3.3 ¢ + O(s?)).
r’( _T:r) T Y () e " (56)

Hence the newtonian solution (ewterior and inlerior) i8 regained as ¢ — 0,
Of course, this happens if one makes ¢, tend towards + oo, but physically
¢, is determined (see the next paper). Thus Eqs. (54) and (56) mean that
the newtonian solution is a better approximation -of the presented theory,
when r/E » e and also when r* < 1/k, or at given r when the ratio M/R
is low — in general : when the field g s weak. This is a well-known result
in general relativity, but here the solution has been adjusted internally fo
the proposed theory (this is also done for general relativity by W. Thirring
[8, §4.4]). The question of internal consistency is not merely of a formal
interest, but has consequences on the obtanied predictions. Indeed, Eq.
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(56) shows that the coefficient of G/r? in the expression of g at large r (the
newtonian active mass), is not exaectly the inertial mass M, and ik diffe-
rence from M depends on M (R, hence depends on the massive body. It
is not obvious that this first difference alone has completely negligible
mn&eq]l::nues in celestial mechanics, even in the solar system. For the
Sun, the Earth, the Moon and Jupiter respectively, ¢ is approximately :
2. x 10-%, 6.9 x 10-%°, 3 x 107, 2 x 10-%, if ¢, is taken to be equal to
the light velocity ¢ = 3 X 10° km/(s. However, we stop our cominents
here, because the theory is reinterpreted in the next paper and gives di-
flerente results.

The motion of a test particle subjected only to the ceniral gravita-
tion field (47) of the spherical body obeys Kepler's second law, i.e. it is
a plane motfion (which may thus be analysed as a motion with the cola-
titude 8 = =/2) such that »?d®/dt = h = Const. With w = 1/r and Eq.
(56), the radial equation of motion writes [21], to the first order in #'y/r :

dw gl _GM, M, \ _ G,
EEE'Fu“h?u?”?(lJr = u)__A—kxu,.elu_—m—. (57)
Setting ¢ = o1 — z), Eq. (57) becomes
du A
—_— = == A, 'HB}
ay? = i

with general solution :
u=0sin() — ) + 4, = Csin [(O — @) VT — )]+ 4,. (59

The newtonian theory is regained if « = 0 : for planetary orbits, the cons-
tants € and A4 are such that Eq. (59), with « = 0, represents an ellipse
with large half-axe a and eccentricity ¢ satisfying 4 = 1/(a(1 — ¢*)) [4].
Thus for z < 1, Eq. (59) represents a bounded curve which repeats, not
after an exact revolution (A® = 2x), but after a little more than that :
the advance in the perihelion

(60)

26 = i ( 1 ) M, GM, M,

1 —« ht o _chm:]__ez}

is predicted. With ¢, = ¢, Eq. (60) gives only one sixth of the advance
predicted by general relativity, which agrees well with observations [¢].

5. CONCLUSION

An old, classical idea subtends this paper: the absolute space of
Newton's theory has to be a physical substratum, otherwise it is impossi-
ble to understand why Nature seems in fact privilege some reference bo-
dies, and also how interactions can propagate through interstellar empty
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space. The originality may lie in the deliberate choice to explore this po-
ssibility in a striet, naive sense though with an exigence of logical consis-
tency. Only a perfect fluid could fill the space le!t by material bodies
without braking any motion, and c¢nly the pressure force can be exerted
by such a fluid. Another point is essential in this work : the fluid must
be inertial, i.e. Newton's theory in the usual sense implies that the fluid
hat in fact a rigid motion, that is, rigid with respect to the euclidean me-
tric, In order to justify the fluid nature of the substratum, it appears
then of an immediate necessity to generalize newtonian mechanics to
the case where the inertial fluid is indeed deformed in terms of the eucli-
dean metric, and this has an interesting application ; of the three simplest
possibilities ; rigid motion, contraction and expansion, only the third
one leads to a stable universe — in a sense that is precised. In connection
with this, the generalization has the other advantage that no artificial
modification of newtonian attraction (such as a repulsive force increasing
with distance) needs to be postulated.

The pressure action of the inertial fluid or ether is equivalent to a
mass force acting indifferently on all material objects, if the elementary
particles of matter have the same ‘‘mass” density than the ether. This is
no mystery, if these particles are themselves made of ether and this has
an extremely small compressibility so that the “sound” velocity in ether
is that of light. However the pressure which may be responsible for gra-
vitation must be the macroscopic ether pressure. Thus the microscopic
field of ether pressure might contain also the other, shorter range physical
interactions.

Newtonian gravitation is immediately regained as a limiting case
of the postulated field equation which relates the ether pressure to the
material density, corresponding to a nil ether compreseibility. Moreover
the solution of the spherical static problem tends towards the newtonian
one when the compressibility tends towards zero. In unsteady situations,
the compressibility leads naturally to *“‘acoustic” (pressure) waves in et-
her, i.e. to gravitational waves. However, the theory, at this stage, cannot
describe gravitation completely since it does not allow for relativistic
effects — and this traduces in the poor prediction of the advance in the
perihelion of planetary orbits. In the forthcoming paper, the “relativistic”
effects are accounted for naturally and efficiently by the ether theory.
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