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We review the energy concept in the case of a continuum or a system of fields. First, we analyze the emergence of a true local
conservation equation for the energy of a continuous medium, taking the example of an isentropic continuum in Newtonian gravity.
Next, we consider a continuum or a system of fields in special relativity: we recall that the conservation of the energy-momentum
tensor contains two local conservation equations of the same kind as before. We show that both of these equations depend on
the reference frame and that, however, they can be given a rigorous meaning. Then, we review the definitions of the canonical
and Hilbert energy-momentum tensors from a Lagrangian through the principle of stationary action in general space-time. Using
relatively elementary mathematics, we prove precise results regarding the definition of the Hilbert tensor field, its uniqueness, and
its tensoriality. We recall the meaning of its covariant conservation equation. We end with a proof of uniqueness of the energy

density and flux, when both depend polynomially on the fields.

1. Introduction and Summary

The subject of this paper is wide and there is a huge literature
about it. The aim of the paper is to give a unified exposition
of what, in this author’s view, are the main aspects of
the subject, in a relatively short space, while, nevertheless,
emphasizing or precising some not widely appreciated facts
and providing strict proofs of some less obvious matters
(mainly the Hilbert energy-momentum tensor), using not too
sophisticated mathematics.

In nonrelativistic classical physics, the concept of energy
emerges when one considers the power done (the scalar
product of the force by the velocity) on a mass point or a
volume element. First, in the schematic case of a mass point
in a time-independent potential force field V, the energy
of the mass point appears from the power equation as a
natural conserved scalar quantity: the sum (1/ 2)mv*+V. That
quantity is still relevant if the potential depends on time, but
it is not constant any more. This is well known. In the more
realistic case of a continuous medium subjected to internal
forces and to an external force field, the energy is a volume
density and it still emerges from the power done. However,

in general, the local conservation of energy then appears in
the form of a balance equation, though it is one in which
there is no source term. That is, energy conservation means
that the energy leaving or entering a given domain is exactly
identified as a flux going through the boundary surface of the
domain. This also is well known—see, for example, [1]. We
illustrate the emergence of such a true conservation equation
for a continuous medium in Section 2 by examining in detail
the example of a self-gravitating system of deformable media
with isentropic deformation in Newtonian gravity.

In relativistic theories (including relativistic quantum
mechanics), on the other hand, the volume energy density is
essentially the (0 0) component of the energy-momentum-
stress tensor, in what follows “the T-tensor” for brevity.
The conservation-type equations verified by the T-tensor are
discussed in nearly all textbooks about special or general rel-
ativity, of course. In Section 3, we recall why the conservation
equation verified by the T-tensor in the Minkowski space-
time (see, e.g., Lifshitz and Landau [2] or Fock [3]) contains
two true local conservation equations of the form found in
the nonrelativistic example of Section 2 and why one may
identify the density and flux in these two equations as those



of energy and spatial momentum, respectively. We also note
the dependence of the energy density and the energy flux
on the reference frame. That dependence is a known fact
(though a scarcely mentioned one), but often that fact is not
well appreciated. Our new contribution here is to show that
these quantities can nevertheless be given a rigorous meaning
within a theory of general reference frames and the associated
space manifolds.

As is well known, an expression of the T-tensor may
be deduced when a Lagrangian is available, the latter being
assumed to govern the relevant system of matter fields via
the principle of stationary action (e.g., [2-9]). There are
two distinct definitions of a T-tensor from a Lagrangian:
(i) the so-called “canonical” or “Noether” tensor, say 7, is
a byproduct of the Euler-Lagrange equations and (ii) the
“Hilbert tensor,” say T, is the symmetric tensor obtained
as the derivative of the Lagrangian density with respect to
variations of the (space-time) metric. In Section 4, we review
the definitions of the canonical and Hilbert tensors from
a Lagrangian through the principle of stationary action in
general space-time. We recall two important but seemingly
not widely known cases where the “canonical tensor” is, or
is not, a tensor. Then, we prove precise results regarding the
definition of the Hilbert tensor field (Theorem 1). In doing
so, we formulate sufficient conditions of regularity for the
bounded set in which the action is calculated; we define
exact boundary conditions to be verified by the infinitesimal
coordinate change; and we give a detailed derivation of the
equations. We do not need to use complex notions of fibre
bundles. To our knowledge, such a relatively elementary but
detailed proof is not available in the literature. Next, we recall
the meaning of the standard conservation equation verified
by the Hilbert tensor: we argue that one actually needs local
definitions of the energy and momentum densities and their
fluxes, in short a local definition of the T-tensor, and one
needs also a local conservation equation for the energy. We
briefly discuss a recent work that proposes a solution to the
latter issue. We end Section 4 by stating and proving precise
results regarding the uniqueness and the actual tensoriality
of the Hilbert tensor (Theorem 2). In particular, we prove
that the same variational equation applies when a complete
variation of the sole metric is applied (65), as when the
variation of the metric results from a mere coordinate change
(or diffeomorphism) (54), although the meaning of these two
equations is totally different; for example, the LHS of (54) is
zero for an invariant Lagrangian. We prove that the variational
equation (65) characterizes the components of the Hilbert
tensor field—whence it follows that it is left unchanged by the
addition of four-divergence. We also prove, in detail and by
relatively elementary arguments, that this is indeed a (0 2)
tensor. This is just stated in the literature that we consulted,
except for [7] which uses more advanced mathematics. Of
course, it follows basically from the invariance of the action
but, in our opinion, not in a fully trivial way.

Finally, in Section 5, we investigate whether the energy
equation is unique for a given system of fields, that is,
if the energy density and fluxes can be considered to be
uniquely defined. We show that if the energy density and
its flux depend on the fields (both the matter fields and the
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“long-distance” fields) in a polynomial way, then they are
determined uniquely. We show this by considering separately
the contributions of matter (including its potential energy in
the long-distance fields) and the long-distance fields.

2. Local Energy Conservation for an
Isentropically Deformable Medium in
Newtonian Gravity

2.1. Local Energy Balance for the Matter Fields. Letus consider
a deformable continuous medium, of mass density field
p, having a general motion (including deformation and
rotation), with velocity field v, with respect to some inertial
frame F; that is, v == dx/dt, where x(X) = (x'),_; ,, is the
spatial position associated with an event X in the frame F
and where t — X(t) is the world line of a given “particle”
of the medium, parameterized by the Newtonian time t.
The internal force field in that medium is assumed to be
described by the Cauchy stress tensor field o. We assume
that this motion takes place in a gravitational field, with
Newtonian gravity potential U. Newton’s second law for a
volume element of the medium is written as

p% = pVU +dive, @

where d/dt means the “material” (or “total”) derivative: for a
Vector,1
% = g +(grad v) (v). (2)
The power (per unit volume) is obtained by taking the
scalar product of (1) with the velocity v. On the new LHS, we
have h(v, dv/dt) = (d/dt)(v*/2), while, on the RHS, we note
that

v-dive :==h(v,dive) =dive (v) -0 : D, (3)
where

D= (grad v + (grad V)T) (4)

N =

is the strain rate tensor.” We note also that v - VU =
dU/dt — oU/ot. Still, we assume that the deformation of the
continuum is isentropic, which means that the power of the
internal forces is stored as the rate of elastic energy:

dll
G:szﬁ’ (5)

with IT being the mass density of internal (elastic) energy
in the continuous medium. This assumption applies, in
particular, to any elastic medium and also [3] to any barotropic
perfect fluid, as is commonly assumed in astrophysics—a
barotropic fluid is not plainly an elastic medium in the sense
that it does not have a reference configuration. We thus get

d (v du oU dn
Yo p (T ) vdivew) - p2n. (6
pdt(Z) p(dt at>+ VoW =pg ©
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It suggests itself to put together the terms containing an exact
total derivative:

d (v? ou .
pa<?+H—U>——pE+dlvo'(V). (7)

On the RHS, we have a source term due to the external force
field, plus a flux term. On the LHS, we have

2
e, = % +I1-U. )

m

Using the continuity equation that expresses the mass conser-
vation

Z—i +div(pv) =0, 9)

we easily get the well known fact that (for whatever scalar
function e,,,, actually)

de,, <aem )
=p|l —=—+v-Ve,

dt ot
(10)
0
= % +div (pe,,v) .
From (8) and (10), we may rewrite (7) as
ow oUu
—_m i = —p— 11
o +div®,, P (11)
with
)
w,, ::pem:p<—+H—U>,
2 (12)

D, =w,v-0(v).

That is, we got a balance equation with an external source
term on the RHS. The scalar field w,, is thus the volume
energy density of matter, including its potential energy in the
gravitational field, and the spatial vector field ®,,, is thus (the
surface density of) the matter energy flux. Equation (11) can
be found in the literature; see Eq. (66.11) in Fock [3]. But its
detailed derivation illustrates well the emergence of a balance
equation for a continuous medium.

2.2. Balance for the Gravitational Field and Local Energy
Conservation Equation. Now, we assume that all of the matter
that produces the gravitational field is indeed in the form
of isentropically deformable continuous media. (Of course,
the characteristics of the media may vary in space.) Thus,
the point-dependent mass density p is just the source of the
gravitational field. It therefore obeys the gravitational field
equation, that is, the Poisson equation:

AU = —4nGp. (13)

By using Cartesian coordinates, for which we have AU = U,
one checks easily that (13) implies the following:

i,

ow oU

g . _
? + le(Dg = PE’ (14)

3
where
2
9 8nG
is the volume energy density of the gravitational field and
ou VU
D =——— 16
g ot 4nG (16)

is the gravitational energy flux. Equation (14) may be termed
the energy balance equation of the gravitational field. Like
(11), this also is a balance equation with a source term. The
source term in (14) is just the opposite of the source term
in (11). Therefore, combining (11) with (14), we get the local
energy conservation equation in Newtonian gravity [10]:

a_w +divd =0, 17)
ot

with the total energy density w = w,, + w, and the total
energy flux ® = ®,, + ®,. Equation (17) is the standard
form for true local conservation of energy in a continuum,
with the definition of the field variables w and ® depending
on the particular theory. It has essentially the same form as
the continuity equation (9). There is also a local conservation
equation for momentum in Newtonian gravity, and global
(integral) conservation laws can also be derived; see, for
example, [10, 11]. Strangely enough, however, we did not
see in the literature the local equation (17) for an elastic
medium or a barotropic fluid in Newtonian gravity (thus with
definitions (12) and (15)-(16)). For instance, it is not there
in the references quoted in the present paper. (The i = 0
component of Eq. (13) in [11] is just the continuity equation
(9), with p being indeed the (Newtonian) density of mass;
thus, it is not the conservation equation for the Newtonian
energy, but the one for the mass.)

3. Local Conservation Equations and the
Energy-Momentum Tensor in Minkowski
Space-Time

Recall that the energy-momentum tensor of a continuum or
a system of fields is a second-order space-time tensor field
T, preferably symmetric. In the Minkowski space-time, T
verifies [2] the local conservation equation

T" ,=0 (in Cartesian coordinates). (18)
(Here, Cartesian coordinates are now ones such that the
space-time metric has components g,, = #,,, where the
matrix (’7/”) = diag (1,-1,-1,-1).) It is easy to see that (18)
is the conjunction of two conservation equations having the
standard form (17). One is precisely the scalar conservation
equation (17):

ow x°
— +divd =0 t==—1, 19
35 + div ( . ) (19)



in which now (the tensor T being taken in mass units as in
Fock [3])

wi= AT,
) (20)

® =cT%; (sum overi=1,2,3).

The other conservation equation involved in (18) and having

the form of (17) is a (spatial) vector equation:

a—P +divX =0, (21)
ot
where
P = CTioai,
3 (22)
2:=c"T73,90,.

We may integrate either of the two conservation equations
(19) and (21) in any bounded spatial domain Q (the integra-
bility in an unbounded domain being not guaranteed). This
gives us two integral conservation equations:

%(Lde):—LQQ-ndS, (23)
%(Lpdv):-JBQE-ndS. (24)

Thus, in (23) and (24), the change on the LHS is due to the
flux through the boundary 0Q on the RHS. The scalar w is
interpreted as the volume density of energy, and the spatial
vector P is interpreted as the volume density of momentum
[2]. Therefore, in view of (23) and (24), the spatial vector ®
is interpreted as the surface density of the energy flux, and
the spatial tensor X is interpreted as the surface density of
the momentum flux. This interpretation may be justified in
several ways, notably the following two [3].

First, we examine the nonrelativistic limit for a barotropic
perfect fluid or an elastic solid. In the second approximation,
w, @, P, and X in (20) and (22) have then the following
expressions ([3, Sect. 32]):

1
w =T = czp + EPVZ + pII,

O = C3T0iai = c3TiOai =c*p
(25)
2 I 5
=cpv+ (zpv +pH>v—0'(v),

2= *TY9, ®0;=pveV-o0.

Therefore, at the first approximation, the special-relativistic
local energy conservation (19) reduces to the continuity
equation (9), and at the second approximation it expresses
the conservation of that rest-mass energy corrected by adding
the conserved Newtonian energy ((17) with U = 0). Also,
at the first approximation, the special-relativistic momentum
conservation (21) reduces to the Newtonian momentum
conservation equation in the absence of external field:

@+div (pvev-o0)=0. (26)
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Second, we recognize in w and P, for the electromagnetic
field, the usual definition of the electromagnetic energy
density and the Poynting vector from the relevant expression
of T ([3, Sect. 33]).

One does not use the symmetry of the tensor T to derive
(19)-(21) and (23)-(24). If that symmetry is true, it implies
that ® = ¢*P is true generally: the density of energy flux
is equal to ¢* times the density of momentum. The same
equations (23) and (24) apply also to Newtonian gravity as
follows from (17) and the gravitational extension [10, 11] of
(26).

As it is easy to check, under a purely spatial change of the
chart (coordinate system),

= () Gk=1,23) (orx =f(),

10 0
X =X,

(27)

the energy density w (see (20),) is an invariant scalar, while
@ (see (20),) and P (see (22),) transform indeed as spatial
vectors, and X (see (22),) transforms indeed asa (2 0) spatial
tensor. One may give a rigorous geometric meaning to such
“spatial” objects by defining a relevant space manifold My, as
follows [12]. In general space-time, one can formally define
a reference frame F as being an equivalence class of charts
having the same domain of definition U (an open subset of
the space-time manifold V) and exchanging by a coordinate
change (“transition map”) having the form of (27). Let P; :
R* > R? X = (x*) > x == (x/) be the “spatial projection.”
The elements (points) of the space manifold My, are the world
lines, each of which is the set of events that have a given spatial
projection x in some chart y : U — R*, X + X, belonging to
the class F. That is, a world line / is an element of My, iff there
is a chart y € F and a triplet x € Py(x(U)), such that [ is the
set of all events X in the domain U, whose spatial coordinates
are X:

I={XeU; Ps(x(X))=x}. (28)

It results easily from (27) that (28) holds true then in any chart
x' € F, of course with the transformed spatial projection
triplet x' = f(x) = (fj(x)) [12]. For any chart y € F,
one defines the “associated chart” as the mapping which
associates, with a world line I € Mj, the constant triplet of
the spatial coordinates of the events X € [:

XM— IR3,
such that VX €[, (29)

P (x (X)) =x.

The set My is endowed with a natural structure of three-
dimensional differentiable manifold, of which the basic atlas
is made of the associated charts ¥, where x is any chart
belonging to the reference frame F [12]. The “spatial” objects
are defined above: the scalar w, the vectors @, P, and the
tensor X are simply and rigorously tensor fields on the
manifold Mg. (Of course, they have in general, in addition,
dependence on the time coordinate x°; thus they are, strictly
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speaking, one-parameter families of tensor fields on Mg.)
Fixing a reference frame in this sense can be done, for
instance, by choosing one local coordinate system (chart
x) on the space-time, with its domain of definition U: the
corresponding reference frame F is then the equivalence class
of this chart. As soon as one has fixed a reference frame,
then (19) and (21), as well as (23) and (24), are coordinate-
free equations on the space manifold M;. In particular, the
bounded spatial domain ) is an open subset of the manifold
M, having a regular boundary 0Q, so that the divergence
theorem applies. (See the Appendix for a precise definition
of the needed regularity.)

On the other hand, if one makes a general coordinate
change for which the change in the spatial coordinates
depends on the time coordinate (already if one makes a
Lorentz transformation transforming the Cartesian system
into another one, but with a nonzero “boost”), then (20)
defines completely different quantities w’ and @', as com-
pared with the initial ones. The same is true for P and X
as defined by (22). This means that there is one definition
of the energy and momentum (and their fluxes) per reference
frame. It is not specific to special relativity. Indeed, the energy
depends on the reference frame. This is true in nonrelativistic
physics (e.g., [10])—as may be checked here on the fact that
w,, and @, defined in (12) involve the velocity v that depends
on the inertial frame, whereas p, II, U, and o are Galilean
invariants. It is also true in relativistic physics and also in
general space-time, be it for the classical or the quantum-
mechanical energy [13].

4. Definition of the Energy-Momentum Tensor
from a Lagrangian

4.1. Lagrangian and Stationary Action Principle. We assume

that the equations of motion for some “matter fields” ¢* (A =
1,...,n) derive from a Lagrangian L through the principle of
stationary action in general space-time:

For any variation field 8¢ = 8¢* (X)
with 8¢5, = 0, (30)
we have 8S = 0.

Here, 0U is the boundary, assumed smooth, of some bounded
open set U in the space-time, and Sis the action: in some chart
X whose domain of definition W contains U, it is written as

S=Su=| | 1(#"0.6400.X) g 00d'x. @

where ¢A X - ¢*(X), x(W) — R"™, is the local
expression of the field ¢ in the chart y, and g := det ( G
with g,,’s being the components of the metric tensor in the
chart y; note that y(W) is an open subset of R*. Thus, the
field ¢ has 1, real components (or 11, complex components
for a complex field, with R™* replaced by C"4). At this stage,
we do not need to know the exact geometric nature of the
fields, whether they are scalars, vectors, more general tensors,

or otherwise. We just assume that, on changing the chart:
! .
X — X, the local expression of each of them has some

A
definite transformation law, say ¢A(X) — qS' (X", and that
the Lagrangian is then invariant under the coordinate change:

L(¢™(x). ¢, (x).X)
= L(¢" (X), ¢, (X),X), (32)
X' =x(x"X)=FX).

That invariance has to be true at least when the chart
belongs to some well-defined class and implies that the same
invariance is valid for action (31). In this section, we will
consider the usual case that all charts (in the atlas of the
space-time manifold) are allowed; that is, we will discuss
generally covariant theories. However, it also makes sense
to consider instead the class associated with a particular
(“privileged”) reference frame. Thus, the Lagrangian is a
smooth real function L = L(q", qﬁ,X), where X ¢ R*
is the coordinate vector specifying the space-time position,
q* € R"™, and also qﬁ‘ € R"™ for u = 0,...,3. These five
vectors of R™ specify the values that may be taken at X by
the local expression of the field ¢* and its partial derivatives.
This means that, in expression (31) of the action, one makes
the substitution

T =¢"(X),
q, = ¢4 X (33)
(A=1,....,m; p=0,...,3).

Note also that dV, = /—gd*X, with g := det(g,,), is the
invariant four-volume element on the space-time (thus, g < 0
for a Lorentzian metric on the four-dimensional space-time).

Stationarity (30) is equivalent to the Euler-Lagrange
equations (see, e.g., [2, 14]; 8S is defined from a Gateaux
derivative, as with (38)). In general space-time, the latter
equations are written as [9]

o0& 4
ol=— == A=1,...,n), = L4/— 4

in U, with the implicit assignment (33). The domain of
definition W of the coordinate system now has to contain not
only U but also the boundary 0U, because the derivation of
(34) needs to use the divergence theorem.

4.2. The “Canonical” (or “Noether”) T-Tensor. We will give
only a very brief account (see, e.g., [2, 4, 7-9]). This object
has the following expression in a given chart:

) oL
7, (X)=¢,‘;‘,<X)<@) o
q°=¢"(X),q5=¢},(X) (35)

— &L (¢" (X), 9% (X),X).



When —-g = 1and £ = L = L(q%, q;‘) does not depend
explicitly on the space-time position, this object occurs
naturally from the derivation of the Euler-Lagrange equa-
tions (34), which imply that it verifies the desired local con-
servation equation TI]# = 0 [2]. However, such independence

happens in practice only in flat space-time. Moreover, in fact,
this object is not necessarily a tensor—even in flat space-time
(cf. the case of the electromagnetic field [9]), with F being the
field tensor and A the 4-potential, we have [2, 7]

4t = -A, F" + }L (F,oF™) 8. (36)
(Henceforth, indices are raised or lowered with the space-
time metric.) On the RHS, everything, but A, ,, is tensorial;
hence, 7, is not a tensor; that is, 7,” does not transform as a
(1 1) tensor for general coordinate changes. Of course, this
does not mean that there is no energy-momentum tensor for
the electromagnetic field. (The Hilbert tensor indeed does the
job; see, e.g., [2].) But it proves that the “canonical tensor” is
not necessarily a tensor. This is not often noted; for example,
it is not in [2, 7], probably because (36) does behave as a
(1 1) tensor for linear coordinate changes, as are the Lorentz
transformations to which one often restricts oneself in special
relativity. In general space-time, 7 is a tensor for a scalar field
[9] and also for the Dirac field [15].

4.3. Hilberts Variational Definition of the T-Tensor. While
following the line of the classic derivation by Lifshitz and
Landau [2], we will include many mathematical details which
appear necessary in that derivation and that, for the most
part, we did not find in the literature that we consulted.
By this, we do not mean the geometric formulation of the
physical fields as sections of appropriate fibre bundles, which
has been implemented in [7], among others, and rather
extensively in [8]—and which we will not need. (See the
remarks following definition (31) of the action.) Instead, we
mean the precise definition of “the variation of the action
under an infinitesimal diffeomorphism,” the regularity of the
boundary and the exact boundary conditions, and a clear
derivation of the main formulas.

One considers a given chart y : X — X = (x¥) and
one imposes a small change to it: x* — x* + dx". As we
will see, the domain of definition W of y must include the
closure U of the bounded open set U in which one computes
action (31), and we must assume that §x* = 0 at the events
X € W which do not belong to U. (Alternatively, one may
regard the mapping defined in coordinates by x* +— x* + 8x#
as a diffeomorphism of the space-time manifold V, which
coincides with the identity map for X ¢ U.) Thus, 6x* = €&
with & any smooth vector field that vanishes if X ¢ U and
€ < 1. That is, we change the chart y for a new chart y, given

by

Xe(X)=X+e&(X) XeW, X=x(X). (37)

(The vector field X — &(X) = (£#(X)) is the local expression
of & in the chart x.) After such a coordinate change, the local
expressions of the fields change, each according to its specific
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transformation behaviour, and the domain y(U) ¢ R* also
changes, so both the integrand and the integration domain
change in action (31), which thus takes a priori a different
value. One seeks to calculate the first-order term, as € —
0, in the variation of the action, Sy; being considered as a
functional of the field X — 6X = €&(X). This amounts to
calculate the Gateaux derivative of Sy; in the direction of the

vector field &:
(8Sy)(e) (d
— <%SU (e«f))ezo . (38)

The bounded open set U is assumed to be an open domain in
the sense of Proposition A.3 in the Appendix; in particular,
it has a smooth boundary 0U. Because U is an open domain,
the assumption “§(X) = 0 if X ¢ U” means exactly that the
support of  is included in the closure U = UU9U (Corollary
to Proposition A.3).* Since Supp (3,6*) < Supp (&), this
implies that all derivatives of  also vanish if X ¢ U. It follows
that the corresponding change in g*’, as determined to the
first order in € (Eq. (94.2) in [2]),

8g” = e (&P + &%) = 6xM7 + 6x™, (39)
also vanishes if X ¢ U. (Here, g*”’s are the components of
the inverse of the metric’s component matrix (g,,).) Thus, in

particular, 8g*” = 0 on 9U.”

One assumes moreover that the matter Lagrangian L
depends on the matter fields and the metric and their first-
order derivatives, but not on their higher-order deriva-
tives. The same applies then to the “Lagrangian density”
& = L+/—g; that is, the latter is a smooth real function
Z = Z(q4, qﬁ, g, gﬁ”). To calculate action (31), in the

Lagrangian L, values (33) are assigned to q* and qﬁ. In
addition, now one assigns the values g*’(X) and g*” (X) to
9" and g" respectively. At this stage, it is usually admltted

that the change in action (31), 8Sy, is given by

58 =J
Y L an 2"+

0 0L
o(a) )2

(40)

+ 0 é gv’P) d*X,
2(gv)

without a justification nor a precise definition of 8S;;, ¢,
and so forth. (Actually, step (40) and some later intermediate
steps are even skipped by Lifshitz and Landau [2].) However,
recall that here not only the integrand but also the integration
domain changes in action (31), so the first-order variation
of the integral Sy; involves a priori more than just the first-
order approximation of the integrand. Let us be more precise.
Denote provisionally the list of all fields (matter fields and
metric) by gb] (J = 1,...,n+1). Applying definition (31) with
the new chart (37), we write

Se =Sy (&) = J o Z (X, e)d*X, (41)

€
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with Q = x(U),

-1
Fe ::XEOX >

. (42)
Z(X,e) = Z (¢ (X),0,¢] (X)),
where ¢/ : x.(W) — R is the local expression of the field ¢’
in the chart x,. The integral (41) has a form that is well known,
in particular, in continuum mechanics. The expression of its
derivative is also well known:

ds 0Z = 4
—£ = —_— i X, 43
= Lw» [ e +d1v(ff£e)] d (43)

where &.(X) = (9F./0e)(X,), with X, = F.'(X), is the
“velocity field” at “time” e. In particular, we get from (37)
and these definitions that &._, = &. Therefore, applying the
divergence theorem in (43) and since £ = 0 on 0U (hence
& =0 0n 0Q, because 002 = 9(x(U)) = x(9U)), we get

(8). (%),
RS-

J
22 (0800) |
aql{‘ Oe €=0

Hence, defining simply the variations of the fields to the first
order in e,

o (¢l (X)
8¢](X):=e<%> ,
I e=0 (45)
3(3,6! (X)
s(ol) 0= “HLEN)
e=0

and remembering that ¢/’s are the matter fields ¢* for J =
A =1,...,n, while ¢”+1 is the metric field g#”, we see that
(44), together with definition (38), proves the “obvious” (40).
We see then from (43) that (40) is in general false if the
boundary condition & = 0 on 0Q is not valid.

If we write

< 2 (¢l (X)) ) _ lim(pi (X) - ¢! (X) »
e=0

Oe =0 €

and if we remember that ¢/ is the local expression of the field
(/5] in chart (37), which follows the flow of the vector field & at
small values of €, we recognize (at least in the case that ¢/ is a
tensor field) the definition of the Lie derivative [16] or rather
of its opposite. That is,

8¢ (X) = —eLg¢/ (X). (47)

7
We note also that
0(0,4.%) __ (3(¢1(X)
e % < T) ; (48)
hence,
5(¢,)X)=09,(8¢' X)). (49)

In practical terms, 8¢’ (X) can be computed in two steps [2]:
first, one computes the difference ¢£ x - (/)I (X) between
the local expressions in the initial and the modified chart at
points that correspond together through the transition map;
that is, X' = F.(X). Second, one uses a first-order Taylor
expansion to find the difference ¢£ (X) - (/)I (X), that is, at one
and the same point. For instance, this gives indeed expression
(39) for the metric [2]. As another example, consider a vector
field V, with components V¥ in the initial chart. We find
without difficulty

SVH = 8xh V" - VESx" = 8xh VT - VESK”,  (50)

where the second equality occurs due to the symmetry of the
Christoftel symbols (i.e., due to the fact that the Levi-Civita
connection has no torsion). This does coincide with the Lie
derivative definition (47).

In a last step, let us assume that the matter fields obey
the Euler-Lagrange equations (34). Just like for the derivation
of the latter equations from the stationarity of action (31),
because 8((;53) = (8([)“‘),[4 in view of (49), one may transform
the second term in (40) and use the divergence theorem
to make a surface term appear in it; and that surface term
vanishes because 8¢* = 0 on OU (as can be checked for
a vector on (50) and for the contravariant metric tensor on
(39)). It then follows from (34) that the first two terms in (40)
cancel one another; thus®

55, ZJ' ayv 7 + 0Z s gw’p) 4*X,
X | 9g* a(g£V> (51)

e Nar

(69"") 5> one may
transform the second term in (51) and use the divergence
theorem to make a surface term appear in it, and that surface
term vanishes because §g"” = 0 on 0U. One thus gets [2]

woy o
In the same way, because 6(9"” ) =

o0& 0 0Z

= - | = ||sg”d'x. (52)
agf“’ oxP 0 <gyv>
—pP

x(U)

We have thereby proved the following.

Theorem 1. Assume that the bounded subset U of the space-
time is an open domain in the sense of Proposition A.3. In
the domain W > U of some chart y, define a one-parameter
family of new charts by (37), associated with a smooth vector



field & that is defined over W and vanishes for X ¢ U.
Assume that the smooth matter Lagrangian has the form L =

L(g*, qﬁ, g7 ggy). Then,

(i) the first-order variation 8Sy of the action, defined in
(38), is given by (40). In this equation, the variations
8¢/ and 8(¢) (] = 1,...,n+ 1, with ¢"*' = (¢")
are defined by (45) or equivalently by (47) and (49);

(ii) if the matter fields ¢* (A = 1,...,n) obey the Euler-
Lagrange equations (34), then 88y, is given by (52) right
above.

Equation (52) leads one to define an object T (usually
called “Hilbert energy-momentum tensor,” though not in
[2]) by its components [2]:

1 0F 0 0
Py \/—_ng, =S 3o 7 N |
2 ogr oxP \ 5 ( gfj) (53)

S Nar

The symmetry of this object, T,, = T,,, follows from the
symmetry of the metric and the invariance of L under general
coordinate changes.” As shown by Theorem 1, for the object
T whose components are defined by (53), we have “on shell”
for any regular bounded open set U and for any coordinate
change 6x* = e&* such that £&*(X) vanishes for X ¢ U:

1 v
8Sy = > J Tw5g” \-g d*X. (54)
x(0)

If the Lagrangian function L is invariant under general
coordinate changes, then the action Sy in (31) is invariant
too; hence, the change Sy given by (52) or (54) is zero
for any possible coordinate change. Assume, moreover, that
the object T given by (53) turns out to be indeed a tensor.
(This tensorial character does not seem to be proved in the
literature, but see Section 4.5.) Then, using expression (39) of
8g"” in terms of the vector field £ and since by assumption the
latter vanishes on 0U, one gets from (54) [2]

TMV;V =0. (55)

4.4. Is (55) a True Conservation Equation? In contrast with
(18) (TMV = 0, with partial derivatives), (55) (with covariant

derivatives) “does not generally express any conservation
law whatever” [2]. Fock [3] used similar words: he noted
that the four scalar equations contained in (55) “do not by
themselves lead to conservation laws.” To explain it quickly,
the presence of covariant derivatives gives to (55) the form
of (18) plus source terms, which are the terms linear in
the T-tensor itself (that involve the connection coefficients).
Nevertheless, (55) can be rewritten in the form of (18) after
introducing some “pseudotensor of the gravitational field”
t. But the definition of t is not unique. And t behaves as
a tensor only for linear coordinate transformations. As a
result, it is generally agreed that (55) can lead only (under
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special assumptions, e.g., asymptotically flat space-time) to
global conservation laws; see, for example, [2, 17]. However,
in order to be able to investigate the energy balance in
any spatial domain, one would need to know uniquely the
relevant energy density and its flux. And one would need that
they obey a true and local conservation equation. (This is
indeed the case in most fields of physics, e.g., in mechanics,
thermodynamics, electrodynamics, and chemistry, as well as
in Newtonian gravitation—as shown in Section 2—and also
in several alternative relativistic theories of gravitation in flat
space-time, e.g., [18-20], including a preferred-frame scalar
theory with a mechanism for gravity [21].)

What is thus lacking in theories based on (55), which
include general relativity and its numerous variants or
extensions, is not merely an exact local concept of the
gravitational energy. As we recalled, in special relativity, the
local conservation equation (18) for the energy-momentum
tensor can be rewritten as two local conservation equations
of type (17): a scalar one for the energy and a vector one
for the three-momentum. We believe that the local concept
of energy is indissolubly bound with the existence of a true
local conservation equation of type (17), as it exists both in
nonrelativistic physics and in special relativity. Since, as we
recalled, the rewriting of (55) as an exact local conservation
equation having form (18) is neither tensorial nor unique, we
consider that (55) does not provide an exact local concept for
any form of material energy, either: assuming the definition
of the Hilbert tensor T is unique (which is proved in
Section 4.5), one could define the material energy density
as, say, w := T. But another one could prefer to choose
w' = Ty, and a third one w" = TJ. In the absence of an
exact local conservation equation of type (18), nobody can
tell which choice is correct. Another point is of course that,
for a given bounded spatial domain €, the time evolution of,
say, the integral of w := T* (the LHS of (23)) is not equal to
a flux through the boundary dQ) but is also affected by source
terms depending on the gravitational field, for which there is
no unique definition of the energy-momentum tensor.

However, according to Padmanabhan [22], there exists a
suitable definition for what we will call an energy current four-
vector & of the gravitational field, such that the total energy
current &P == & + P is conserved:

bo_ @b pH o
95”4 = ?m + P;y =0, (56)

where the four-vector field P, with components
Pt = 4T 0, (57)

is the matter energy current associated with the matter
distribution, for the observer(s) having the four-velocity field
v. (The plus sign is with the (+——-) signature that we use. This
four-vector P should not be confused with the three-vector P
in (22),. Similarly, the four-vector v should not be confused
with the three-vector v of Sections 2 and 3. The gravitational
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current & of [22] also depends on v.) Since, in coordinates
adapted to the reference fluid defined by v, we have [12, 23]

W = !
\/900) (58)

v =0,

we note that, in any such adapted coordinates,
T,
VY00

In particular, in the Minkowski space-time and taking for v
the four-velocity field of some inertial reference frame, the
gravitational current & vanishes; hence, conservation (56) of
the (matter) current is exactly the same equation as the local
energy conservation (19) with definitions (20), whence our
use of the expression “matter energy current” to designate the
four-vector field (57). Thus, according to the result [22], the
situation regarding the energy and momentum conservation
would be nearly the same in GR as it is in the ether
theory [21]; namely, (i) there is a (scalar) local conservation
equation of type (17) for the total (material plus gravitational)
energy; (ii) the energy density and its flux involved in that
conservation equation depend on the reference frame;® (iii)
there is no equivalent local conservation equation for the
spatial momentum (by this we mean a (frame-dependent)
space vector equation, thus three scalar equations, as (21)).
Anyway, as discussed in [21], the conservation of the total
momentum, when it takes place, precludes conservation of
the momentum of matter.

Pt =

(59)

4.5. Uniqueness and Tensoriality of the Hilbert Tensor. In
addition to the difficulty described in the foregoing subsec-
tion, which did not seem solvable in the framework of the said
theories (but may be solved by the work [22]), there is a point
that needs clarification. In curved space-time, the Hilbert
tensor field T is taken as the source of the gravitational field—
in general relativity and in many other relativistic theories
of gravity. Clearly, that source has to be locally defined: it is
not the global value (the space integral) of T that matters to
determine the gravitational field, but indeed the distribution
of its local value. However, could not the Hilbert tensor be
subject to “relocalizations” due to the fact that the Lagrangian
determining the equations of motion is not unique?

Let us add to the Lagrangian L a total divergence: L —
L' = L+ D with

D=divV = %ap (VP\=9), (60)

where V¥# = V¥(q?, q;\, g, g"”) is a space-time vector field.
= =p

(Of course, the partial derivatives in (60) apply once the
relevant fields have been substituted for the arguments of V#;
see before (40).) Then, the Euler-Lagrange equations (34) stay
unchanged; see, for example, [14]. Note that, of course, the
modified Lagrangian L' is also an invariant scalar if L is. But, a
priori, should not the T-tensor generally change? This would

indirectly contradict a statement of Forger and Romer [8],
according to which the energy-momentum tensor field “ T
is the rank 2 tensor field on space-time M depending on the
fields of the theory which satisfies

8 I &'X |detg|L=-1J d"X|detg|T*5g,,  (61)
9 Jx 2 Jx ¥

for every compact subset K of M and for every variation &g,
of the metric tensor with support contained in K.” (Here, n
is the dimension of the space-time; thus, n = 4 as far as we
know. For us, K is the compact closure of the bounded open
domain U, K := U = U U 9U; see Note 4.) Indeed, from this
statement, one easily concludes that a total divergence does
not change T*” (see [8], and see a detailed proof here around
(75)). However, we have the following:

(a) Itis not precised what is meant exactly by a “variation
89, of the metric tensor” and what is meant exactly
by &, (applied to the action integral) in the statement
reproduced above, included in Theorem 4.2 of [8]. In
the arguments (pp. 360-361) which lead the authors to
state that theorem, the same situation is considered
as in Section 4.3. That is, the variation of the metric
occurs due to an infinitesimal coordinate change (or
equivalently due to an infinitesimal diffeomorphism),
generated by a vector field & (noted as X in [8]), with
support contained in K. (The variation of the metric is
thus appropriately noted as §x g,,, in these arguments,
and the variation of the action is noted as §xSk.) It is
in this precise situation that one can at the same time
derive the basic equation (52) and state that actually
8Sy = 0—which is needed to derive the “covariant
conservation” (55).

(b) In that situation (i.e., the variation of the metric
resulting thus from a coordinate change), (61) is
equivalent to (54). However, we do not see how
it could be the case that the validity of (54) “for
every (regular) compact subset K of M and for every
variation &g, of the metric tensor with support
contained in K” would characterize (determine) some
field object having components T),,. Indeed, since
the action is invariant under coordinate changes, it
follows that the LHS of (54) is automatically zero (for
every (regular) compact subset K, etc.). Hence, for
example, T, = 0 is a solution of (54) (for every
(regular) compact subset K, etc.) as well as is (53).

(c) In that same situation, the following argument in [8]
does not work. According to this argument, “T does
not change when L is modified by the addition of a
total divergence (- - - ), simply because the addition of
such a term does not affect the LHS of (61).” The last
statement is true, but since in that situation the LHS
of (61) is always zero, it can not prove that T does not
change.

(d) Therefore, it seems that, instead of the foregoing
situation, the “variation dg,,, of the metric tensor”
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alluded to in Theorem 4.2 of [8] is a variation of the
metric itself (thus even in a fixed coordinate system):

Gy X) = g (X) + eh™ (X), (62)

where the field h, with components h*", is a given field of
symmetric (2 0) tensors defined on U. (The matter fields
are thus left unchanged.) However, if that is indeed the case,
then (61) has a different meaning than (54): for example,
the variation 8g*” of the metric now depends on the ten
independent parameters h*” (0 < p < v < 3) instead of
merely the four parameters & (u = 0,...,3) as is the case
in the arguments which lead to the statement of Theorem
4.2 in [8], as well as in Section 4.3. Thus, the validity of (61)
in that different situation has to be proved separately. This
proof takes points (i) and (ii) of the following theorem, whose
conclusive part is its point (iii).

Theorem 2. Let L = L(q*%, qﬁ, g QZV) be a Lagrangian that
is defined and smooth whenever the determinant of the matrix
(g"") is negative and that is invariant under general coordinate
changes. Let U be a bounded open domain of the space-time
manifold V and let K = U = U U U be its compact closure.
Let E be the vector space of the symmetric (2 0) tensor fields g
which are defined and continuous on K and which are €' on
U. Let E* be the subset of E made of the tensor fields g € E such
that, for any chart y defined in a neighborhood of K (assuming
there do exist such charts), one has g~' = detG < 0 over the
domain y(K), where G is the component matrix G = (g""). The
matter fields ¢* (A = 1,...,n), being given functions which
are defined and continuous on K and which are €' on U, define
an invariant functional S on E* by

S(g)
= | 26" ®0.41.00.0” 0,95 0) d'X, (@)

Q:=yx(U), &=+/-gL.

(i) Given any two tensor fields g € E* and h € E, there is a
number a = a(g,h) > 0 such that, for € €] — a, +al, the tensor
field g + eh is in E*. One has

d
AgyS = (aS(g+eh)>

e=0
0Z 0Z (64
=j _H 4 W d'x,
Q ag,u a<g;w>
where the subscript g means that, at any X € Q, one

considers the derivatives of the function £ for the values g” =
g’'X), g = g‘:;'(X) of its arguments.
_p %)

(i) Ifg € B, h € E, and h(X) = 0 when X € 0U, then one
has, in any chart y whose domain contains K,

1 v
DS =7 | Tl g d'x (65)
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where T,,,s are defined in (53), the derivatives being taken as
in the subscript notation g above.

(iii) Equation (65) determines uniquely the continuous func-
tions X TW(X), x(K) — R. It follows that the “Hilbert
tensor” with components (53) is not modified by the addition
of a four-divergence. Moreover, this is indeed a (0 2) tensor
field.

Proof. As a preliminary, recall that if the matrix G = (g"")
of some (2 0) tensor field g in one chart y verifies g~' =
det G < 0 over y(K), then the corresponding matrix G’ in any
other chart y' in the atlas of V, whose domain also contains
K, verifies g'_l = detG' < 0 over X'(K): indeed, the Jacobian
matrix J = (0x'*/dx”) is invertible for these two compatible
charts, and we have g'' = g '(det])’. Also remember
that the invariance of functional (63) under the change of
the chart follows from the definition of a Lagrangian that is
invariant under general coordinate changes (32) and from the
invariance of the four-volume measure dV, := /=gd*X.

(i) Let g € E* and h € E; thus, in particular, these are two
continuous functions defined over the compact set K. The real
function M — ¢(M) = det M is defined and &' is over the
vector space M(4, R) of the real 4 x4 matrices. Choose a chart
X defined in a neighborhood of K. For X € x(K), we note
G(X), the matrix (g"”(X)). Let us note also H(X) = (h*"(X)).
Since g € E*, we have ¢(G(X)) < 0forX € x(K). Because ¢oG
is a continuous function over the compact x(K), it is bounded
and reaches its bounds. Hence, for some number d < 0, we
have ¢(G(X)) < dfor X € x(K). The set of matricesC = {M =
G(X) +eH(X); X € x(K) and e| < 1} is compact; hence, we
have sup{[|¢'(M)|l; M € C} = A < oo. Also, sup{| H(X)|; X €
x(K)} = B < oo. Therefore, we have for any X € x(K) and
anye €] - 1,1[

¢ (G (X) +€eH (X)) - ¢ (G (X)| < Alel [H (X
< |e| AB.

Hence, there is a number a > 0 such that, for € €] —a, +al, we
have ¢(G(X) + eH(X)) < d/2 < 0 for any X € x(K). Thus, for
€ €] — a, +a[, we have g + eh € E*, as announced. Since that
statement does not depend on the chart, the numbera > 0
does not depend on the chart either; thus, a = a(g, h) > 0.
Denoting henceforth g, = g + €h for brevity, we define

a @' function f from Qx] — a, +a[ into R by setting

fXe)

(67)
= 2 (¢ (X), %, (X), gloyy (X0, 3, 9000) (X))
Using definition (62), we have
0 (gé?;l) (X)) — (X)
Oe ’
(%t X) _ 3 ( , (68)
= hf:f (X).
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Therefore, we get

of X.e) = 0Z 2 (gl X))
de 7\ agw Oe
= Y(eh)
o 2 (3,9l X))
a <g‘m/> a€
=P G(en)
(69)
- < aafi ) 1 (X)
g Y(eh)
) ).

From definitions (63) and (67), we have S(g.y)) = IQ (X
€) d*X; hence,

Y(eh)

d [ of 4
25 (8 = L 2 X0 d'x. (70)

Since at € = 0 we have g(,) = g, (64) follows from (69) and
(70).

(ii) The second term in the integrand on the RHS of (64)
can be written as

0%

W (%)
2(g)
_ % 0L ) o (x) 71)
w
2(a) )
o2 2%

0xP ( ” ) ’
ol g#

The first term on the RHS of (71) is a divergence in R* and its
integral on Q vanishes if #*”(X) = 0 (4, v = 0,...,3) on 9Q,
thus if h(X) = 0 on 0U. (Remember that 0 = d(x(U)) =
x(0U).) Hence, in that case, (64) is rewritten as

Aghs = J aﬁ — i ai W d*X. 72)
o|og" oxP 5 ( W)

= 9

In view of (53), this is (65).

(iii) Consider a given tensor field g € E* and, in a given
chart y whose domain contains K, let X TW(X) and X —
TW(X) be two sets of functions (¢,v = 0,...,3) defined and
continuous over y(K), each set being symmetric, such that
both verify (65) for any tensor field h € E that vanishes on 0U.

1

(We do not assume that either T/w or TW is given by (53).) We

claim that T, = TW over y(K). Denoting 6T, = TW -T,,
we thus have for any such tensor field h

|, T yga'x o 73)

Consider a given pair (g, 7,) of indices. Let ¢ be any real
function which is defined and continuous over y(K), which
is @' over Q, and that has compact support K' ¢ Q. Hence,
@(X) # 0 implies X € Q. If X € 0Q, we have X ¢ Q
since Q) is open; hence, ¢(X) = 0. Therefore, by setting W =
(1/ 2)(6}’:0 8:,’0 + 850 8;0)(;) in the chart y, we define a tensor field
h € E such that h(X) = 0 for X € 0U. We can thus apply (73)
to get

4
JQ (6TI401’0 + (STVO.MU) \/__ggo d’X
(74)

= JQ (28T#01’o H) ¢ d4X =0.

(The second equality follows from the symmetry of T, and

T w-) Since this is true for any such function ¢, we deduce that
0T, ,, /=g is zero almost everywhere in Q. But since thisis a
continuous function, it is zero everywhere in the open set Q €
R*, and therefore it is zero also in its closure W = X(ﬁ) =
X(K). Then, since /=g # 0 over x(K), we have 6T, , = 0over
x(K). This proves our precise statement about uniqueness at
the beginning of this paragraph.

Now suppose the Lagrangian is a four-divergence: L =
(V=gV*),)/v=g with V¥ = V¥(q*.qf, g, g""). Then,

integral (63) is rewritten as

S(g+eh) = LQ U (¢ (X), ¢ (), gl (%), o

(deny), X)) dS, (%)

(setting U* := /=gV* and with g,) = g+ ehand dS, =
€uvpoedX” A dx? A dx”) when this integral makes sense, which
is true if g € E*, h € E, and |e| < a = a(g, h). If, moreover,
h(X) = 0 on 0U, we have g, (X) = g(X) for any X € dU, so
that integral (75) does not depend on € €] — a, a[. Therefore,
the LHS of (65) is zero. Since we have shown that this equation
determines uniquely the functions X T,,(X), x(K) = R,
these functions are zero.

Let us finally prove the actual tensoriality of the “Hilbert
tensor,” whose components are defined by (53). Considering
now any two charts y and x' whose domain contains K, (65)
is true for any tensor field h € E that vanishes on 0U, using
either y or y' on the RHS (with primes for y'). Since the LHS
of (65) is invariant as is the action, so is the RHS; that is, we
have for any such h

L T, g d'X = L, T g d'x.  (76)
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Composing with the reverse coordinate maps y ' and y'~',

we may regard T,,,, h*”, T!'W, h'™ as functions defined over
K = y ' (x(K) = ¥ (x'(K)), and we have for any such h

I T, W dv, :J T/ i v, 77)
U U

For any given tensor field hy, € E, set f = Tw,hgv and

f = T!'whgw, which are thus two continuous functions on
K. Consider any open domain W with W ¢ U. Take any
function ¢ which is defined and continuous over K, which
is €' over U, and that has compact support K' ¢ W. Define
h = ¢h,. This is a tensor field that belongs to E and vanishes
on OW. Therefore, with the open domain U being arbitrary in
the already proved point (ii) and hence in (77), we can apply
(77) with W instead of U. We thus get

| spavi=| r'sav. 78)

Because this is true for any such function ¢, it follows that
we have f = f' almost everywhere in W. Since these are
continuous functions, we have f = f’ in W. And since this
is true for any open domain W with W ¢ U, we have f = f’
in U and hence also in K = U. That is, Twhg" is invariant
under coordinate changes, for whatever tensor field h, € E.
Considering a given point X € K, we define a linear form @
on the vector space 7, of the (2 0) tensors at X, by setting

®(h) =T, (X)h", VheTs, (79)

which is thus independent of the chart. But the dual space of
T ¢ is known (and easily checked) to be the vector space 779
of the (0 2) tensors S at X. Hence, there is a unique tensor
S € 7 for which, in any chart, we have

@ (h) =S,,h", VheTy. (80)

From (79) and (80), it follows that, in any chart, the numbers
T,,(X) are the components of the unique tensor § € - 5. O

5. A Uniqueness Result for the Energy Balance

5.1 Is the Energy Balance Equation Unique? We begin with
a discussion of this question for a system of isentropically
deformable media in Newtonian gravity (NG). The energy
balance (11) established in Section 2 for the matter field
equations of NG has the form

ou

0, V¥ = field source == —p—, 81
’ ur P3, (81)
with the four-component column vector (V¥) being here the
“matter current” made with the matter energy density and

flux:
(V) = (W, @,,,) - (82)

As we saw, (81) (i.e., (11)) is verified as soon as the fol-
lowing three equations are verified among the matter field
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equations: Newton’s second law (1), the isentropy equation
(5), and the continuity equation (9). For instance, we did not
use the “constitutive equation” that relates the stress tensor
to some deformation tensor or (for a barotropic fluid) that
relates the pressure with the density. We note that, in view
of (12) and (13), the matter current (V¥) is polynomial in the
local values of the fields (/)A (A=1,...,n = (pv,IL,o,U)
that appear in those equations (thus, assigning in this section—
contrary to Section 4—a different number A to different
components of a given vector or tensor field: n = 12 here;
the gravitational potential U plays the same role as does the
metric tensor in a Lagrangian for the matter fields in curved
space-time, as was the case in the foregoing section). Now we
ask if we can find a different expression for the matter current,
say V'¥, for which the LHS of (81) would be always the same
as with current (82), so that the same balance equation (81)
would be valid with V¥, when it is with V¥, Thus, can we
change the matter current V* for another one V'¥ = V¥ + W¥,
also polynomial with respect to the local values of the fields
at any space-time point X, g* = ¢*(X), so that the LHS of
(81) would be unchanged for whatever values of the fields?
That is, can we find a column four-vector W¥ which would
be polynomial in g*’s, such that we would have 9WH=0?

5.2. A Uniqueness Result. Thus, let W¥ be an order-N
polynomial in the field values g% = ¢*(X), its coefficients
being allowed to depend on the space-time position X:

wH (X,qA) =Cl (X)+C’1‘A(X)qA+--~

+CK

NA,~Ay (X) qu "'qAN (83)

(A < <Ay).

Assume that its 4-divergence vanishes identically, 9, W* = 0:

=CH H A AL
O_CO’”+C1A’”q +C1Aqﬂ+
“ Ay Ay
+ CNAy--AN,Mq ...q

4
CH Ar A, An (8 )
+ NA1'“AN(qH q - ...qg "t

+q™t ...qAN’lq:‘N) (Qﬁ = ¢A,H (X))'

That is, at any space-time point X,(x”), (84) is valid for
whatever possible values g* and qﬁ‘ of the fields and their
derivatives at X,. But, for whatever values g** and qﬁ of these
variables, there exist smooth functions X + </>A(X) (A =

1,...,n), defined in some neighborhood U of X, such that
we have

(pA(XO):qA (A=1’~-~’n))
(85)

a A
X (xX)=q" (A=1,..

rf o u=0,...,3).

Thus, our assumption means that on the RHS of (84) the
polynomial function in the real variables ¢* and qlf (A =
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I,...,m p = 0,...,3) is identically zero. Hence, its coeffi-
cients are all zero. In particular,

Cla(Xo) =0,..,C 4 a, (Xo) =0 (86)

Thus, all coefficients in (83) are zero—except perhaps Cf;, with
Cg)ﬂ =0

We thus got that we cannot alter the analytical expression
of w,, and ®,, on the LHS of the matter energy balance (11)
(apart from arbitrarily adding a zero-divergence vector field
C{) that is independent of the matter fields—this is indeed
obviously possible, but we can get rid of this by asking that
the matter current (V¥#) be polynomial in the fields and
have no zero-order term, as is indeed the case in all concrete
examples). The gravitational energy balance (14) has just the
same form:

oUu
0,V = matter source = p—, 87
“ Pot (87)

where V¥ = (w,, ®,) is polynomial in the gravitational field

(/SA (A=1,...,4) = (a#U). It is valid when the gravitational
field equation is. Therefore, similarly, as we found for the
matter field energy balance, we cannot alter the analytical
expression (14) of the gravitational energy balance.

5.3. Generalization. These results are clearly general. Con-
sider, for example, the Maxwell electromagnetic field instead
of the Newtonian gravitational field. The energy balance of
the e.m. field is

alg% +div®,, = —j-E, (88)

with w,,, == (E* + B*)/87 the volume energy density of the
electromagnetic field and ® ., = (E A B)/4m the electro-
magnetic energy flux. The same uniqueness result says that we
cannot find an alternative expression for w,,, and ®,,,, on the
LHS, which would be valid for whatever values of the fields E
and B and their first derivatives.

6. Conclusion

The classical concept of energy emerges from an analysis of
the power done, first in the case of a mass point and then
for the case of a volume element in a continuous medium.
We have argued that, in the case of a continuous medium or
a system of fields, the meaning of the energy conservation
is primarily local: it says that, in any bounded domain, the
energy loss or gain is due only to a well-identified flux that
goes through the boundary of that domain. Thus, it expresses
in a general way the Lavoisier principle: “Nothing is lost,
nothing is created, everything transforms.” While it is of
course interesting also and even often important to have
global energy conservation laws, this interest is limited by
two facts: (i) an exact global conservation law can be hoped,
strictly speaking, only for the Universe as a whole, because
there are energy exchanges at all scales—but physics can not
be reduced to cosmology. (ii) A global energy conservation
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law says merely that one number is a constant: the total
energy; in the most favorable case with global conservation
of the energy, the momentum, and the angular momentum,
ten numbers are constant. In the relevant case of a system
of fields, however, there are an infinite number of degrees
of freedom, so this is only a small part of the information
needed.

We have tried to precisely state and prove the main results
regarding the derivation of the Hilbert tensor from the invari-
ance of the action in generally covariant theories. We hope
to have proved these results in a convincing way, keeping
the mathematical sophistication to the minimum needed.
The Hilbert tensor theory is beautiful and is essential to
general relativity. It is important also in relativistic quantum
mechanics. One should note, however, that historically the
main examples of the energy-momentum tensor have been
derived from the corresponding local conservation equations
for energy and momentum [24], whence the interest in
examining the uniqueness of the latter kind of equations.

Appendix
Regular Domains

Definition A.I (see [25]). Let M be a differentiable manifold,
with dimension d. One will call closed domain of M any
closed subset D of M such that, for any x € D, either (i) there
is an open subset W of M such that x € W ¢ D or (ii) there
is a chart (W, @) with ¢(x) = 0 and @(y) = (y',..., ") for
y € W, such that

wnD={yew; y' <o},
(A)
ie, p(WnD)={yeqp(W); y' <o}.

Proposition A.2 (see [25]). Let D be a closed domain of a d-
dimensional differentiable manifold M. In case (i), the point x is

in D, the interior of D (i.e., the largest open set U of M, such that
U ¢ D). In case (ii), the point x is in 0D, the boundary of D,
which is a (d—1)-dimensional submanifold of the differentiable
manifold M.

Recall that the (topological) boundary of any subset A

of M is defined to be 9A = A N (A, where the overbar
means the adherence (or closure) in M and (A means the
complementary set of A in M. It is easy to prove (cf. [26])
that we have always

ANOA =0, (A2)

AUOA = A. (A.3)

If M is an oriented manifold, then the Stokes theorem (and
thus also the divergence theorem) applies to any differential
(d — 1)-form (resp., to any continuously differentiable vector
field), in any closed domain D of M with its boundary 0D
[25].
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Proposition A.3. Let D be a closed domain (see Defini-
tion A.1) of a d-dimensional differentiable manifold M and let

U := D be its interior. One has

U = D; (A.4)

that is, a closed domain is the closure of its interior. We thus call
U = D an open domain of M. Moreover, one has

(D =(U. (A.5)

Proof. Since Disa closed setsuch that U ¢ D, we have UcD.
Due to (A.3), in order to prove that D ¢ U, we just have to
prove that 9D ¢ U. If x € 0D, we may apply to it case (ii) of
Definition A.1. Let A be any open neighborhood of x. We will
show that it intersects both U and (D; to show this, we may
assume that A ¢ W, with W being the domain of the chart
¢. Thus, ¢(A) is an open neighborhood of ¢(x) = 0 in R%
hence, it contains a ball ijl <r(j=1,...,d). (a) Take first
¥o = (3') such that —r < y' < 0and y/ = 0 for j = 2,...,d;
then y, € ¢(A) c (W). But we get from (A.1) that any point
y € (W) such that y* < 0 is in the interior of p(D N W).
Thus, y, € ¢(A) is in the interior of (D N'W), or equivalently
Yo = ¢ '(y,) € Aisin the interior of D N'W, hence in U = D.
So, dD ¢ U; hence, (A.4) is proved. (b) On the other hand,
take now y, = (/) such that 0 < y' < rand y/ = 0 for j =
2,...,d:alsoy; € p(A) C (W), but we get from (A.1) that
y, = ¢ (y;) € Aisin (D. Thus, we have also 9D c (D,
whence (D U 0D = (D. But, from (A.2) and (A.3), we have
DN (oD = U, or ((D) U 0D = (U. Therefore,

CU=CU=CDuaD = (D, (A.6)

which proves (A.5). O

Corollary A.4. Let U be an open domain of M and let f be a

continuous real function defined in a neighborhood of D = U.
In order that Supp f < D, it is necessary and sufficient that
fx)=0ifx ¢ U.

Proof. The support of f, Supp f, is defined to be the smallest
closed set containing the set of the points x such that f(x) #
0, or equivalently (| Supp f is the largest open set Q) such that
fIQ = 0. Therefore, with (D being an open set,

(Supp f ¢ D) & (fiop =0).

Since f is continuous, fiop, = 0is equivalent to fz5 = 0—that
is, from (A.5), to fioy = 0.

(A7)
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Endnotes

1. Of course, VU is the spatial vector having components
(VU) = U; (i = 1,2,3) in any Cartesian coordinate
system (“Cartesian components”), that is, in any coor-
dinate system for which we have the identity h; = §;,

where h is the (Euclidean) spatial metric. Also, dive is

the spatial vector with Cartesian components (div o)’ =

aij,j. And grad v is the mixed spatial tensor having

Cartesian components (grad v)! i = vi,j. Mixed tensors
are identified with linear mappings: (grad v)(w) is the
spatial vector having components (grad v)’ jwj , which is
the same vector independently of the coordinate system.
We use the spatial metric h to raise or lower the indices;
for example, v; = h;;»’. The equations in this section
are valid in any spatial coordinates, whether Cartesian
or curvilinear.

2. o(v)isthe vector transformed of v by the linear mapping
associated with the mixed tensor form of o; thus,
[c(V)] = a’jvf =0"v,.And o : D := ¢’ D/, is the scalar
product of mixed tensors, defined by double contraction.

3. If </>A is a section of a vector bundle with base V, say E, to
write its local expression needs that not only a chart on V
but also a frame field (e,) on E is given. However, in the
case of a tensor field, a relevant frame field is determined
uniquely by the data of the chart y with the associated
natural basis (aﬂ) and the dual basis (dx*). In a very
general case, E has the form E = T ® N with T being an
usual tensor bundle on V and N being a vector bundle
of a different kind. Then, it is natural to take a frame
field of the form (T}, ® N,), with (T},) being a frame field
on T, determined by the chart y, and with (N,) being a
frame field on N, which is left unchanged when changing
the chart. Thus, the transformation law on changing the
chart is determined.

4. Considering “every compact subset K of V” [8] is
too general, because one needs to use the divergence
theorem on K to eliminate a surface term, as is done
below to get (44) and (52) and as is done for the equation
after Eq. (222) in [8]. One should assume that the
compact set is a “closed domain.” A closed domain D

is the closure of its interior D (Proposition A.3); hence,
it is equivalent to start from a bounded open domain U
and to define K = U, which is a compact domain, or

to start from K and to define U = K. Then, of course,
the smooth boundary 0U has measure zero with respect
to the invariant four-dimensional measure /~gd*X.
Hence, the action integral (31), as well as its variation
(52) or (54), is unaltered if instead of U we consider its
closure K as the integration domain, as considered in [8].
Thus, when the compact K considered in [8] is a closed
domain, as it should be imposed, the definition of the
action Sy and the condition imposed on the vector field
X in [8] are equivalent to those considered here for Sy
and &,
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5. In [2], it is “set 8g*" = O at the integration limits”
and, later on, it is stated that “&* vanish at the limits
of the integration,” without any explanation or any link
between the two statements. Note that assuming merely
that & = 0 on the boundary 0U does not imply that
89" = 0ondU.

6. Allsixteen g"’s (0 < u < 3, 0 < » < 3) are considered
as independent variables in Z for the calculation of
0Z/0g"", even though g = g™: see Note % on p. 269 in
[2]. Thus, all sixty-four gﬁ”’s 0<pu<3,0<v<3,0<

p < 3) are also considered as independent variables for
the calculation of 0.% /ag?.

7. Recalling Note 6, the symmetry of the metric does not
by itself imply the symmetry of components (53): check,
for example, L = (g'%)?, which of course is not invariant.

8. Actually, in the theory [21], the energy density and its
flux have been defined only in the preferred reference
frame assumed by the theory.
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