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Abstract: An alternative, scalar theory of gravitation has
been proposed, based on a mechanism/interpretation of
gravity as being a pressure force: Archimedes’ thrust. In
it, the gravitational field affects the physical standards of
space and time, but motion is governed by an extension
of the relativistic form of Newton’s second law. This im-
plies Einstein’s geodesic motion for free particles only in
a constant gravitational field. In this work, equations gov-
erning the dynamics of a continuous medium subjected
to gravitational and non-gravitational forces are derived.
Then, the case where the non-gravitational force is the
Lorentz force is investigated. The gravitational modifica-
tion of Maxwell’s equations is obtained under the require-
ment that a charged continuous medium, subjected to the
Lorentz force, obeys the equation derived for continuum
dynamics under external forces. These Maxwell equations
are shown to be consistent with the dynamics of a “free"
photon, and thus with the geometrical optics of this the-
ory. However, these equations do not imply local charge
conservation, except for a constant gravitational field.

Keywords: Alternative theories of gravitation; preferred
reference frame; curved spacetime; Maxwell equations;
charge conservation
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1 Introduction

1.1 General motivation

Since Einstein, most physicists admit that physics defi-
nitely obeys the principle of relativity. Poincaré, although
he formulated the principle in its full generality [1], and
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although he explored many of its consequences in great
detail [2, 3], considered its validity as a possibility which
has to be tested by experiments. Lorentz and Poincaré al-
ways reserved the opposite possibility: that some physi-
cal phenomenon might contradict the principle of rela-
tivity. (Kaufmann’s experiment indeed seemed to exhibit
such phenomenon.) This was the physical justification for
their attitude regarding the ether — an attitude which had
also philosophical reasons. Following Builder [4, 5] and
Jánossy [6], the “Lorentz-Poincaré" ether interpretation
of special relativity (SR) has been thoroughly discussed
and has been proved to be entirely consistent; see e.g.
Prokhovnik [7] and references therein. Since Lorentz in-
variance is true in the Lorentz-Poincaré ether interpreta-
tion, it is empirically indistinguishable from standard SR
[8], except for the following fact. In contrast with the case
in standard SR, the limit velocity c has not an “absolute"
status in this interpretation. This is because, in it, the
Poincaré-Einstein conventional simultaneity is regarded
as “true" only in one reference frame (the “ether"). That is,
a preferred simultaneity exists in this interpretation: the
Poincaré-Einstein simultaneity in the ether frame. There-
fore, according to this interpretation, a signal velocity v >
c would not violate causality ([9], Note 6). Apart from this
fact, that ether cannot be detected. So the role played by
the ether in that interpretation may be qualified as “meta-
physical".

But SR does not describe gravitation. An alternative
theory of gravitation has been proposed, that offers a
mechanism/interpretation allowing to understand gravity
as being a pressure force: Archimedes’ thrust [9, 10]. ¹ It is
thus a scalar theory but an original one (see below), and it
is a preferred-frame theory. I.e., it violates the local Lorentz
invariance because its ether has physical effects, but it is
“relativistic" in the sense of Will [12]: “in the limit as grav-
ity is ‘turned off’, the nongravitational laws of physics re-
duce to the laws of special relativity". Thus, the Lorentz-
symmetry violations are in the gravitational sector, andare

1 A new version (hereafter v2) of that theory has been built in Refs.
[9, 11]. Unless mentioned otherwise, what is discussed in this paper
applies to v1 and v2.
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therefore very small (see below). Note that extensions of
general relativity (GR) that break Lorentz invariance have
been proposed, e.g. [13]. Note also that, according to this
theory, as in the Lorentz-Poincaré version of SR and for
just the same reason given above, a signal velocity v > c
would not violate causality. Thus that theory could sur-
vive, in contrast to general relativity, if signal velocities
v > c were observed — but v > c in the ether frame is for-
bidden for an usual mass particle, i.e. one having m0 real
(and positive); see Eq. (5). As exposed in Sect. 2.1 of Ref.
[14], other motivations for this theory come: (A) from the
wish to concile quantum physics with the theory of gravi-
tation, and (B) from some difficulties in GR itself (despite
its impressing successes): (i) The unavoidable singulari-
ties. (ii) The necessity to regard diffeomorphic Lorentzian
spacetimes (V, 𝛾) and (V′, 𝛾 ′) as equivalent, which is han-
dled by adding a gauge condition (four scalar “coordinate
conditions") to the Einstein equations [15]. (iii) The need
for darkmatter and dark energy. Regarding (A): it has been
found recently that the curved-spacetime Dirac energy op-
erator has a non-uniqueness problem, and that amost sat-
isfying solution of it can be implemented if and only if
the spacetime metric has the form postulated in v2 of the
present theory, Eqs. (2) and (26) [16]. Note that this form
distinguishes a preferred reference frame. Regarding (B):
for Point (i) the present theory predicts a “bounce" instead
of a singularity for both the gravitational collapse of a dust
sphere [10] and also around the past high-density state of
the universe implied by the cosmological expansion [14].
(ii) In the present scalar theory, the spacetime manifold is
given and there is no need for a gauge condition. (iii) For
the darkmatter problem, we have a plausibility argument:
the preferred-frame effects should have a greater effect at
large scales, because the large orbital times allow these ef-
fects to accumulate. As to the dark energy problem: the
theory necessarily predicts an acceleration of the cosmic
expansion [14].

1.2 Brief summary of the theory

(See Sect. 2 of Ref. [17] for an extended summary, and see
Sect. 2 below for a self-consistent exposition of what is
needed here.) This is a scalar theory written in a preferred
reference frame. The scalar field β has two roles: (i) It de-
termines the relation between the “physical" spacetime
metric (that which is more directly related with measure-
ments by physical clocks and rods) and a “background"
Minkowski metric, of which the spacetime manifold V is
assumed to be endowed [9]. (ii) It generates a gravity accel-
eration, Eq. (12) below [18]. Indeed, dynamics is governed

by a generalization of Newton’s second law to curved space-
time. That new dynamics implies geodesic motion for free
test particles only in a static gravitational field [18]. The
equation for the scalar field is extremely simple: for v2, it
is

�ψ = (4πG/c2)σ, (1)

with ψ ≡ −Log β,� the flat-spacetime wave operator, and
σ ≡ T00, the energy component of the energy-momentum
tensor [11]. This equation is valid in coordinates adapted
to the preferred reference frame, and with x0 = cT where
X ↦→ T is a preferred time map on the spacetime manifold
V. The equation for the scalar field will not be used in the
present work, however. As to the assumption relating the
physical and background metric, it will be used merely in
Subsect. 3.2 and in Sect. 6 — for which the same conclu-
sions would be drawn with the different assumption that
was set in v1. Therefore, in this paper, it is essentially only
the original dynamics of the theory that is relevant.

1.3 Current state of the experimental check

Note first that already its original dynamics (detailed in
Sects. 2 and 3) implies that this theory is different from
all known scalar theories. ² Much work has been done
to test the v1 version of this theory. (See a detailed sum-
mary as Sect. 4 in Ref. [21].) The experimental tests of GR,
the currently accepted theory of gravitation, are mostly in
a weak gravitational field. The so-called “parameterized
PN formalism" (see Will [12] and references therein) does
not apply to the present theory for the following reason:
geodesic motion being valid only in the static case, this
is not a “metric theory" [22]. Since the tests of GR involve
very accurate experiments [12], there is a need for a very
clean post-Newtonian (PN) approximation scheme. We
have developed an asymptotic scheme of post-Newtonian
approximation, in accordance with the general principles
of asymptotic analysis [23]. Using this scheme, one shows
first that v1 has the correct Newtonian limit [23] (and v2
also [11]). At the second approximation (1PN), one has to
take into account themotion of themass center of the grav-
itating system, assumed isolated— the solar system, say—
with respect to the ether frame. Thatmotionmay, formany
purposes, be envisagedas auniform translation, the veloc-
ity vector V of which is not a priori known. Its magnitude
may yet be estimated to be at most of the order 300 km/s

2 This includes that of Ref. [19], even though, just like in the latter
scalar theory, themetric assumed in the v2 version of the present the-
ory is the same as Ni’s metric [20] — as noted in Ref. [17].
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from various astronomical arguments, if the ether frame is
assumed to coincide with the average rest frame of mat-
ter. It has been proved [22] that the uniform velocity V has
no effect on the motion of photons, at the 1PN approxi-
mation which is used to confront GR with the experimen-
tal observations of gravitational effects on light rays [12].
In fact, the 1PN predictions of this theory for photons are
completely indistinguishable from the standard 1PN pre-
dictions of GR, even though in this theory photons do not
exactly follow the “null" geodesics of the spacetime met-
ric [22]. The v1 version of the theory passed a number of
other tests, e.g. regarding celestial mechanics in the so-
lar system [24] and binary pulsar energy loss by emission
of gravitational waves [25] (in both cases, considering a
system of extended bodies and accounting for a velocity
V ≠ 0 of its mass center). Note also that this theory pre-
dicts an acceleration of the cosmic expansion [14]. But v1
has been discarded by a significant violation of the weak
equivalence principle (WEP), which has been found to oc-
cur for extended bodies at the point-particle limit. That
violation occurs due to the fact that the spatial metric is
anisotropic, in much the sameway as is the standard form
of the Schwarzschild metric [17].

That violation of theWEP does not occur any more for
v2 with its isotropic spatial metric, Eq. (26) below [11]. In
particular, in the static spherical case, the 1PN approxima-
tion of the spacetime metric is the same as the standard
1PN metric of GR {[11], Eq. (88)}. The celestial-mechanical
tests should be redone with v2 but, as discussed in Ref.
[21], §4.6, there is a lot of specialized parameter adjust-
ment in celestial mechanics, whose test is hence less de-
cisive than is sometimes believed. In view of the static
spherical case and the improvement w.r.t. v1 regarding the
WEP, onemay expect that v2 should improve over v1 in ce-
lestial mechanics. Also, recall that for v2 the field equa-
tion is the exact flat-spacetimewave equation (1). Since for
v1 the latter wave equation was got at the relevant post-
Minkowskian approximation [25], one expects that simi-
lar results will be obtained regarding the binary pulsar en-
ergy loss as with v1. For light rays, it has been checked in
Ref. [11] that also for v2 the 1PN predictions of this the-
ory for photons are indistinguishable from the standard
1PN predictions of GR. This means that the gravitational
effects on electromagnetic rays: the gravitational redshift,
the deflection of light, and the time delay, are predicted
by this theory as they are in GR. The geodetic precession
measured by the Gravity Probe B (GP-B) experiment [26]
is calculated from geodesic motion in the Schwarzschild
metric [27] (correcting for the Earth’s oblateness [28]), so
that the same prediction is got from the present theory. As
to the frame-dragging (Lense-Thirring) effect, it is not pre-

dicted by this theory, but its confirmation by GP-B is far
less precise than for the geodetic precession.Moreover, the
asymptotic scheme of PN approximation predicts effects of
the self-rotation of gravitationally active bodies, also for
GR [29].

In view of the number and the complexity of the ex-
perimental tests of gravitation, it is clearly unfeasible for
the proponent of a truly alternative theory (still more than
for the proponent of amere extension of GR) to check all of
them. Hence, despite many efforts and many good points,
this theory has currently the status of a tentative theory.

1.4 Motivation and aim of the present paper

The different dynamics as compared with GR implies that
the extension of the laws of non-gravitational physics from
SR to the situation with gravitation cannot be done as
straightforwardly in this theory as inGR. InGRand inother
“metric theories" of gravitation, the extension of such a
law is done simply by formally substituting the curved
metric to the flat Minkowski metric of SR into the covari-
ant expression of this law (e.g. Stephani [30], Will [12]).
This formal substitution means actually a modification of
the law by its coupling with gravitation [30], the mathe-
matical expression of this coupling being thus obtained
in an automatic way. The central equation of SR that one
adapts to curved spacetime is that for continuum dynam-
ics, thus obtaining the well-known equation Tµν;ν = 0 for
the energy-momentum tensorT. ³ As a consequence of this
equation, a dust (a continuum made of free test particles)
has a geodesic motion, and this explains why the above
procedure cannot be used in the present theory. In this
theory, one proceeds in the reverse way: the equation for
dust is deduced from Newton’s second law and rewritten
in terms of the energy-momentum tensor. The obtained ex-
pression is assumed to be valid for any kind of continuum
or system of fields, characterized by the expression of ten-
sor T as a function of the state variables [31, 32]. This as-
sumption is justified by the mass-energy equivalence and
the universality of the gravitational force. An interesting
consequence of the obtained dynamical equation is that,
for a perfect fluid, the mass conservation is obtained as a
limitingbehaviour at lowpressures or in aweakand slowly
varying gravitational field. Whereas, under high pressure

3 Greek indices vary from 0 to 3, Latin ones from 1 to 3 (spatial
indices). Semi-colon means covariant derivative associated with the
physical spacetime metric, the latter being denoted by 𝛾. Indices are
raised and loweredwith the help of thismetric, unless explicitlymen-
tioned otherwise.
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in a strongly varying field, the theory predicts that matter
is produced or destroyed [32].

In this paper, we extend the previous method (induc-
tion from a dust to a general behaviour) to the situa-
tion where non-gravitational forces are present. We ap-
ply this to the case where the non-gravitational force is
the Lorentz force, and obtain the gravitationally-modified
Maxwell equations of the present theory. This leads us to a
really discriminating prediction of the theory as compared
with GR.We also examine the link between thosemodified
Maxwell equations and photon dynamics as governed by
Newton’s second law for a light-like test particle — that is,
we examine the transition from wave optics to geometri-
cal optics in the presence of gravitation. We find that, as
in GR, this transition is provided by the case of a “null"
electromagnetic field. In GR, the null fields come into play
via the discontinuities equations for an electromagnetic
shock wave (e.g. Lichnerowicz [33], Synge [34], de Felice &
Clarke [35]). In the present theory, null fields occur simply
because a null field behaves like a dust of photons, hence
our extension of Newton’s second law applies.

2 Dynamics of a test particle under
gravitational and
non-gravitational forces

Let us first list the assumptions used in the present work.
As in GR, it is assumed:
a) that our space and timemeasurementsmay be arranged
so as to be described by a metric 𝛾 with (+ − −−) signature
on a 4-dimensional manifold V (the spacetime). ⁴
b) That a continuous medium or a physical field is defined
by the expression of its energy-momentum tensor T. The
latter has to be a symmetric spacetime tensor field whose
value T(X) at an event X depends only on the values at X of
the smooth functions (field components) that characterize
the continuous medium/physical field which is being con-
sidered ([36], §31*). The tensor T is obtained in the follow-
ing way. As shown by Fock: in SR, the former condition in
italics, plus the demand that the divergence of T vanish,

4 See Ref. [18], §2.1, for a discussion of this assumption that empha-
sizes its compatibility with a preferred-frame theory. However, point
(ii) there, i.e. the formal transcription rule from SR to GR, is not rel-
evant to this theory, as it has been pointed out in the introduction
of the present paper. The transcription of the expression of the non-
gravitational force will be examined in Section 4 in the case of the
Lorentz force.

determine uniquely the expression of T — at least in the
concrete examples examined by him and by coworkers.
These include the T tensor for the electromagnetic field
([36], App. B) and for the perfect fluid ([36], App. C). Still in
SR, this expression is then rewritten in generally-covariant
form ([36], §46). Finally, the expressionofT in a general co-
ordinate system in a general spacetime is got immediately,
by just substituting the curved spacetime metric 𝛾 for the
Minkowski metric in the generally-covariant expression of
T that is valid in SR. See e.g. [36], §60, for the perfect fluid,
and [37], Eq. (94.8), for the electromagnetic field. Note that
this procedure does not use a Lagrangian from which the
equations ofmotion of thematter fields be derived through
the action principle. ⁵

In addition to Assumptions (a) and (b), merely three
features of that theory will be used in the present work —
except for Eq. (26)which is used in Subsect. 3.2 and in Sect.
6. The first two features are commonwith GR, even though
they are not widely used in GR. The third feature is specific
to that theory.
i) In the spacetime manifold V, a reference fluid F is ba-
sically a three-dimensional network of reference points.
Each reference point is defined by itsworld line, which has
to be time-like for a physically admissible reference fluid
[39]. Thus,Fmaybedefinedby the associated unit tangent
4-vector fieldU = UF [39, 40]: the referenceworld lines are
the integral curves of UF. A coordinate system is said to be
adapted to some reference fluidF, iff each reference world
line has constant space coordinates xi (i = 1, 2, 3) [39]. In
adapted coordinates, a reference point, or “point bound
to F", may hence be specified by the vector x ≡ (xi) ∈ R3.
In Ref. [41], it is proved that adapted coordinates do exist
for any “normal" non-vanishing vector field on V, and a
rigorous definition of the space manifold associated with

5 In the preferred-frame theory considered in this paper, one may
postulate a matter Lagrangian and hence a matter action that are in-
variant only under the coordinate changes having the form (13). The
definition of the Hilbert tensor TH as the variational derivative of the
Lagrangian density {e.g. [37], Eq. (94.4)} is still applicable. But this
definition is got from studying the variation of the action under a
small changeof the coordinate system; see aprecise statement as The-
orem 1 in Ref. [38]. Due to Eq. (13) here and to the boundary condition
to be verified by the allowed small changes of the coordinate system,
one may show that they are all zero. This makes that definition irrel-
evant. It implies also that the dynamics of TH is not constrained by
this restricted invariance of the action (whereas the general invari-
ance of the action, when it takes place, determines this dynamics to
be Tµν;ν = 0, e.g. [37]). In addition, the proof of tensoriality of TH (The-
orem 2 in Ref. [38]) can be adapted to this case, but the tensorial trans-
formation is then got merely for the changes (13). Therefore, we shall
not postulate a Lagrangian and the action principle.
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a reference fluid (defined by a normal vector field U) is
formulated. The space manifold is the set NU of the ref-
erence world lines (that set being endowed with a metriz-
able topology and an atlas of compatible charts). Thus, the
“physical space" can be regarded as being the set NU of
the reference world lines; it depends on the reference fluid
which is considered. In any such reference fluid, we have
a spatial metric g = gF (it too depends on F) [37, 39]. That
metric depends in general of the time coordinate, i.e., the
reference fluid is deformable, hence the name “reference
fluid". Moreover, at any point bound to F, we have a local
time tx [37, 39]. This is the proper time measured at some
fixed point x bound to F.
ii) We assume that there is a preferred reference fluid E,
with four-velocity vector field UE, which is globally syn-
chronized [18, 37], i.e., there is a global spacetime coordi-
nate system (xµ) which is adapted to E, and in which the
components of the spacetime metric verify ⁶

𝛾0i = 0. (2)

It implies in particular that the local time tx, related to the
coordinate time t ≡ x0/c of such coordinates by

d tx
d t = β ≡ √

𝛾00, (3)

is synchronized along any trajectory [37].
iii) We assume that, in this reference fluid E, the equation
ofmotion for a test particle is the following one (“Newton’s
second law"):

F + (E/c2)g = DP/Dtx, (4)

with F the non-gravitational force and g the gravity accel-
eration, andwhere E is the “purely material energy" of the
test particle (i.e., not accounting for the potential energy
in the gravitational field). For a mass point, this is defined
as E = m(v)c 2, with

m(v) ≡ m0𝛾v , 𝛾v ≡ 1/
√︀
1 − (v2/c2). (5)

Here v is the modulus of the 3-velocity of the test particle
relative to the reference fluidE. That velocityv ismeasured
with the local time tx and its modulus v is definedwith the
space metric g (wemean g = gE and U = UE from now on)
:

v i ≡ d xi
d tx

≡ 1
β
d xi
d t , v ≡ [g(v, v)]1/2 = (gijvi vj)1/2. (6)

6 This condition alone does not specify a unique reference fluid,
even less a unique coordinate system [18, 37]. The preferred charac-
ter of E appears with the dynamical equation (4) with (12), which is
covariant only under the coordinate transformations (13).

For a photon, we define E = hν, h being Planck’s constant
and ν the frequency asmeasured with the local time of the
momentarily coincident observer of the reference fluid E:
ν ≡ d n/ d tx with n the number of periods. Further, in Eq.
(4), P is the momentum, given by

P ≡ (E/c 2)v. (7)

Finally, in Eq. (4), D/Dtx is the relevant derivative of a
time-dependent vector in the spacemanifold NU endowed
with the time-dependent metric g (and rescaled to the lo-
cal time tx as for v i in Eq. (6), i.e.,DP/Dtx ≡ (1/β)DP/Dt).
Compelling arguments [18] give the unique expression

DP/Dt ≡ D0 P/Dt + (1/2)t.P, t ≡ g−1. ∂ g
∂ t . (8)

In particular, this ensures that Leibniz’ rule is satisfied for
the derivation of the scalar product: d(g(u1, u2))/ d t =
g(u1, Du2/Dt) + g(Du1/Dt, u2). In Eq. (8)1, D0 P/Dt is the
absolute derivative relative to the “frozen" space metric g
of the time t (t ≡ x 0/c) where the derivative is to be calcu-
lated: (︂

D0P
Dt

)︂i
≡ d Pi

d t + Γ ijkP
j d xk
d t , (9)

with Γ ijk the Christoffel symbols associated with the metric
g of the time t. From the definition of the proper time τ
along a general trajectory:

d s2 = c2 d τ2 = 𝛾µν d xµ d xν , (10)

one gets the following relation between τ, the local time
tx, and the coordinate time t ≡ x0/c:

d τ
d t =

d τ
d tx

d tx
d t = β

𝛾v
. (11)

It turns out that “Newton’s second law" (4) is compati-
ble with the formulation ofmotion in GR, provided a pecu-
liar (velocity-dependent) form of the gravity acceleration
g is assumed [18]. Hence, that part of our assumption (iii)
which is specific to the present theory is in fact only the as-
sumed form for g: In that theory, g is a space vector given
by

g = − c
2

2
gradg 𝛾00

𝛾00
= − c2

gradg β
β , (12)(︀

gradgβ
)︀i ≡ gijβ,j ,

(︁
gij
)︁
≡
(︀
gij
)︀−1 .

This expression and Newton’s second law (4) are covari-
ant under coordinate changes that both leave the reference
fluid unchanged and keep true the synchronization condi-
tion 𝛾0 i = 0, i.e.

x′0 = φ(x0), x′i = ψi(x1, x2, x3). (13)
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However, for Eq. (4), this covariance is true only if one
assumes that the non-gravitational force F is an invari-
ant spatial vector (field) under any change (13), i.e., the
components F i are contravariant under the change x′i =
ψi(x1, x2, x3), ⁷ and in addition they are invariant under
the allowed changes of the time coordinate, x′0 = φ(x0).
This condition is imposed upon F, because g, v, P and
DP/Dtx do possess it. (The local time interval d tx is an in-
variant for these transformations, and so is the energy E.)

The expression (12)1 for g comes up naturally from
a (semi-heuristic) interpretation of gravity as being
Archimedes’ thrust due to the macroscopic pressure in a
perfectly fluid “ether" [9, 10]. But the sameexpression (12)1
can be derived by demanding that (i) the metric field 𝛾

should be a spatial potential for a space vector g, and (ii)
the law of motion (4) should imply geodesic motion for
“free" test particles in a static metric [18]. For the case of
a free test particle, i.e. F = 0 in Eq. (4), this law implies the
following energy balance [31]:

d (Eβ)
d t = E ∂ β∂ t . (14)

This is true, again, for both mass points and photons. As
a consequence of this equation, it is obvious that the total
energy of the material test particle, including its “poten-
tial" energy in the gravitational field, must be defined as
e m ≡ Eβ, which is a constant for a constant gravitational
field [31]. The proof of Eq. (14) for a mass point (pp. 42–
43 in Ref. [31]) is a modification of the elementary method
used in classical mechanics to derive the (potential plus
kinetic) energy equation in a force field deriving from a
variable potential — with some complications due to rela-
tivistic mechanics with a variable metric. Now, in the case
where a non-gravitational force F is present as in Eq. (4),
it is straightforward to modify the proof and to get

d (Eβ)
d t = E ∂ β∂ t +β

2F.v, F.v ≡ g(F, v) ≡ gijF ivj . (15)

Using the synchronization condition, 𝛾0 i = 0, the expres-
sion of the 4-acceleration of a free mass point has been
deduced from the equation of motion (4) and the energy
balance (14) in Ref. [18]: this is the result of some alge-
bra with Christoffel symbols. It is again straightforward to
adapt this calculation to the case F ≠ 0, thus deducing

7 ThenF canbe rigorously defined as a vector field on the spaceman-
ifold NU —more exactly, in the case that it depends on the coordinate
time t = x0/c, as a one-parameter family (Ft) of vector fields on NU .

from Eqs. (4) and (15) the following expression:

A0 = 1
2β2 gjk,0 U

j Uk + 𝛾v
β

F.v
m0 c3

, (16)

Ai = 1
2 g

ijgjk,0 U0 Uk + 𝛾v
F i

m0 c2
.

Here U, with components Uµ, is the 4-velocity of the mass
point (not to be confused with U, the 4-velocity field of the
preferred reference fluid that defines the space manifold
NU). Thus:

Uµ ≡ d xµ
d s , Aµ ≡

(︂
∆U
∆s

)︂µ
, (17)

∆/∆s being the absolute derivative relative to the space-
time metric 𝛾. Like Eqs. (4) and (12), Eqs. (15) and (16) are
covariant under the transformations (13), assuming again
that the external force F is a invariant spatial vector field
in the sense defined after Eq. (13).

3 Dynamics of a continuum under
gravitational and
non-gravitational forces

3.1 Induction from a dust

We seek the dynamical equation satisfied by the energy-
momentum tensor T in the present theory. (See Assump-
tion (b) at the beginning of Sect. 2.) That equation will
determine how a given kind of continuum, whose be-
haviour is well-identified in SR, couples to gravitation in
thepresent theory.Here,we consider the casewhere anon-
gravitational external force field is present, in addition to
the gravitation. If this non-gravitational force field is con-
sidered given, the same dynamical equation must apply to
any kind of continuum: this is theway to express themass-
energy equivalence and the universality of the gravitation
force in the framework of Assumption (b) of Sect. 2. (How-
ever, the non-gravitational force depends actually on the
considered continuum, of course: only the gravitational
force is universal.) Therefore, the dynamical equationmay
be derived for a dust. Dust is a continuum made of co-
herently moving, non-interacting particles, each of which
conserves its rest mass — so that the dynamical equation
for mass test particles translates immediately into that for
the dust continuum. In doing so, we have to substitute in
Eqs. (4) and (15) the constant rest-mass of a “substantial"
volume element: δm0 = ρ0δV, and the external force on
this element: δF = fδV, for m0 and F respectively, with ρ0
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the rest-mass density in the preferred reference fluid and
f the density of the non-gravitational external force. Both
densities are evaluatedwith respect to thephysical volume
measure:

δV = √g d x1 d x2 d x3, g ≡ det(gij). (18)

In Ref. [32], the equation has been derived for a dust in the
absence of (non-gravitational) external force.Here,weadd
an external force, hence we have to use the expression (16)
of the 4-acceleration. The T tensor in energy units is given,
for a dust of mass points, by [36]:

T µν = ρ* c 2U µU ν . (19)

(Of course the 4-velocity U, with components Uµ, is now a
field.) Mass conservation: (ρ*Uν) ;ν = 0 [36] is true for that
dust, by definition, whence:

Tµν;ν = ρ*c2 U
µ
;ν Uν = ρ*c2 Aµ . (20)

Multiplying Eq. (16) by ρ*c2 and accounting for this, we get
for a dust of mass points:

T0ν;ν = b0(T) +
f .v
cβ , T iν;ν = bi(T) + f i , (21)

where

b0(T) ≡ 1
2β2 gij,0 T

ij , bi(T) ≡ 1
2 g

ijgjk,0 T0k , (22)

which depend linearly on T. We assume that this dynami-
cal equation in the presence of a field of external force den-
sity f, Eq. (21) with (22), is true for a general continuum. It
is covariant under the transformations (13) (for an invari-
ant field f; note that the volume element (18) is invariant
under (13)).

3.2 Newton’s second law for a general
continuum

In the foregoing subsection, passing through the interme-
diary of the 4-acceleration to get the dynamical equation
(21) for a dust, we induced the validity of that equation
for a general continuum. As an alternative to this way of
doing, it is interesting also to directly apply Newton’s sec-
ond law (4) and the energy equation (15), extending them
from a point test particle to a general continuousmedium.
This will be necessary for Sect. 6, and it also enables one
to identify the internal forces in the continuum. Let us first
consider a dust of mass points. In the continuous case, we
treat a small “substantial" volume δV of the dust contin-
uum as a test particle. The density ρ0 ≡ δm0/δV is related
to the proper rest-mass density ρ* by [36]:

ρ0 = 𝛾vρ*. (23)

(See also Ref. [31], Eq. (4.28).) The T tensor is given by Eq.
(19) and, because 𝛾0 i = 0, we have U0 = 𝛾00 U 0 while, in
view of (11), U0 ≡ d t/ d τ = 𝛾v/β = 𝛾v/

√
𝛾00. Using (23),

we hence find that the amount of “purely material energy"
contained in a volume element δV is, for such a dust:

δE ≡ δm0𝛾vc2 = ρ0𝛾v c2δV = ρ*𝛾2v c2δV (24)

= ρ*c2
(︂
d tx
d τ

)︂2
δV = ρ*c2 U0U0 δV = T00δV .

Therefore, to express themass-energy equivalence and the
universality of the gravitation force consistentlywithinAs-
sumption (b) of Sect. 2, we have to define the amount of
“purely material energy" for a general continuum as δE =
T00δV. Hence, the law of motion (4) must be written for a
volume element of a continuous medium as:

f ′δV + T
0
0

c2 δVg = 1
β
D
Dt

(︂
T00
c2 βuδV

)︂
, (25)

u ≡ dx
d t = βv, f ′ ≡ δF

δV .

In this expression, f ′ is the density of the total non-
gravitational force over an element of the continuum, thus
including the internal forces such as stresses (though reex-
pressed as a volume density force). Also, it is understood
that, as indicated above, the volume element is “substan-
tial". I.e., it follows themotion of the continuum; that may
include deformation, so that δV may depend on the time
coordinate. To go further, it is convenient to utilize the “bi-
metric" nature of the theory.Wewill use the assumption of
v2, according to which the space metric is

g = β−2g0, (26)

with g0 an Euclidean metric on the space manifold NU
[9, 11]. This implies that the “physical" measure of the vol-
ume element, δV ≡ √g d x1 d x2 d x3, is related to the Eu-
clidean measure δV0 of this same element by

δV = δV0/β3, δV 0 ≡
√︀
g0 d x1 d x2 d x3, (27)

where g0 ≡ det (g0ij ) is associated with the metric g0. {Ref.
[11], Eq. (19). In the v1 version of the theory, the metric as-
sumption was different and led to δV = δV0/β, Eq. (4.29)
in Ref. [31]. With v1, the same agreement is found between
the corresponding equations as the one found below be-
tween Eqs. (34) and (41) and between Eqs. (21)1 and (47).}
The metric g0 is assumed constant in the preferred refer-
ence fluid, i.e., g0ij,0 = 0 in any coordinates (xµ) which are
adapted to the preferred reference fluid. However, Eq. (26)
(and Eq. (27)1 as well) is not stable under a change of the
time coordinate. Hence, this assumption privileges a par-
ticular time coordinate x0 = cT, where T is called the “ab-
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solute time" [11]. We shall note β̃ ≡ (√𝛾00)x0=cT . The con-
stancy of g0 implies that, for a volume element which fol-
lows the motion of the continuum, we have

d(δV0)/ d t = δV0 div0u, (28)

div0u ≡ divg0 u = (ui
√︀
g0) ,i/

√︀
g0.

{Note that Eq. (28) is covariant under any change (13).} In-
serting Eqs. (27) and (28) into Eq. (25) leads to

f ′+T
0
0

c2 g = β̃2 D
DT

(︂
T00
c2 β̃4

u
)︂
+ T00
c2 β̃2

udiv0u (x0 = cT).

(29)
It shall be simpler for the sequel to rewrite this space vector
equation in covector form, lowering the indices of spatial
vectors with the physical space metric g. This commutes
[18] with the D/Dt derivative, defined for a spatial covector
w* by [18]:

Dw*
Dt ≡ D0w*

Dt − 1
2 t.w

*, (30)

i.e.
(︂
Dw*
Dt

)︂
i
= ∂wi∂t + wi|j

d xj
d t −

1
2 t

k
i wk ,

where wi|j denotes the covariant derivatives (thus here
those corresponding to the spatial metric g) of the covec-
torw*. Moreover, the following identity applies in the case
thatw* has the formw* = ρu* :

(ρui)|k u
k = (ρui),k u

k − 1
2 gjk,i ρu

juk , (31)

where uj ≡ gjkuk. Using these two properties, one rewrites
Eq. (29) as

β̃−2f ′i + β̃2ρgi =
∂ (ρui)
∂T + (ρui),k u

k

− 1
2

(︂∂gij
∂T ρuj + gjk,iρujuk

)︂
+ ρuidiv0u,

(32)

where f ′i ≡ gij f ′j and the like for gi, and where

ρ ≡ T00
c2 β̃4

= T00

c2 β̃2
(x0 = cT). (33)

Due to (28)2, this rewrites in spatial coordinates such that
g0,j = 0 (e.g. Cartesian coordinates for the Euclideanmetric
g0) as:

β̃−2f ′i + β̃2ρgi =
∂ (ρui)
∂T +

(︁
ρuiuk

)︁
,k

− 1
2

(︂∂gij
∂T ρuj + gjk,iρujuk

)︂
. (34)

Let us compare this with Eq. (21)2. In any coordinates
adapted to the reference fluid E and such that x0 = cT,

one has from (27): 𝛾 ≡ det(𝛾λν) = −𝛾00.g = −β̃2.(g0/β̃6) =
−g0 β̃−4. Using the identity

T ν
µ ;ν =

1
√−𝛾

(︀√−𝛾 T ν
µ
)︀
,ν −

1
2𝛾λν,µT

λν , (35)

and noting that 𝛾0i = 0 and 𝛾jk = −gjk, Eq. (21)2 may hence
be rewritten, in spatial coordinates such that g0,j = 0, as

β̃2
(︂
T ν
i
β̃2

)︂
,ν
= −fi + c2ρβ̃3 β̃,i −

1
2

(︁
gij,0T0j + gjk,iT jk

)︁
(36)

(x0 = cT).

(Here fi ≡ gij f j.) From (12), we get

gi ≡ gijgj = −c2 β̃,i/β̃. (37)

Define u0 ≡ d x0/ d t = c, so that uµ = d xµ/ d t. Consider-
ing again a dust of mass points, we get from (11) and (19):

Tµν ≡ ρ*c2UµUν = ρ* 𝛾
2
v

β̃2
uµuν . (38)

But, in view of (24), we have ρ* 𝛾
2
v
β̃2
c2 = T00. Therefore, we

get from the definition (33):

Tµν = ρ β̃2 uµuν . (39)

It follows that

T 0
i = −cβ̃2 ρui , T j

i = −β̃2 ρui u j . (40)

Using (37) and (40) in Eq. (36) and multiplying by β̃−2, it
becomes:

∂T (−ρui) −
(︁
ρui uj

)︁
,j
= − β̃−2 fi − ρβ̃2gi−

1
2

(︁
(∂T gij)ρuj + gjk,i ρuj uk

)︁
.
(41)

Thus, for a dust of mass points, Eqs. (34) and (36) coincide
if fi = f ′i , but obviously this is not true for a general tensor
T. The reason is simple: in the direct transposition (25) of
Eq. (4), leading to Eq. (34), f ′ is the density of the total non-
gravitational force, as we mentioned. In contrast, Eq. (21),
and then Eq. (36), have been obtained by induction from a
dust, thus a continuum with zero internal force, to a gen-
eral tensor T. Hence f in Eqs. (21) and (36) is indeed the
density of the external non-gravitational force. By making
Eqs. (34) and (36) coincide for a given expression of the T
tensor and a given external force density f, we may iden-
tify the volume density of the internal forces in a general
continuum, i.e., f ′′ ≡ f ′ − f.
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As to the energy equation, we merely write the trans-
position of Eq. (14), thus to a dust in the absence of non-
gravitational external force. In view of Eq. (24), this is

d
d t

(︁
T00 δVβ

)︁
= T00 δV

∂β
∂t . (42)

With the help of Eqs. (27) and (28), the l.h.s. rewrites as
d
d T

(︂
T00
β̃2

δV0
)︂
= d
d T

(︁
T00 δV0

)︁
=
(︂
d T00
d T + T00 div0u

)︂
δV0 (x0 = cT),

(43)

thus (42) is
d ϵ
d T + ϵ div0u = ϵ

β̃
∂β̃
∂T , ϵ ≡ (T00)x0=cT . (44)

This may be rewritten (in any spatial coordinates) as

∂ϵ
∂T + div0 (ϵu) =

ϵ
β̃
∂β̃
∂T . (45)

For a dust, we have from (39):

T00 ui = cT0i . (46)
With this equation, Eq. (45) becomes:

∂T00
∂T + div0

(︁
cT0j∂j

)︁
= T00 ∂Log β̃∂T (x0 = cT). (47)

This is equivalent to Eq. (21)1 ([11], Eqs. (24)–(26) and
Note 5).

In classical physics, there is just one external force
field in addition to the gravitation: namely, the electromag-
netic (Lorentz) force.

4 Lorentz force and Maxwell
equations in a gravitational field

The electromagnetic (e.m.) field is defined by the space-
time tensor F. We assume that F derives from a 4-potential
A:

Fµν ≡ Aν,µ − Aµ,ν = Aν;µ − Aµ;ν , (48)
which is equivalent to assuming that F is antisymmetric
(Fµν = −Fνµ ) and that the first group of the Maxwell equa-
tions is satisfied: ⁸

Fλµ ,ν + Fµν,λ + Fνλ,µ = Fλµ ;ν + Fµν;λ + Fνλ;µ = 0. (49)

8 Here, we extend the standard version of the Maxwell equations to
this scalar theory of gravitation. Thuswe do not discuss, for example,
the fractional electromagnetic equations [42]. The non-local charac-
ter associatedwith fractional operators [43] should be relevant toma-
terials with e.m. memory properties [42].

The physical significance of the field F appears clearly
with the Lorentz force F on a test particle with charge q.
We have to find the expression of the Lorentz force in the
presence of gravitation, subject to the conditions that (i)
it is a space vector, invariant by the transformations (13),
and (ii) when the gravitational field vanishes, that expres-
sionmust reduce to the following one, obtained in SR from
the expression [37] of the 4-force:

F i ≡ d
d t

(︂
m0𝛾v

d xi
d t

)︂
= d τ
d t

d
(︁
m0c U i

)︁
d τ = 1

𝛾v
qF i µ Uµ ,

(50)
thus

F i = q
(︂
F i 0 + F i j

vj
c

)︂
. (51)

In thepresent theory, the gravitational fielddetermines the
metric 𝛾 and conversely (see Ref. [11]): there is no gravita-
tion in some domain of spacetime, if and only if the metric
is Minkowskian in that domain. Now the expression of the
Lorentz forcemust depend only on themetric components
at the given point of spacetime, not of their derivatives,
because these derivatives make inertial or gravitational
forces (and because it seems obvious that we need only
the metric components in order to generalize (51)). Hence,
condition (ii) says that the Lorentz force must be written
as Eq. (51) when the metric components are Minkowskian
at the point considered, (𝛾µν) = (ηµν) ≡ diag (1, −1, −1, −1).
But, at the given point, due to the condition 𝛾0i = 0, the
metricmay always be set to theMinkowskian form by a co-
ordinate change (13). ⁹ Now it is obvious that the following
expression:

F i = q
(︂
F i 0
β + F i j

vj
c

)︂
= qc F

i
µ
d xµ
d tx

= q
𝛾v
F i µ Uµ , (52)

gives the components of a space vector which is invariant
under the transformations (13), and which reduces to (51)
when (𝛾µν) = (ηµν) (i.e., when β = 1 and vj = d xj/ d t).
Hence, Eq. (52) is the general expression of the Lorentz
force in the preferred frame assumed by the theory. It may
be rewritten in space-vector form as

F = q
(︂
E + v ∧ B

c

)︂
, (a ∧ b)i ≡ ei jk a

j bk , (53)

where the electric and magnetic vector fields are the spa-
tial vector fields with components

Ei ≡ F i 0
β , Bk ≡ −12 e

ijkFij . (54)

9 By assumption: 𝛾 is Lorentzian; 𝛾0i = 0; and 𝛾00 = β2 > 0. Thus,
the matrix G ≡ (−𝛾ij) has Euclidean signature. Hence it can be put in
the form diag(1, 1, 1) at any given x ≡ (xi), by a change (13)2. We get
𝛾 ′00 = ( d x

0

d x′0 )
2𝛾00 = 1 at x0, by a change (13)1.
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In Eqs. (53) and (54), eijk is the usual antisymmetric spa-
tial tensor, its indices being raised or lowered using the
spatial metric g in the frame E; in spatial coordinate sys-
tems whose natural basis is direct, we have eijk =

√g εijk,
with εijk the signature of the permutation (i j k); it follows
from the Leibniz formula for a determinant that we have
then eijk = 1√g εijk [37]. The same expression (52) is found
if one asks that the charged particle must have the same 4-
acceleration as in a metric theory, when the metric is con-
stant in the reference fluid E (thus gij,0 = 0). (For a metric
theory, one merely applies the rule “ηµν becomes 𝛾µν and
comma goes to semi-colon" [12].) This assumption is con-
sistent with the fact that, for such a constant gravitational
field, the dynamical equation (21) is the same as in met-
ric theories, at least if there is no external force. In other
words, for a gravitational field that is constant in the pre-
ferred frame, the present theory admits Einstein’s equiv-
alence principle in the classical form: “in a local freely
falling frame, the laws of non-gravitational physics are the
same as in SR".

Considering now a continuous charged medium, we
define ρel ≡ δq/δV and J µ ≡ ρel d xµ/ d tx. The Lorentz
force density is written, in accordance with (52), as

f i ≡ δF i
δV = F i µ

Jµ
c . (55)

The dynamical equation for the charged continuum is Eq.
(21), with f i from Eq. (55), and with the energy-momentum
tensor Tcharged medium in the place of T. Using the relations
Fµν = −Fνµ and 𝛾0i = 0, one deduces from Eq. (55), after
a short algebra, the following expression for a term in Eq.
(21):

f .v
c β = F0µ

Jµ
c . (56)

In view of (55) and (56), we may write Eq. (21) for the
charged medium as:

Tµνcharged medium ;ν = b
µ(Tcharged medium) + F

µ
ν
Jν
c . (57)

On the other hand, the total energy-momentum is the
sum T = Tcharged medium + T�eld, with T�eld the energy-
momentum tensor of the electromagnetic field [36, 37]:

T µν�eld ≡
(︂
−FµλF

νλ + 1
4𝛾

µνFλρFλρ
)︂
/4π. (58)

The total tensor T obeys the general equation (21) for con-
tinuum dynamics (without any non-gravitational force, of
course):

Tµν;ν = bµ(T). (59)

Both the l.h.s. and the r.h.s. of this equation are linear in
T; see Eq. (22) for the r.h.s. Hence we may combine it with

Eq. (57) to deduce immediately that

Tµν�eld ;ν = b
µ(T�eld) − F

µ
ν
Jν
c . (60)

In words: the electromagnetic field may be considered as
a “material" continuum subjected to the gravitation and
to the opposite of the Lorentz force. We now show that
this gives the gravitationalmodification ofMaxwell’s second
group in the present theory.We first note that, using the an-
tisymmetry of F and the fact that 𝛾µν;ρ = 0, the definition
(58) leads to

4πTµν�eld ;ν = −F
µ
λ F

νλ
;ν +

1
2Fνλ

(︁
Fνλ;µ + Fλµ;ν + Fµν;λ

)︁
= −Fµλ F

νλ
;ν . (61)

(The second equality is a consequence of the first group,
Eq. (49), using again 𝛾µν;ρ = 0 and some index shu�ing.)
Rewriting Eq. (60) with the help of Eq. (61), we get

Fµλ F
λν
;ν = 4πbµ (T�eld) − 4πF

µ
λ
Jλ
c , (62)

where bµ (T�eld) is given by Eqs. (22) and (58). This gives
the second group of the Maxwell equations in the pres-
ence of gravitation, according to the investigated theory —
at least for the generic case where the field tensor F is in-
vertible (det F ≡ det (Fµν) ≠ 0). Indeed,multiplying on the
left by the complementary matrix (̃︀Fρµ), we obtain:

(det F)Fρν;ν = 4π
(︂̃︀Fρµ bµ(T�eld) − (det F) Jρc

)︂
, (63)

which is rewritten, for an invertible matrix (Fµν), as

Fµν;ν = 4π
(︂
Gµν bν(T�eld) −

Jµ
c

)︂
, (Gµν) ≡ (Fµν)−1.

(64)
(Note that G, like F, is an antisymmetric tensor, Gνµ =
−Gµν.)

5 Comments on the
gravitationally-modified Maxwell
equations in the theory

i) If the gravitational field is constant in the preferred ref-
erence fluid, whence gij,0 = 0, it results from (22) that Eq.
(64) reduces to the gravitationally-modified second group
in GR and other metric theories of gravitation:

Fµν;ν = −4π
Jµ
c . (65)

In general, however, gij,0 ≠ 0, in which case the modified
second group remains in the non-linear form (64). But the
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Maxwell equations (65) are also non-linear in metric theo-
ries, e.g. in GR, because the energy-momentum of the elec-
tromagnetic field does contribute to the r.h.s. of the non-
linear Einstein equations. That is, the field F influences the
metric non-linearly, whereas the modified Maxwell equa-
tions (65) depend on the metric. This is also true in the
investigated theory. In the latter, the second group of the
modified Maxwell equations, Eq. (64), is more complex
thanEq. (65). Yet themetric is determinedby just the scalar
linear wave equation (1), which is much simpler than the
Einstein equations.
ii) Among local coordinate systems that are adapted to
the reference fluid and in which the synchronization (2)
applies (two such systems exchanging by (13)), there are
ones for which, at the event X considered, the spatial nat-
ural basis (∂i) is orthonormal for the space metric g, i.e.,
gij(X) = δij. We then get easily from (54):

F i 0 = β Ei , F0i = β−1 Ei , F i j = εijk Bk . (66)

Furthermore, by rotating the axes we can get B i = Bδ1i
and E 3 = 0 at this event. In such coordinates, we get
from (66): det(Fµν) = −(E1)2B2. Therefore, the condition
det F ≠ 0 is equivalent to E.B ≡ g(E, B) ≠ 0. (By the way,
it can be shown using (54) that we have generally E.B =
−eµνρψFµνFρψ/8, where one defines eµνρψ ≡ 1√−𝛾 εµνρψ
as for eijk after Eq. (54) [30].) The condition E.B ≠ 0 is
satisfied at “generic" points for a “generic" electromag-
netic field but, unfortunately, it is not satisfied by the
simplest examples of such fields, viz. purely electric and
purely magnetic fields, nor by “simple" electromagnetic
waves (since the characteristic property of the latter or
“null fields" is that both invariants are zero, E.B = 0
and E2 − B2 = −FµνF µν/2 = 0). One may show, how-
ever, that for a field which is purely electric (in the pre-
ferred reference fluid), the new term in the r.h.s. of Eq.
(64), a µ ≡ 4π̃︀Fµν bν(T�eld)/(det F), can be defined by a
continuity extension. Yet this is not the case for a purely
magnetic field or for a simple wave. On the other hand,
the necessary restriction to invertible field tensors could
present a problem only if, in some physically reasonable
situationwith a variable gravitational field, Eq. (64) would
have no solution (i.e., no invertible solution). It is likely
that the coupling with a variable gravitational field would
forbid to have such peculiar fields as, for instance, null
fields, purely electric or magnetic fields as exact solutions
of Eq. (64) — although, for the weak and slowly varying
gravitational fields which we live in, solutions very close
to such fields could exist. Moreover, we may consider the
simple waves as physically important model fields, which
are clearly not solutions of Eq. (64) for a variable gravita-
tional field, but to which Eq. (62) still applies (as well as

Eq. (63)). As it will be seen in Section 6 below, Eq. (62) is
enough for the transition to geometrical optics.
iii) This theory is a classical one, hence amacroscopic one.
Remind that the charged medium is modelled as a con-
tinuous extended object, not as a set of point particles.
The Maxwell equations (62) have to be considered exact in
the framework of this theory, hence no radiation reaction
has to be added (except, possibly, as a step in an iterative
approximation process to solve the equations). The com-
bined motion of the charged continuous medium and the
e.m. field (including e.m. radiation) should be obtained,
in principle, by solving together: the dynamical equation
(57), the state equation for the charged continuum, and
Eqs. (49) and (62). Note that there is an exact local en-
ergy conservation equation for the most general case in
this theory: Eq. (30) in Ref. [11]. This equation does apply
here, in view of Eq. (59).
iv) It is well known that Eq. (65) implies the charge conser-
vation, which passes thus from SR to GR. In the present
theory, we use the antisymmetry of F as in GR, so that
Fµν;ν;µ = 0, and get from Eq. (64):

ρ̂ ≡
(︀
Jµ
)︀
;µ = c

(︀
Gµν bν(T�eld)

)︀
;µ , (67)

according to which the charge of the continuum is not ex-
actly conserved if the gravitational field varies in the ether
frame (recall from (22) that bν = 0 if it does not). In pre-
vious works [11, 32], we found that matter may be pro-
duced or destroyed, its rest-mass energy being taken from
or given to the variable gravitational field. In the same
way, we find now that, depending on the orientation of
the electromagnetic field relative to the variation of the
gravitational field, the charge of a continuous distribu-
tion may “locally" vary — though rather at a macroscopic
scale, since here we are discussing a classical continuous
medium, not (quantum) elementary particles. (Of course,
this would imply that elementary charges are produced or
destroyed in a variable gravitational field, but a classical
theory cannot describe how; the same is true for matter
production/destruction.) In an electromagnetic wave, the
inverse field G, as well as the field F, alternate rapidly,
whereas the bν ’s keep the same sign, so that the charge
balance is nearly zero over one period. The same cannot be
said for a slowly varying field such as the Earth’s magnetic
field, but one has also to take into account the variation of
the gravitational field. For themass balance, it was easy to
give reasonable estimates, which turn out to be very ten-
uous and hence seem compatible with the experimental
evidence on “mass conservation" [11, 32]. In contrast, we
do not find straightforward to assess the amount of the
charges that should be produced in realistic situations, in
application of Eq. (67). This is partly due to the relative
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complexity of the terms in Eq. (67), partly also to the diffi-
culty mentioned at point ii) hereabove — that the simplest
solutions are not usable. Hence, we leave the obtainment
of such estimates to a future numerical work. Clearly, we
expect that the amounts are very small in usual situations.

6 Dynamical link between wave
optics and ray optics under the
gravitation

In the present theory, as also in GR and in other relativis-
tic theories of gravitation, the electromagnetic rays are de-
fined as the trajectories of light-like particles (i.e., d s2 = 0)
called photons — a photon being defined by its energy E
or its frequency ν, related by E = hν. In GR, these tra-
jectories are geodesic lines, whereas here they are gov-
erned (in vacuo) by “Newton’s second law" (4) (with F =
0). As this photon dynamics is for zero external force ex-
cept gravitation, the search of a direct, dynamical link be-
tween electromagnetic field and photons trajectories leads
us to examine in which conditions the electromagnetic
field may be seen as a “dust of photons". Thus, the energy-
momentum tensor (58) should have the form of the tensor
for (ordinary) dust. Is that possible? At least, we may ask
that the energy-momentum tensor of the electromagnetic
field have the form

Tµν = VµVν , (68)

which is generally covariant. For instance by selecting co-
ordinates adapted to the preferred reference fluid and such
that, at the event considered: the spatial natural basis (∂i)
is orthonormal for g; Bi = Bδ1i ; and E3 = 0 — one verifies
easily that thenecessary and sufficient condition forT�eld to
have the form (68) is that both invariants of the field tensor
Fmust be zero (see also Stephani [30]), thus a “null field".

On the other hand, in the preferred reference fluid, we
may rewrite (68) in the same form that we used for ordi-
nary dust, Eq. (39) — which does not determine uniquely
u µ and ρ. Yet if we want to use the relation u 0 ≡ c, as we
did for ordinary dust, then wemust fix ρ ≡ T 00/(β̃2c2) (as
wedid for ordinary dust, Eq. (33)). This determines also the
spatial components: u i ≡ cT i0/T00, Eq. (46). Then, start-
ing from (25), all equations of Subsect. 3.2 apply (except
for (38)). Thus, independently of the exact physical nature
of the material or field, the fact that the energy-momentum
tensor has the form (68) ensures that the dynamical equa-
tion (21), with the external force field f = 0, is equivalent to
the conjunction of Eqs. (34), with f ′i = 0, and (47). (These

equations are valid in coordinates such that (g 0),j = 0, and
with x 0 = cT where T is the “absolute time".) The absolute
3-velocity field u = dx/ d T of the continuous medium is
defined by Eq. (46): it is the velocity of the energy flux, rel-
ative to the preferred reference fluid. In turn, Eqs. (34) and
(47) are the respective exact translations, in these adapted
coordinates, of Newton’s second law for the continuous
medium, Eq. (25) with the non-gravitational force f ′ = 0,
and the energy equation (42).

Let us come back to the special case of the electromag-
netic field in vacuo. In this case, the dynamical equation
(21) is nothing else than the modified second group (62) of
Maxwell equations, with Jλ = 0:

Fµλ F
λν
;ν = 4πbµ (T�eld) . (69)

Hence, the foregoing means that, for a null field F and
only for a null field, these electromagnetic equations in
vacuo are exactly equivalent to Newton’s second law (25)
for the electromagnetic dust (i.e., f ′ = 0) and the corre-
sponding energy equation, Eq. (42). And this is indeed a
dust made of light-like particles or photons, because the
absolute velocity u of the dust is defined by Eq. (46), so
that the velocity measured with physical clocks (bound to
the preferred reference fluid, but affected by the gravita-
tional field), v ≡ dx/ d tx = u/β̃, satisfies

c2 − gij vi vj = c2
(︃
1 −

gij T i0 T j0

β̃2(T00)2

)︃
= c2

(︃
1 −

gij V i V j

β̃2 V0 V0

)︃

= c2
(︂
V0 V0 + Vi V i

V0 V0

)︂
= c2

Tµµ
T00

, (70)

which is nil for the energy-momentum tensor of any elec-
tromagnetic field. In summary: when T�eld is the energy-
momentum tensor associated with a null electromagnetic
field F, and only then, Eq. (69) says exactly:

(i) that the trajectories x(t) which are defined by u =
dx/ d t with u deduced from T�eld by T00 ui = cT i0, are
photon trajectories — that is, trajectories defined by New-
ton’s second law (4) applied to a free light-like particle;

(ii) that one has the continuous form for dust, Eq. (42),
of the energy equation (14). (For a test particle, the energy
equation is a consequenceofNewton’s second law, but this
does not hold true for a continuum.)

A comment may be in order, to make clearer what
are photon trajectories in the present theory. Equation (4)
involves the energy E, which varies along the trajectory
according to Eq. (14). The only difference between mass
points and photons which is relevant to this dynamics is
that photons are light-like particles. Using Eq. (4) with
F = 0, together with the definition of the velocity v and
its modulus v (Eq. (6)), the assumption v = c leads to the
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differential system

Dv
Dt = β

(︁
g − (g.v) v

c2
)︁
, v = 1

β
dx
d t . (71)

It may be proved that any solution of (71) with an initial
data such that v(t 0) = c, satisfies v = c at any time. Thus,
photons trajectories are just solutions of the system (71)
with any initial data such that v(t 0) = c (evaluated with
local standards according to Eq. (6)). Of course, this same
equation (71) is deduced if one starts from the continuous
form for dust, Eq. (25) with f ′ = 0, because one just has to
substitute δE for E.

7 Discussion and conclusions
i) The present theory derives the motion of test particles
from a unique extension of the relativistic form of New-
ton’s second law to any given reference fluid in a space-
time curved by gravitation [18]. More precisely, the the-
ory assumes that there is a preferred reference fluid E, in
which, just as in Newtonian theory, the gravity accelera-
tion g derives from a spatial potential: U ≡ −c 2Log β with
β ≡

√︀
(𝛾00)E, where (𝛾00)E is the 𝛾00 component of the

spacetime metric 𝛾 (in coordinates adapted to the refer-
ence fluid E and such that the synchronization condition
(2) applies). Here, equations governing the dynamics of a
general continuum in the presence of gravitational and
non-gravitational forces have been derived by two inde-
pendent methods, by induction from the case of a test par-
ticle. The two methods give the same result for a dust. For
a general energy-momentum tensor, the comparison of the
two methods gives access to the internal forces in the con-
tinuous medium.
ii) The electromagnetic field tensor F is stated to derive
from a 4-potential in the usual way. The expression of the
Lorentz force is derived uniquely from the requirement
that it is a space vector which must reduce to the classical
expression in the absence of gravitation. The total energy-
momentum tensor T is assumed to be the sum of the clas-
sical tensor Tcharged medium for the charged continuum and
the classical tensor T�eld for the electromagnetic field. It
must obey the general equation for continuum dynamics
in the absence of non-gravitational external force. On the
other hand, the tensor Tcharged medium must obey the gen-
eral equation for continuum dynamics in the presence of
the Lorentz force due to the electromagnetic field. This de-
termines uniquely the form taken by the Maxwell equa-
tions in a gravitational field, according to the present the-
ory: Eq. (62) or (equivalently in general) Eq. (64).

iii) In the special case that the field tensor F makes a sin-
gular 4×4matrix, and if moreover the gravitational field is
variable, then only the form (62) of the modified Maxwell
equations is valid. The form (62) is yet sufficient to make
the transition from wave optics to geometrical optics in
vacuo, in the presence of gravitation. The transition con-
sists essentially in showing: a) that a continuous distribu-
tion of “free" photons can be defined as an “electromag-
netic dust", i.e., as a continuumwhose energy-momentum
tensor is given by the usual expression for an electromag-
netic field (58), and which obeys Newton’s second law for
a continuous medium subjected only to the gravitational
force [Eq. (25) with f ′ = 0], plus the energy equation (42).
b) That, in this case, these two dynamical laws are noth-
ing else than themodifiedMaxwell equations in vacuo, Eq.
(69). c) That, for such an electromagnetic dust, the modi-
fied Maxwell equations imply that each trajectory of the
energy flux is indeed aphoton trajectory of the present the-
ory.
iv) The modified Maxwell equations also imply that the
(macroscopic) conservation of the electric charge of a con-
tinuous medium would be violated in a variable gravita-
tional field, according to that theory in its present state.
In a past work, it had already been found that mass con-
servation would be violated in a variable gravitational
field, and it had been shown that the amounts are ex-
tremely tenuous in usual conditions and so remain com-
patible with the experimental evidence on mass conser-
vation [11]. Unfortunately, the calculations for the charge
balance are more involved, so that no estimate seems
to be easily obtainable without having recourse to a nu-
merical work. This is obviously a crucial and dangerous
point for the theory, but the present work has been fo-
cused on the internal consistency of the theory: the impor-
tant point, in this respect, is that the Maxwell equations
are derived unambiguously, and are consistent with pho-
ton dynamics. We noted that the theory predicts a macro-
scopic charge production/destruction but does not say
which kind of particles and which elementary processes
could be involved. Therefore, the strong experimental ev-
idence for the absence of the so-far investigated charge-
conservation-violating decays, e.g. electron decays [44],
does not prove that such a production is excluded. More-
over, as for mass production/destruction, one may argue
that charge production/destruction should be allowed in
a cosmological context, and that a cosmological context
should be only a particular case for a theory [32]. Thus,
the charge non-conservation in the present theory will be-
come an interesting feature, if it turns out to be negligible
in situations where charge is indeed experimentally found
to be conserved. In particular, since the gravitational field
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of an astronomical object varies in its translation through
the imagined “ether", charge production/destruction in a
varying gravitational field should have some implications
on the magnetic fields of the astronomical objects, which
are not fully understood. We hope to be able to investigate
this in the future.

Acknowledgement: I am grateful to Gonzalo Ares de
Parga for a useful discussion.
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