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1. Boundary conditions in micro-macro problems 

 

Basic requirement for the applicability of a micro-macro model: 

Hill's macro-homogeneity condition: the micro-fields σσσσ(x), d(x) 

fluctuate around well-defined macro-averages ΣΣΣΣ and D. 

(Actually ΣΣΣΣ and D usually not uniform, but vary slowly.) 

 

 

 

 

Domain to be considered: any Representative Volume Element 

(RVE) . But even in a macro-homogeneous part, this means: 

 Boundary value unknown, even undetermined  

    (varies from an RVE to another one) 

 

 

 

 

Usual implicit postulate: the exact boundary data do not matter 

→ assume data corresponding to a uniform field, 

 e.g. velocity v(x) = D.x  for  x at the boundary of the RVE 



2. "Stochastic" features of the microscopic fields 

 

A deformation process with non-linear constitutive equation =  

An initial value Pb.  

  for a non-linear "dynamical" ( = differential) system: 

 

dY

dt
f Y t t= ( ( ), ). 

 

 Y(t) ≡ [displacement field u(x0, t), internal variables field X(x0, t)] 

 

⇒ 
dY

dt
 = [velocity field v(x0, t), evolution rate &X(x0, t)] 

= function of current Y = (u, X) and current boundary data for v 

               ↓ 

              an "external forcing" 

 

Non-linear constitutive equations ⇒ non-linear system,  

       f (Y, t) ≠ A(t). Y + B(t) 

 

⇒ Possible sensitivity to initial/boundary data (loss of stability?) 

 



Recall: loss of stability in mechanics of materials appears as  

strain localization. (Cf. Considère's diffuse necking criterion.) 

  

Microscopic strain localization is indeed the rule in plasticity 

(also in macro-homogeneous situations) : 

- dislocation cells,      |  organized in 

- slip lines, microscopic shear bands.     | characteristic patterns 

 

Consequences  

1) The microscopic strain field (hence also the stress) has some 

non-deterministic features characteristic of non-linear dynamical 

systems, with "self-organized" structures emerging. 

 

2) One should not simply assume some particular boundary data 

  (e.g. v(x) = D.x, x∈∂Ω) without checking the effect of other data 

 

3) The strain-rate heterogeneity,  h ≡ 〈 || d − 〈d〉 || 〉 , 

    depends on the amount of microscopic localization.  

Hence h is hardly predictable ⇒ should be added to the 

microscopic information to make the data. 

 



3. The principle of minimum heterogeneity  

 in the proposed micro-macro model 

 

Microscopic constitutive eqns. assumed to derive from a potential: 

e.g. for plasticity or viscoplasticity, ( )σσσσ =
∂
∂

u

d
d X, . 

X: variables that make u inhomogeneous (X=X(x)). E.g. crystal 

orientation, dislocation density, ... 

 

 

Constituents: zones with constant X, say Ω1, ...,Ωn  (for X1, ..., Xn) 

fk ≡ Vol(Ωk)/Vol(RVE) : volume fraction of constituent (k) 

Dk : volume average of the strain-rate d in constituent (k) 

 

 

Unknown of the macro-to-micro transition: the distribution (Dk). 

Let (D* k) be a candidate for this distribution. 

⇒ average D* ≡ f1 D* 1
  +...+ fn D* n  must be the macro-tensor D. 

Heterogeneity of the distribution: 

h = h((D* k)) ≡  f 1 ||D* 1
 -D*|| + ... + f n ||D* n - D*||.



Model: Search Ur (D) ≡ Min [f1 u1(D* 1) + ... + fn un(D*  n
 )] 

  under constraints D*  = D and h = r.   (r assumed given). 

  

Theorem: For any D, there exists a generically unique value r0 (D) 

such that Ur0
(D) = U(D), the exact value of the macro-potential. 

 

Micro-to-macro transition: the mere problem is to find r0. One 

postulates a simple dependence r0 = r0 (D), e.g. r0 = a ||D||, and one 

"adjusts" a from one mechanical test. (In easy cases, a is guessed.) 

 

Macro-to-micro transition: one has to assume that the distribution 

solution (Dsol 
k) is "the actual" distribution (Dk). 

 

 

Theorem: the assumption  (Dsol 
k) = (Dk) amounts to assuming a 

 

Principle of minimum inhomogeneity: 

Among distributions (D* k) that have the relevant macro-average D 

and that lead to the correct value of the macro-potential 

[i.e. U(D) = f1 u1(D1) +...+ fn un (Dn) = f1 u1(D* 1) +...+ fn un (D* n)], 

the actual distribution (Dk) has the least heterogeneity h. 



4. The maximum entropy principle 

 

Consider a system of N "elementary constituents" (molecules in  

the kinetic theory of gases/ Here: small crystals with same volume) 

The state of each elementy constt (velocity, position / orientation, 

strain-rate) is in one among M possible boxes, with 1 << M << N. 

Let li (i = 1, ..., M) be the number of elemy constts in box (i). 

The corresponding fraction is   pi = li /N    (p1 + ... + pM = 1). 

 

Macro-state: (pressure, density) / here: [volume fractions of the 

orientations fk (k = 1, ..., n), macro strain-rate D, macro-power &W ]. 

Must be computable from the probability distribution (pi). 

 

A given probability distribn (pi) [or a given distribn (li), li = Npi ] 

may be obtained by a large number Z of distinct configurations: 

e.g. with N=12 elemy constts and M=5 boxes, (li)=(2,1,3,1,5), as 

 

 

 



Statistical Mechanics: the "real" distribution = the one that may 

be obtained by the largest number Z of distinct configurations 

compatible with the given macro-state. 

 

Number of configurns (ignoring the constraint of the macro-state): 

Z
N

l lM
= !

!... !1
     ⇒  

1
N Z p p Si iLog Log

i=1

M
≈ − ≡∑  

S : statistical entropy. 

 

⇒ In the "no constraint" case,  Z = max ⇔ S = max. 

Resulting distribution: uniform,  pi = 1/M  for  i = 1, ..., M. 

 

But the "S = max" principle is more general (now central in 

statistical physics). With constraints (= with additional 

information, e.g. macroscopic information): amounts to  

selecting the broadest probability distribution compatible with the 

available information (Jaynes 1957). I.e., the "unbiased choice". 

 

 

 

 

 



5. Minimum heterogeneity vs. maximum entropy (polycrystal) 

 

Micro-state: (orientation R, strain-rate d) 

R∈{R1, ..., Rn},   d∈{D1, ..., D m},       (D1 + ... + D m)/m = D. 

 

Let li = l j
k = number of elementary crystals with µ-state (Rk, D

 j ): 

 Σj,k  l
 j

k = N.          i ⇔ (j, k),         p j
k = l j

k /N. 

 

The volume fractions of the orientations are given (= the texture): 

 Nk ≡ l 1 
k + ... + l m

k, or equivalently  fk ≡ Nk /N, are known. 

 

Average strain-rate in orientation Rk : 

Dk ≡ (l 1 
k D

 1 + ... + l m
k D

 m)/ Nk. 

 

Heterogeneity:h f p fk k
k

j
k

j
k

jk
≡ − = −∑ ∑∑D D D D . 

 

Since p p fk
m

k k
1 + + =... , the "S = max" principle selects, in 

average over k and accounting for the constraints, the (p j
k) 

distribution closest possible to the uniform distribution p j
k = fk/m. 

But since (D1 + ... + D m)/m = D, this means simply h minimum !! 



Conclusions 

 

1) In an inelastically deformed heterogeneous material, the 

microscopic fields have some non-deterministic features. These 

make difficult to envisage a micro-macro problem merely as a 

boundary value problem for a differential equation. 

 

2) The proposed variational model is consistent with this remark: 

it considers the strain heterogeneity as a necessary input of the 

micro-macro model, in addition to the microscopic information. 

 

3) The principle of minimum inhomogeneity, that justifies the 

macro-to-micro transition in the model, may be seen as a 

consequence of the maximum entropy principle. 

 

4) The proposed model compares favourably with other models as 

to the experimental agreement - for  the deformation textures of 

steels (other metals currently investigated). 


