Physical Meaning and Experimental Check of a Variational Principle for Macro-to-Micro Transition

M. Arminjon & D. Imbault

Lab. "Sols, Solides, Structures", Institut de Mécanique de Grenoble, Grenoble, France

1. Boundary conditions in micro-macro problems

2. "Stochastic" features of the microscopic fields

3. The principle of minimum heterogeneity

in the proposed micro-macro model

4. The maximum entropy principle

- 5. Minimum heterogeneity vs. maximum entropy
- 6. Experimental check: deformation textures of steels

1. Boundary conditions in micro-macro problems

Basic requirement for the applicability of a micro-macro model:
Hill's macro-homogeneity condition: the micro-fields σ(x), d(x) fluctuate around well-defined macro-averages Σ and D.
(Actually Σ and D usually not uniform, but vary slowly.)

Domain to be considered: any Representative Volume Element (RVE) . But even in a macro-homogeneous part, this means: *Boundary value unknown*, even *undetermined* (varies from an RVE to another one)

Usual implicit postulate: the *exact* boundary data do not matter
→ assume data corresponding to a uniform field,
e.g. velocity v(x) = D.x for x at the boundary of the RVE

2. "Stochastic" features of the microscopic fields

A deformation process with non-linear constitutive equation = An initial value Pb.

for a *non-linear* "dynamical" (= differential) system:

$$\frac{dY}{dt} = f(Y(t), t).$$

 $Y(t) \equiv$ [displacement field $\mathbf{u}(\mathbf{x}^0, t)$, internal variables field $\mathbf{X}(\mathbf{x}^0, t)$]

$$\Rightarrow \frac{dY}{dt} = [\text{velocity field } \mathbf{v}(\mathbf{x}^0, t), \text{ evolution rate } \dot{\mathbf{X}}(\mathbf{x}^0, t)]$$
$$= \text{function of current } Y = (\mathbf{u}, \mathbf{X}) \text{ and } \underline{\text{current boundary data for } \mathbf{v}}$$
$$\downarrow$$
an "external forcing"

Non-linear constitutive equations \Rightarrow non-linear system,

$$f(Y, t) \neq A(t)$$
. $Y + B(t)$

 \Rightarrow Possible sensitivity to initial/boundary data (loss of stability?)

Recall: loss of stability in mechanics of materials appears as *strain localization*. (Cf. Considère's diffuse necking criterion.)

Microscopic strain localization is indeed the *rule* in plasticity (also in macro-homogeneous situations) :

- dislocation cells,	organized in
- slip lines, microscopic shear bands.	characteristic patterns

Consequences

1) The *microscopic strain field* (hence also the stress) has some *non-deterministic* features characteristic of non-linear dynamical systems, with *"self-organized" structures* emerging.

2) One should not simply *assume* some particular boundary data (e.g. $\mathbf{v}(\mathbf{x}) = \mathbf{D} \cdot \mathbf{x}, \mathbf{x} \in \partial \Omega$) without checking the effect of other data

3) The strain-rate heterogeneity, $h \equiv \langle || \mathbf{d} - \langle \mathbf{d} \rangle || \rangle$,

depends on the amount of microscopic localization.

Hence *h* is hardly predictable \Rightarrow should be added to the microscopic information to make the data.

3. The principle of minimum heterogeneity

in the proposed micro-macro model

Microscopic constitutive eqns. assumed to derive from a *potential*:

e.g. for plasticity or viscoplasticity, $\boldsymbol{\sigma} = \frac{\partial u}{\partial \mathbf{d}} (\mathbf{d}, \mathbf{X}).$

X: variables that make u inhomogeneous (**X**=**X**(**x**)). E.g. crystal orientation, dislocation density, ...

Constituents: zones with constant **X**, say $\Omega_1, ..., \Omega_n$ (for **X**₁, ..., **X**_n) $f_k \equiv \text{Vol}(\Omega_k)/\text{Vol}(\text{RVE})$: volume fraction of constituent (*k*) \mathbf{D}_k : volume average of the strain-rate **d** in constituent (*k*)

Unknown of the macro-to-micro transition: the distribution (\mathbf{D}_k) . Let (\mathbf{D}^*_k) be a candidate for this distribution.

⇒ average $\mathbf{D}^* \equiv f_1 \mathbf{D}^*_1 + ... + f_n \mathbf{D}^*_n$ must be the macro-tensor **D**. Heterogeneity of the distribution:

$$h = h((\mathbf{D}^*_k)) \equiv f_1 ||\mathbf{D}^*_1 - \mathbf{D}^*|| + \dots + f_n ||\mathbf{D}^*_n - \mathbf{D}^*||.$$

Model: Search $U_r(\mathbf{D}) \equiv \text{Min} [f_1 u_1(\mathbf{D}^*_1) + ... + f_n u_n(\mathbf{D}^*_n)]$ under constraints $\mathbf{D}^* = \mathbf{D}$ and h = r. (*r* assumed given).

Theorem: For any **D**, there exists a generically unique value r_0 (**D**) such that U_{r_0} (**D**) = U(**D**), the exact value of the macro-potential.

Micro-to-macro transition: the mere problem is to find r_0 . One postulates a simple dependence $r_0 = r_0$ (**D**), e.g. $r_0 = a ||$ **D**||, and one "adjusts" *a* from *one* mechanical test. (In easy cases, *a* is guessed.)

Macro-to-micro transition: one has to assume that the distribution solution $(\mathbf{D}^{\text{sol}}_{k})$ is "the actual" distribution (\mathbf{D}_{k}) .

Theorem: the assumption $(\mathbf{D}^{\text{sol}}_{k}) = (\mathbf{D}_{k})$ amounts to assuming a

Principle of minimum inhomogeneity:

Among distributions (\mathbf{D}^*_k) that have the relevant macro-average \mathbf{D} and that lead to the correct value of the macro-potential [i.e. $U(\mathbf{D}) = f_1 u_1(\mathbf{D}_1) + ... + f_n u_n (\mathbf{D}_n) = f_1 u_1(\mathbf{D}^*_1) + ... + f_n u_n (\mathbf{D}^*_n)$], the actual distribution (\mathbf{D}_k) has the least heterogeneity *h*.

4. The maximum entropy principle

Consider a system of *N* "elementary constituents" (molecules in the kinetic theory of gases/*Here:* small crystals with same volume) The state of each element^y const^t (velocity, position / *orientation, strain-rate*) is in one among *M* possible boxes, with $1 \ll M \ll N$. Let l_i (i = 1, ..., M) be the number of elem^y const^{ts} in box (i). The corresponding fraction is $p_i = l_i/N$ ($p_1 + ... + p_M = 1$).

Macro-state: (pressure, density) / *here:* [volume fractions of the orientations f_k (k = 1, ..., n), macro strain-rate **D**, macro-power \dot{W}]. Must be computable from the probability distribution (p_i).

A given probability distribⁿ (p_i) [or a given distribⁿ (l_i), $l_i = Np_i$] may be obtained by a large number *Z* of distinct *configurations:* e.g. with *N*=12 elem^y const^{ts} and *M*=5 boxes, (l_i)=(2,1,3,1,5), as **Statistical Mechanics:** the "real" distribution = the one that may be obtained by the *largest* number Z of distinct configurations compatible with the given macro-state.

Number of configur^{ns} (*ignoring the constraint* of the macro-state):

$$Z = \frac{N!}{l_1! \dots l_M!} \implies \frac{1}{N} \operatorname{Log} Z \approx -\sum_{i=1}^{M} p_i \operatorname{Log} p_i \equiv S$$

- *S* : *statistical entropy*.
- \Rightarrow In the "no constraint" case, $Z = \max \Leftrightarrow S = \max$. Resulting distribution: *uniform*, $p_i = 1/M$ for i = 1, ..., M.

But the <u>"S = max"</u> principle is more general (now central in statistical physics). With constraints (= with *additional information*, e.g. macroscopic information): amounts to *selecting the broadest probability distribution compatible with the available information* (Jaynes 1957). I.e., the "unbiased choice".

5. Minimum heterogeneity vs. maximum entropy (polycrystal)

Micro-state: (orientation **R**, strain-rate **d**) $\mathbf{R} \in \{\mathbf{R}_1, ..., \mathbf{R}_n\}, \ \mathbf{d} \in \{\mathbf{D}^1, ..., \mathbf{D}^m\}, \ (\mathbf{D}^1 + ... + \mathbf{D}^m)/m = \mathbf{D}.$

Let $l_i = l_k^j$ = number of elementary crystals with μ -state (**R**_k, **D**^j):

$$\sum_{j,k} l^j{}_k = N.$$
 $i \Leftrightarrow (j,k),$ $p^j{}_k = l^j{}_k/N.$

The volume fractions of the orientations are given (= the texture):

 $N_k \equiv l_k^1 + \dots + l_k^m$, or equivalently $f_k \equiv N_k / N$, are known.

Average strain-rate in orientation \mathbf{R}_k :

$$\mathbf{D}_{k} \equiv (l^{1}_{k} \mathbf{D}^{1} + \ldots + l^{m}_{k} \mathbf{D}^{m}) / N_{k}.$$

Heterogeneity:
$$h \equiv \sum_{k} f_{k} \| \mathbf{D}_{k} - \mathbf{D} \| = \sum_{k} \left\| \sum_{j} p^{j}{}_{k} \mathbf{D}^{j} - f_{k} \mathbf{D} \right\|.$$

Since $p^1_k + ... + p^m_k = f_k$, the "S = max" principle selects, in average over k and accounting for the constraints, the (p^{j_k}) distribution closest possible to the uniform distribution $p^{j_k} = f_k/m$. But since $(\mathbf{D}^1 + ... + \mathbf{D}^m)/m = \mathbf{D}$, this means simply h minimum !!

Conclusions

1) In an inelastically deformed heterogeneous material, the microscopic fields have some *non-deterministic* features. These make difficult to envisage a micro-macro problem merely as a boundary value problem for a differential equation.

2) The proposed variational model is consistent with this remark: it considers the *strain heterogeneity* as a necessary *input* of the micro-macro model, in addition to the microscopic information.

3) The *principle of minimum inhomogeneity*, that justifies the macro-to-micro transition in the model, may be seen as a consequence of the *maximum entropy principle*.

4) The proposed model compares favourably with other models as to the *experimental agreement* - for the deformation textures of steels (other metals currently investigated).