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Abstract: The standard interpretations of special relativ-
ity (Einstein–Minkowski) and general relativity (GR) lead
to a drastically changed notion of time: the eternalism
or block universe theory. This has strong consequences
for our thinking about time and for the development of
new fundamental theories. It is therefore important to
check this thoroughly. The Lorentz–Poincaré interpreta-
tion, which sees the relativistic effects as following from
a “true” Lorentz contraction of all objects in their motion
through the ether, uses a conservative concept of time
and is in the absence of gravitation indistinguishable from
the standard interpretation; but there exists currently no
accepted gravitation theory for it. The scalar ether theory
of gravitation is a candidate for such a theory; it is pre-
sented and discussed. The equations of motion for a test
particle are derived; the case of a uniformly moving mas-
sive body is discussed and then specialized to the case
of spherical symmetry. Formulas for the acceleration of
test particles are given in the preferred frame of the ether
and in the rest frame of the massive body that moves with
velocityVwith respect to the ether.When the body rests in
the ether (V = 0), the acceleration is up to order c−2 iden-
tical to GR. The acceleration of a test particle for V ̸= 0 is
given; this makes it possible to fit observations in celestial
mechanics to ephemerides withV as a free parameter. The
current status of such fits (although to ephemerides and
not to observations) is presented and discussed.
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1 Introduction and Summary
There are two empirically indistinguishable interpreta-
tions of special relativity: the Lorentz–Poincaré (L-P) inter-
pretation, which sees the relativistic effects as following
from the “true” Lorentz contraction of all objects in their
motion through the ether, and the standard (Einstein–
Minkowski) interpretation [1, 2]. The latter is currently pre-
ferred, despite the fact that the L-P interpretation is com-
patible with the classical notion of time and has definite
advantages regarding the physical understandability, in
particular regarding the causal explanation of the rela-
tivistic effects such as timedilation [1, 3]. (The L-P interpre-
tation of special relativity is also known under the name
“Lorentz ether theory,” which we consider inappropriate
because it hides (i) the decisive contributions of Poincaré
and (ii) the full compatibility of this interpretationwith the
physics of special relativity.) An important argument for
the standard (Einstein–Minkowski) relativity is that gen-
eral relativity (GR) is an extension of it and is not compat-
ible with the L-P interpretation [4]. In standard relativity,
the concept of time is completely different from what we
experience: there is no observer-independent flow of time,
and there is no simple concept of present. Instead, the
idea of eternalism (the block universe theory) appears to
be the notion of time that best corresponds with standard
relativity. These are significant changes to our understand-
ing of the world, which we should challenge if we wish to
make sure that they are really correct. We will therefore
examine in this article a theory of gravity that is consistent
with the L-P interpretation. That theory interprets gravity
as Archimedes’ thrust exerted by a perfect fluid or “ether”
on the matter particles – those being viewed as extended
objects, more precisely as organized flows in that same
fluid. Archimedes’ thrust is due to the (macroscopic) pres-
sure gradient in the postulated fluid. This interpretation
of gravitation and its natural coupling with the L-P inter-
pretation of special relativity have been discussed in detail
in [5]. In short, the L-P interpretation of special relativ-
ity sees the metrical effects (space contraction and time
dilation) as absolute effects of the uniform motion. When
combined with the interpretation of gravity as being due
to the pressure gradient of the ether, this leads to attribute
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similar metrical effects to the gravitation. One thus builds
a relativistic theory of gravitation with a preferred refer-
ence frame, based on a unique scalar field [6], hence the
name “scalar ether theory” or SET.¹ The preferred refer-
ence frame ℰ of the theory is the frame that moves with
the macroscopic (or averaged) velocity field of the fluid
ether considered by that theory. In other words, the aver-
age velocity field of the ether with respect to ℰ is zero by
definition of that frame [5]. The global frame ℰ is a natu-
ral inertial frame. Hence, the existence of global inertial
frames is unproblematic for this theory. (Global inertial
frames occur of course in Newton’s theory but also, to a
certain extent, in the celestial mechanics based on GR,
through the use there of the harmonic gauge condition [9],
which can be interpreted as defining a generalization of
the Newtonian global inertial frames [10].) Special relativ-
ity is the limiting situation in which the pressure gradi-
ent is negligible, thus making the ether (macroscopically)
homogeneous. In summary, that theory has a physical
interpretation for gravity and extends the L-P interpreta-
tion of relativity to the heterogeneous ether implied by
gravity.

The other motivation for that theory is to avoid some
problems that are suffered by GR, despite its experimental
success.
(i) In SET, the gravitational collapse does not lead to a

singularity [11]; neither does the past state of very
high density implied by the cosmic expansion [12].

(ii) In SET, the spacetime manifold is given, and there is
no need for any gauge condition.

(iii) Because that theory has a preferred reference frame,
its coupling with quantum theory is easier than for
GR; e.g. the energy operator of the Dirac equation
does not have any nonuniqueness problem [13].

(iv) In SET, the cosmic expansion is necessarily accel-
erated, without the need to introduce any dark
energy [12].

(v) In order to formulate a consistent electrodynamics
in the presence of gravitation for that theory, one
had to postulate an interaction energy, and that
energy turns out to be a possible candidate for dark
matter [14].

1 Note that extensions of GR having a preferred reference frame have
been proposed, in particular the “Einstein-aether” theory. That the-
ory adds a vector field (the 4-velocity of the preferred frame) into the
Hilbert-Einstein action [7, 8] and has thus a “dynamical” preferred
frame. The preferred reference frame of SET is “prior-geometrical”
instead of dynamical. SET is not an extension of GR; instead, it
proposes a fully different view of gravity.

The experimental check of such an alternative theory of
gravitation involves of coursemany points, a good number
of which have been already checked, see, among others,
[6, 15, 16]; for a summary, see [17], Section 1. (As noted
there, this scalar theory differs from all known scalar the-
ories.) In particular, the celestial mechanics has also been
checked for this theory [15, 18], but this was for an ear-
lier version of the theory (“v1,” see [16] and references
therein), which had to be modified to the current version
(“v2,” see [6]). The aim of the present research is to begin
the check of the celestial mechanics of the “new” version,
v2. That beginning consists essentially in assuming for
simplicity that the mass centres of the N bodies move as
test particles in the gravitational field of the other bodies.
In this framework, the main task of the present work was
to derive a tractable equation of motion for a test particle
in SET.

In Section 2, we present themain equations of the the-
ory. We note there that a general expression of the acceler-
ation of a test particle obtained for v1 holds true for v2, and
we show the spatial covariance of the equations. Section 3
derives a simple and exact expression of the acceleration
in the most general case. In Section 4 we prove that, in
the case where the gravitational field is produced by a
uniformly moving massive body, the source of that field
can be defined in the uniformly moving frame as a time-
independent scalar field.We obtain then the explicit exact
solution for the gravitational field (50). That case is fur-
ther specialized in Section 5 by assuming that the mas-
sive body has spherical symmetry. We provide there the
expression of the acceleration both in the preferred frame
and in the moving frame. Section 6 discusses the applica-
tion to the effective calculation of an ephemeris.²We show
that the approximation done in the present work to calcu-
late the post-Newtonian (PN) correction, that each planet
moves as a test particle in the field of the spherical Sun,
plus the fact that comparison is made with an ephemeris
based on GR, necessarily lead to the result found that the
velocity of the barycentre is unrealistically small. There-
fore, the next steps should be (i) to derive fully consistent
equations at the PN level that take into account the self
fields (as was previously done for v1 [18]) and,most impor-
tantly, (ii) to adjust the theory on “direct” data, as little
affected as possible by a reduction using GR.

2 In order to test this theory in celestial mechanics, it is preferable
to calculate ephemerides. In any case, one cannot use the parameter-
ized PN formalism, as in that theory the test particles generally do not
have a geodesic motion [6, 19].
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2 Main Equations of the Theory
(A)Metrics. The theory that is studied (SET) is a scalar the-
ory with a preferred reference frame and two Lorentzian
spacetime metrics: a flat one (Minkowski’s metric) γ0 and
a curved or “physical” one γ, the latter being related to
γ0 through a scalar field [6]. The preferred reference fluid³
ℰ assumed by the theory is an inertial frame for the flat
metric γ0; i.e. there are spacetime coordinates xµ that are
both adapted to ℰ⁴ and Cartesian for γ0 – that is, γ0µν =
ηµν,where ηµν (µ, ν = 0, . . . , 3) are the components of the
standard matrix η = (ηµν) := diag(1,−1,−1,−1). The
time T := x0/c is well defined up to a constant shift⁵ and
is a preferred time: the inertial time in the inertial frame
ℰ . (Here, c is the velocity of light.) In such coordinates, we
have also, by assumption:

γ0i = 0 (i = 1, 2, 3). (1)

The latter equation (“synchronization condition”)
implies that the spatial metric g associated in the refer-
ence fluid ℰ with the spacetime metric γ [20, 24, 25] is just
the spatial part of the spacetime metric γ, i.e. gij = −γij
(i, j = 1, 2, 3) in such coordinates [24]. The spatial metric
associated in the reference fluid ℰ with the flat metric γ0

is a Euclidean (i.e. flat and Riemannian) spatial metric g0

that is time independent, i.e. ∂g0ij/∂x0 = 0 in any coordi-
nates that are adapted to ℰ . The metric g is assumed to
have a simple relation with g0:

g = β−2g0 (2)

3 A reference fluid is a 3-dimensional congruence of reference world
lines, each of which defines the trajectory of a point bound to that
reference fluid [20]. This notion does not imply the presence of a real
fluid. However, in the case of the preferred reference fluid ℰ, we do
imagine (at a heuristic level) that it represents the averaged motion
of some kind of fluid, the “micro-ether,” see Section 3.3 in [5].
4 Spacetime coordinates xµ adapted to a given reference fluid ℱ are
ones for which the reference world lines have constant spatial coor-
dinates xi (i = 1, 2, 3) [21, 22]. For a change from one set of coordi-
nates adapted toℱ to another one (i.e. for an “internal transformation
of coordinates” [20]), the change in the spatial coordinates has to
be independent of the time coordinate, but the change in the time
coordinate is arbitrary [20]. Hence, we can speak of adapted spatial
coordinates xi as well. By a reference frame, we mean a reference
fluid endowed with a given time coordinate map. For more details
on these notions and their development, see [23] and references
therein.
5 If x′µ are other coordinates that verify those two conditions, we
have ∂x′ρ

∂xµ
∂x′σ
∂xν ηρσ = ηµν and ∂x′i

∂x0 = 0 (i = 1, 2, 3). It follows easily that
∂x′0/∂xi = 0 and ∂x′0/∂x0 = ±1. Therefore, asking ∂x′0/∂x0 > 0,
the time coordinate is well defined up to a constant shift.

where

β := √
γ00. (3)

This means that, in a gravitational field, the mea-
suring rods are contracted and the periods of clocks are
dilated, in the same ratio β (usually β ≤ 1). The reason for
this assumption in the framework of the hypothesis of a
perfectly fluid “ether” is explained in detail in [5]. Thus,
in Cartesian coordinates that are adapted to the reference
fluid ℰ, we can write the line elements of the flat metric
and the “physical” metric, respectively, as

(ds0)2 := γ
0
µνdxµdxν = (dx0)2 − dxidxi , (4)

ds2 := γµνdxµdxν = β2(dx0)2 − β−2dxidxi . (5)

(B) Equation of Motion of a Test Particle. In SET,
motion is defined by an extension to curved spacetime
of the special-relativistic form of Newton’s second law:
force = time − derivative of momentum, the latter involv-
ing either the velocity-dependent relativistic mass or the
energy of the photon (divided by c2) [19]. That extension
involves an acceleration vector g of gravitation, defined as
follows:

g := −c2 grad g β
β , (6)

where

(grad gβ)i := gijβ,j , (7)(︁
gij

)︁
:=

(︀
gij

)︀−1 being the inverse matrix of matrix
(︀
gij

)︀
.

The precise writing of the curved-spacetime Newton sec-
ond law has been discussed in detail in [19] and has been
summarized, for example, in [17]: Section 2, Point (iii).
Here, we will need only the “coordinate acceleration,”
which has been deduced from it in [26], (18) where

dui

dT =
1
β

(︂
∂β
∂T + 2β,juj

)︂
ui − Γijku

juk

− 1
2 g

ij ∂gjk
∂T uk − c2

2 f (∇0f )i , (8)

with ui := dxi/dT, f := β2, ∇0 := gradg0 , and where the
Γijk’s are the Christoffel symbols associated with the spa-
tial metric g. In [26], which belonged to a first version of
SET (“v1”), the assumed relation between the two spatial
metrics differed from (2) above. However, the derivation
of (8) above depended on that relation only through the
following reexpression of the space vector (6) ((2) in [26]):

g = − c2

2 ∇0 f . (9)
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Now, with the relation between the two spatial met-
rics assumed in the second version of SET (“v2”) [5, 6], (2)
above, we have for the inverse matrices (gij) and (g0 ij):

gij = β2 g0 ij , (10)

so that the gravity acceleration (6) is

gi : = −c2
gijβ,j
β = −c2

β2 g0 ijβ,j
β = −c2βg0 ijβ,j

= − c2

2 g
0 ij f,j := − c2

2 (∇0 f )i . (11)

Therefore, (9) remains valid for v2, and hence, the
same is true for (8). We emphasize that the equation of
motion (8) is valid for a massive test particle as well as for
a photon [26].

(C) Equation for the Scalar Field. This is the flat-
spacetime wave equation for the scalar field ψ := −Logβ
[6]:

�ψ := ψ,0,0 − ∆g0 ψ =
4πG
c2 σ. (12)

Here, ∆g0 is the usual Laplace operator, defined with
the Euclidean spacemetric g0 (thus, ∆g0 ψ = ψ,i,i in Carte-
sian coordinates for g0, i.e. such that g0ij = δij). And σ is
the energy component of the total energy-momentum ten-
sorT ofmatter and nongravitational fields in the reference
frame ℰ (i.e. the reference fluid ℰ endowed with the pre-
ferred time coordinate x0 = cT, with T the inertial time in
ℰ):

σ :=
(︁
T00

)︁
ℰ
. (13)

(We take T in mass units; i.e. it is c2σ that is truly a
volume energy density.)

(D) Covariance. A first point is that all equations writ-
ten above, except for (4), (5), and (8), aremanifestly covari-
ant under any purely spatial coordinate change:

x′0 = x0, x′i = ψi(x1, x2, x3). (14)

For instance, the fact that (6) is covariant under any
change (14) results immediately from the facts that β (3) is
obviously invariant under such a change and that then (6)
and (7) manifestly define a spatial vector⁶; i.e. after such a
change, the components gi become

g′i =
∂x′i

∂xj
gj . (15)

6 A “geometric” definition also exists for this: a spatial vector is a
vector in the tangent space, at some point, to the space manifold
associated with the reference fluid ℰ (see [23], Section 4.2).

Similarly, γ0i (i = 1, 2, 3) are manifestly the compo-
nents of a spatial vector; hence, (1), if it is valid in some
coordinate system, remains valid after any spatial change.
Moreover, rewriting (4) and (5) after a change (14) is easy:
replace dxidxi with g0ijdxidxj. The coordinates obtained
after a change (14) are still adapted to the preferred refer-
ence frame ℰ, but of course the new spatial coordinates x′i

are generally not Cartesian for g0. As to the acceleration
(8), it is not a spatial vector [26], but (8) becomes (mani-
festly) space covariant if one puts the term Γijku

juk on the
l.h.s., thus expressing the “absolute” derivative of the 3-
vector u w.r.t. T (and based on the metric g of the time
considered [19]), instead of its total derivative w.r.t. T – so
that also (8) holds true after any purely spatial coordinate
change (14). Thus, as one expects from a preferred-frame
theory, all equations written above are spatially covari-
ant, except for (4) and (5), which are easily rewritten in a
spatially covariant form.

In addition, the “synchronization condition” (1), as
well as the definition of the gravity acceleration (6), is sta-
ble also by a change of the time coordinate having the
special form:

x′0 = φ(x0). (16)

However, the relation (2) between the flat and the
curved spatial metrics, as well as the field (12), is valid
only if the time coordinate is x0 = cT – and in any spatial
coordinates that are adapted to ℰ . Indeed, β is not invari-
ant under a change (16) of the time coordinate, in contrast
with g and g0, hence (2) is not covariant under such a
change. Hence neither is the rewriting (11) of the vector g,
nor the equation of motion in the form (8). The scalar field
of the theory has therefore to be definedmore precisely (in
spatial coordinates adapted to ℰ) to be [6, 16]:

β̃ :=
(︀√

γ00
)︀
x0=cT . (17)

In this article, we take x0 = cT as the time coordinate;
hence, we may forget the distinction between β and β̃.

3 Exact Equation of Motion of a
Test Particle

The equation ofmotion (8) does not fully take into account
the explicit form (2) of the spatial metric g; e.g. it is valid
also for the first version of SET, for which it was first
derived. With (2), we have in Cartesian coordinates for the
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Euclidean metric g0: gij = ϕδij with ϕ = β−2; hence, the
Christoffel symbols of g are given by

Γijk : =
1
2 g

il(︀glj,k + glk,j − gjk,l
)︀

=
ϕ−1

2 δil
(︀
ϕ,kδlj + ϕ,jδlk − ϕ,lδjk

)︀
=
ϕ−1

2

(︁
ϕ,kδij + ϕ,jδik − ϕ,iδjk

)︁
=

−1
β

(︁
β,kδij + β,jδik − β,iδjk

)︁
. (18)

We get also from (2):

1
2 g

ijgjk,T =
−β,T
β δik . (19)

We thus obtain from (8):

dui

dT =
1
β

(︁
β,T + 2β,j uj

)︁
ui

+
1
β

(︁
β,k ui uk + β,j uj ui − β,i uj uj

)︁
+
β,T
β ui − c2

2 f (∇0 f )i . (20)

In Cartesian coordinates for the Euclidean metric g0,
the last term is

− c2

2 f (∇0 f )i = −c2β3β,i . (21)

Hence, we can rewrite (20) as

dui

dT =
1
β

[︁(︁
2β,T + 4β,j uj

)︁
ui − β,i uj uj

]︁
− c2β3β,i . (22)

We still reexpress this in termsof the fieldψ := −Logβ
that enters the field (12). We have

β,µ
β = (Logβ),µ = −ψ,µ (23)

and

β3β,i = β4 β,iβ = −e−4ψψ,i (24)

so that (22) rewrites as

dui

dT = −2ψ,Tui − 4ψ,j uj ui

+ ψ,i uj uj + c2e−4ψψ,i (25)

4 Case of a Uniformly Moving
Massive Body

Consider a massive body, say B, which is in a translation,
at a uniform and constant velocity V, with respect to the
preferred reference frame ℰ . This means that, at any time
T, the spatial velocity vector u of any point bound with B
is the same spatial vector V.⁷ Hence, the spatial positions
of that point at time T = 0 and at time T fulfil

x(T) − x(T = 0) = ṼT . (26)

Here, x(T) := (xi(T)) ∈ R3, the xi’s being any Carte-
sian spatial coordinates adapted to ℰ, and accordingly
Ṽ := (V i) ∈ R3.⁸ The energy density relative to ℰ, (13),
follows that translation and verifies, hence

σ(T, x + VT) = σ(T = 0, x). (27)

This relation remains true in amore general situation,
in which the body has, in addition to its uniform trans-
lation, a stationary rotation with an axis that follows the
translation at V, and around which the energy distribu-
tion σ is rotationally symmetric. Consider now the global
reference fluid, say ℰV, which follows (only) the uniform
translation, at velocity V, of body B. That is, at any time
T, the spatial velocity vector u of any point bound with ℰV
is the same spatial vector V – but now the initial position
x(T = 0) in (26) can be any vector x0 ∈ R3. The reference
fluid ℰV is also an inertial frame for the flat metric γ0, as
is ℰ . The reference fluid ℰV, endowed with its own iner-
tial time T′, will henceforth be called “the moving frame.”

7 The velocity of a given point bound with B is in general a time-
dependent spatial vector in the reference frame ℰ, having compo-
nents ui(T) = dxi/dT in any spatial coordinates xi adapted to ℰ . The
uniformity, at any given time T, of the 3-vectorV, refers to the connec-
tion associated with the Euclideanmetric g0; it means thatV is trans-
ported parallel along any spatial curve xi = xi(ξ ). It thus means that
the components Vi stay unchanged (dV i/dξ = 0) along any curve
in any Cartesian spatial coordinates adapted to ℰ (Note 4); in other
words, Vi does not depend on the spatial position. The constancy
of V means that this spatially uniform vector field actually does not
depend on T, dV i/dT = 0. Thus,Vi is a true constant in any Cartesian
spatial coordinates adapted to ℰ .
8 Thus, x and Ṽ are “coordinate 3-vectors.” They are not spatial vec-
tors [see after (15)]. This is because to define the spatial position as a
spatial vector one needs to choose an origin point. When the coordi-
nate system is changed, x and Ṽ change to x′ := (x′i) and Ṽ′ := (V ′i),
but the spatial vector V that has the Vi’s as components in the first
coordinate system and the V ′i ’s in the second one is the same vector.
Hereafter, for the simplicity of notation,Vwill denote both the spatial
vector and the “coordinate vector.”
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We can define the field σ, as it is “seen” in the moving
frame, as follows:

σ′(X′) := σ(X(X′)) (σ(X) := (T00)ℰ (X)). (28)

Here,X′ := (x′µ) are spacetime coordinates adapted to
themoving reference fluid ℰV andwith x′0 = cT′, whereas
X := (xµ) are spacetime coordinates adapted to the pre-
ferred frame ℰ and with x0 = cT. Of course, σ′ is in gen-
eral not the T00 component in the new coordinates, i.e.
σ′(X′) ̸= T′00(X′) in general, as

T′00(X′) =
∂x′0

∂xµ
∂x′0

∂xν
Tµν(X) ̸= T00(X) = σ(X), (29)

and as the latter is by the definition (28) equal to σ′(X′).

Proposition. If the relation (27) is true, then the field σ′
defined by (28) does not depend on the inertial time T′ in
ℰV:

σ′ = σ′(x′1, x′2, x′3) = σ′(x′). (30)

Proof. Note first that the energy density (13) involved in
the relation (27) is invariant under any purely spatial coor-
dinate change (14). Hence, if (27) is true for one set of spa-
tial coordinates xi, which are adapted to ℰ and are Carte-
sian for the Euclidean metric g0, then it remains true if
we change the spatial coordinates for ones with the same
property. Also, if (30) is true with one set of coordinates x′i

(whether they are Cartesian for some Euclidean metric or
not), it holds true after a purely spatial coordinate change
(14) applied to the x′i’s. So we can choose the spatial coor-
dinates xi (adapted to ℰ and Cartesian for g0) and the spa-
tial coordinates x′i (adapted to ℰV) as we wish. Starting
from coordinates (xµ) = (cT, x, y, z), which are adapted to
ℰ and with x, y, z being Cartesian for g0, we obtain coor-
dinates adapted to the moving frame by doing a Lorentz
transformation, which can be made special through the
choice of the axes:

F : T′ = γ

(︂
T − Vx

c2

)︂
,

x′ = γ(x − VT), y′ = y, z′ = z (31)

(here γ = (1 − (V2/c2))−1/2 is the Lorentz factor). The
inverse transformation is

F−1 : T = γ

(︂
T′ + Vx′

c2

)︂
, x = γ(x′ + VT′),

y = y′, z = z′. (32)

Let us evaluate σ′(T′, x′)−σ′(T′ = 0, x′). To apply (28),
we define

(T, x) : = F−1(T′, x′) and

(T0, x0) : = F−1(T′ = 0, x′). (33)

To obtain (T0, x0) we first apply (32) with T′ = 0 and
get

T0 = γ
Vx′
c2 , x0 = γx′, y0 = y′, z0 = z′. (34)

Then, as from (33) we have (T′, x′) = F(T, x), we enter
precisely (31) into the latter equation to get

T0 =
γ2V(x − VT)

c2 , x0 = γ
2(x − VT),

y0 = y, z0 = z. (35)

Now we want to use (27). We rewrite it as

σ(T1, x + VT1) = σ(T = 0, x) = σ(T2, x + VT2) (36)

(for any given x and any two times T1 and T2), from which
we see that

σ(T1, x1) = σ(T2, x2) if x2 − x1 = V(T2 − T1). (37)

(Note from (35) that y and z are constant in our cur-
rent manipulations, corresponding with the fact that V =
(V , 0, 0).) We apply (37) with (T1, x1) := (T0, x0) defined
in (33)2 and computed in (35). So (37) allows us to write

σ(T0, x0) = σ(T0, x0, y0, z0) = σ(T0, x0, y, z)

= σ(T2, x, y, z), (38)

provided that

V(T2 − T0) = x − x0. (39)

From this and (35), we compute the corresponding
time T2 as

T2 = T0 +
x − x0
V =

γ2V(x − VT)
c2 +

x − γ2(x − VT)
V ,

(40)
that is

T2 = x
(︂

γ2V
c2 − γ2 − 1

V

)︂
+ T

(︂
γ
2 − γ2V2

c2

)︂
= T . (41)

This and (38) mean that

σ(T0, x0) = σ(T, x). (42)
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But by the definitions (28) and (33), we have precisely

σ(T0, x0) = σ′(0, x′) and σ(T, x) = σ′(T′, x′). (43)

We thus obtain that, for any value T′ of the time of the
moving frame and for any position x′ in this frame,

σ′(0, x′) = σ′(T′, x′). (44)

This proves the Proposition. �

Remark: If instead of the Lorentz transformation (31), the
coordinate transformation is the Galileo transformation:

(T′, x′) = F(T, x) := (T, x − VT), (45)

then the same Proposition is true also, its proof being then
much simpler. On the other hand, if the coordinate trans-
formation F is fully general (and in particular nonlinear),
then one cannot deduce anything like this. What one can
write then is

σ′(T′, x′) : = σ(T, x) with (T, x) := F−1(T′, x′)

= σ(0, x − VT)

= σ′(T′0, x′0) with (T′0, x′0) := F(0, x − VT),
(46)

and this cannot be transformed further to obtain (30).
In the same way as in (28), we define

ψ′(X′) := ψ(X(X′)). (47)

As the flat wave operator is (in particular) Lorentz
invariant, it follows from (12), (28), and (47) that we have
when the coordinates x′µ (adapted to ℰV and such that
x′0 = cT′) are moreover Cartesian for the Minkowski met-
ric γ0:

�ψ′ =
∂2ψ′
∂(x′0)2

− ∂2ψ′
∂x′i∂x′i

= κσ′, κ := 4πG
c2 . (48)

The relevant solution for an (assumed) isolated mas-
sive body B is the pure retarded potential (i.e. without the
additionof a solutionof thehomogeneouswave equation),
because it corresponds to the situationwithout an external
field [24, 27]. Thus,

ψ′(T′, x′) =
κ
4π

∫︁
B

σ′
(︂
T′ − |x′ − y′|

c , y′
)︂

d3y′
|x′ − y′| . (49)

However, due to the time independence of σ′ (30), the
retardation has no effect, and we get a stationary field:

ψ′ = ψ′(x′) =
G
c2

∫︁
B

σ′(y′)
|x′ − y′| d

3y′. (50)

The exact solution (50) for the gravitational potential
ψ is thus just like the Newtonian potential, but remind
that it has to be transformed to the preferred frame ℰ by a
Lorentz transformation. In order touse (50) in the equation
of motion (25), we have to express the derivatives w.r.t.,
the “fixed” coordinates xµ in terms of derivatives w.r.t., the
“moving” coordinates x′µ. This will be done in the next
section in the case of spherical symmetry. In practice, the
velocity vector V is an unknown; more precisely, it is a
“solved-for parameter” in the optimization software [18],
see Section 6. As a consequence, we cannot use a spe-
cial Lorentz transformation; instead, we use the general
version of the Lorentz transformation (e.g. Weinberg [28],
Section 2.1):

T′ = g(T, x) := γ

(︂
T − V.x

c2

)︂
, (51)

x′ = f(T, x) := x +
γ − 1
V2 (V.x)V − γTV. (52)

From this, we find easily using the fact that ∂ψ′/∂T′ =
0 [(50)]:

(∇xψ)(T, x) = (∇x′ψ′)(f(T, x))

+ (γ − 1)
(︀
V.(∇x′ψ′)(f(T, x))

)︀ V
V2 (53)

= ∇x′ψ′ + (V.∇x′ψ′)
V
2c2 + O(c−4) (54)

(all equationswithout anO(c−n) remainder are exact), and
also

∂ψ
∂T (T, x) =

∂ψ′
∂x′j

(f(T, x))∂f
j

∂T (T, x)

= −γV j ∂ψ′
∂x′j

= −γV.∇x′ψ′. (55)

5 Case of a Spherical Uniformly
Moving Massive Body

Let us assume that the source σ′ in (50) is spherically
symmetric, i.e.

σ′(x′) = σ′(r′), r′ := |x′ − x′b|, (56)

where x′b is the (fixed) position, in the moving frame ℰV,
of the centre of spherical symmetry (the mass centre of
body B) and |x′| := (g′0(x′, x′))1/2 = x′i x′i, with g′0 the
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Euclidean spatial metric associated with the Minkowski
metric γ0 in the moving frame ℰV.⁹ Then we get

ψ′(r′) =
GM
c2 r′ , (57)

and

(∇x′ψ′)(x′) = −GM
c2

x′ − x′b
r′3

, (58)

with

M :=
∫︁
B

σ′(r′)d3x′. (59)

(Of course, (57) and (58) are valid only outside themas-
sive body B, i.e. for r′ > R, where R is the radius of B, i.e.
σ′(r′) = 0 for r′ > R. Note that the assumption that the
energy density be spherically symmetric is indeed more
correct in the frame that moves with the body, for there is
then no Lorentz contraction to account for.) We note xa(T)
andxb(T), thepositions in thepreferred frameof a test par-
ticle (which couldbe themass centre of a planet) andof the
centre of body B (which could be the Sun), and

rab(T) := xa(T) − xb(T). (60)

The positions in the moving frame are related to xa(T)
and xb(T) by the Lorentz transformation (51) and (52):

x′a(T) : = f(T, xa(T)),

f(T, xb(T)) = x′b = Constant. (61)

Setting

r′ab(T) := x′a(T) − x′b , R′ab(T) := |r′ab(T)|, (62)

we have from (58):

(∇x′ψ′)(x′a(T)) =
GM
c2 h′, h′(T) := − r′ab(T)

R′3ab(T)
. (63)

We can then use (53) and (55) to rewrite the accelera-
tion (25) more explicitly as

du
dT =

GM
c2

[︁
−2hVu − 4(h.u)u + u2h + c2β4h

]︁
, (64)

9 Since the Lorentz transformation (51) and (52) transforms the Carte-
sian coordinates xµ forγ0 to Cartesian coordinates x′µ forγ0, it follows
that the new spatial coordinates x′i are Cartesian for the Euclidean
spatial metric g′0. Simply: (ds0)2 = (dx0)2 − dxi dxi = (dx′0)2 −
dx′i dx′i = (dx′0)2 − g′0ij dx′i dx′j .

in which from (53):

h := c2

GM (∇xψ)(T, xa(T)) = h′(T) + (γ − 1) V.h′V2 V

= h′ + V.h′
2c2 V + O(c−4), (65)

and from (55):

hV := −γh′.V, (66)

with, moreover (to be calculated at x = xa(T)):

β = β(T, x) = e−ψ(T,x), (67)

where, according to (57),

ψ(T, x) = ψ′(T′, x′) =
GM
c2r′ . (68)

We want to compute the (first) PN approximation,
which includes the O(c−2) corrections to the Newtonian
acceleration. The latter is order zero w.r.t. c−2 and comes
from the GM

c2 c
2β4h = GMβ4h term in the acceleration (64).

Indeed, we compute from (67) and (68):

β4 = 1 − 4 GMc2 r′ + O
(︁
c−4

)︁
. (69)

The 1 on the r.h.s. of (69) gives the term GMh in the
acceleration (64); this contains the Newtonian accelera-
tion GMh′, see (65).

The acceleration (64) can be reexpressed in the mov-
ing frame ℰV, by using the Lorentz transformations of the
velocity:

u′ =
1

1 − u.V/c2

[︂(︂
u.V(1 − γ−1)

V2 − 1
)︂
V + γ

−1u
]︂
(70)

and the acceleration:

du′
dT′ =

du
dT

γ2(1 − u.V
c2 )

2 −
( dudT .V)V(γ − 1)

V2γ3(1 − u.V
c2 )

3 +
( dudT .V)u

c2γ2(1 − u.V
c2 )

3 .

(71)
Neglecting all terms of order c−4 or higher and set-

ting r′ := r′ab and r′ := R′ab, we obtain after a somewhat
tedious calculation:

du′
dT′ = −GM

r′3

(︂
r′ + A

c2

)︂
+ O(c−4), (72)

with

A = −(r′.V + 4r′.u′)(V + u′)

+
[︁
u′2 + 4(u′.V) + 2V2

]︁
r′ − 4GMr′ r′. (73)
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Thus, that part of the acceleration, which is indepen-
dent of V, is(︂

du′
dT′

)︂
V=0

= −GM
r′3

{︂
r′ + 1

c2

[︂(︂
u′2 − 4GMr′

)︂
r′ − 4(r′.u′)u′

]︂}︂

+ O
(︁
c−4

)︁
. (74)

This is exactly the PN acceleration of a test particle
in an SSS (static spherically symmetric) field as found in
GR from the spatially isotropic SSS solution of GR. See e.g.
Weinberg [28], (9.5.3) and (9.5.14), or [6], (89). Equivalently,
(74) is exactly the SSS case of the PN acceleration of a test
particle as found in GR when one starts from the so-called
“standard PN metric.” (The latter is spatially isotropic,
see e.g. Weinberg [28], (9.1.60).) In fact, (74) can be easily
checked directly by doing V = 0 in the acceleration in the
preferred frame, (64), as we have then

u = u′, hV = 0, h = h′ = −r′/r′3, (75)

and as we can use (69). The other part of the acceleration
is (︂

du′
dT′

)︂
−

(︂
du′
dT′

)︂
V=0

=
GM
c2 r′3

{[r′.(V + 4u′)]V

+ (r′.V)u′ −
(︁
4u′.V + 2V2

)︁
r′

}︁
+ O

(︁
c−4

)︁
. (76)

Up to O
(︀
c−4)︀

, we can absorb the last term into
the Newtonian acceleration through a redefinition of the
active massM to

M′ := M
[︁
1 + 2(V2/c2)

]︁
. (77)

6 Implementation in a Software for
Ephemeris Calculation

(A) Principle, Equations of Motion. The equation of motion
(64) has been implemented in a software for ephemeris
calculation with parameter optimization. The main pro-
gram loops on the numerical integration of the equations
of motion for the major bodies of the solar system in order

to minimize the least-squares residual [29]. The solved-for
parameters of the optimization are the initial conditions
(position and velocity) for the N bodies, their masses, and
(for SET only) the “absolute” velocity of their barycentre.
That software had been built for v1, and it had been indeed
used for v1 [18], after having been tested (i) with the New-
tonian equations of motion (for spherical attracting bod-
ies) [29] and (ii) with the Newtonian equations of motion
modified to include, for the planets, the PN correction
that comes from the Sun considered as a spherical body
[30]. Here, besides using the sameODE integration scheme
and the same optimization algorithm as in [18, 29, 30], we
also use the same approximation as in the latter work [30]
for the equations of motion. That is, in view of (64), we
compute the acceleration, in the reference frame ℰ, of the
planet with number a (a = 1, . . . , N − 1), as

dua
dT =

N−1∑︁
d=1
d ̸=a

−GMd (xa − xd)
|xa − xd|3

+
GMN
c2

×
[︁
−2hVua − 4(h.ua)ua + u2ah + c2 β4h

]︁
. (78)

The last body, with number N, is the Sun. Its accelera-
tion is computed as

duN
dT =

N−1∑︁
d=1

−GMd (xN − xd)
|xN − xd|3

. (79)

Thus, in this model, we take into account the New-
tonian attractions of the planets on the Sun; hence, the
velocity uN of the Sun w.r.t. ℰ is not exactly a constant. To
compute the contribution of the Sun to the acceleration of
body a (a < N), i.e. the term with the square bracket on
the r.h.s. of (78), we substitute uN for V into the expres-
sions (65) and (66). By doing so, essentially, we neglect the
effect of the very small (and variable) acceleration of the
Sun on the gravitational field that it produces. This is in
addition to neglecting the departure from spherical sym-
metry of the gravitational fields of the Sun and the planets,
to neglecting the PN corrections on the motion of the Sun
that are due to the planets, and perhaps most importantly
[6, 18], to considering that the mass centres of the N bod-
ies move as test particles in the gravitational field of the
other bodies, i.e. essentially to neglecting the effect of the
self fields, which depend on the structure (density profile,
self-rotation, etc.) [18].

(B)Different Frames. The data are referred to the helio-
centric reference frame, say ℋ, whereas the equations of
motion (78) and (79) are written in the preferred reference
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frame ℰ . To transform the initial conditions for the plan-
ets’ positions and velocities from ℋ to ℰ, we first trans-
form them fromℋ to the barycentric frameℬ, by using the
following coordinate transformation:

x′ = xh − xB h , (80)

where xh is the set of heliocentric spatial coordinates, and

xB h =

(︃N−1∑︁
a=1

Maxa h

)︃
/

N∑︁
a=1

Ma (81)

is the heliocentric position of the barycentre (account-
ing for xN h = 0). The two reference frames ℋ and ℬ are
endowed with the same time coordinate cT′. Accordingly,
the corresponding heliocentric and barycentric velocities
exchange by

u′a :=
dx′a
dT′ = ua h − uB h (a = 1, . . . , N),

ua h :=
dxa h
dT′ . (82)

Then, assuming that the velocity of the barycentre
w.r.t. the reference frame ℰ is the vector V, we transform
the initial conditions from the uniformly moving frame
ℰV to ℰ by using the Lorentz transformation (51) and (52),
or rather its obvious inverse. After having integrated the
equations of motion (78) and (79), we do the reverse trans-
formations. While going from ℰ to ℰV or conversely, we
have to correct the positions and velocities from “simul-
taneity gaps” [the fact that e.g. the values T′a of the time in
ℰV that correspond to the events (T, xa), which are simul-
taneous in ℰ, depend on a through (51)]; we do that by
using first-order Taylor expansions.

(C) Variation of V. The velocity V of the barycentre
w.r.t. the reference frame ℰ:

V := dxB
dT := d

dT

(︃ N∑︁
a=1

Ma
Mtot

xa

)︃
=

N∑︁
a=1

Ma
Mtot

ua ,

Mtot :=
N∑︁
a=1

Ma , (83)

is not exactly a constant in this model, as from (78) and
(79) we have

dV
dT =

N∑︁
a=1

Ma
Mtot

dua
dT

=
N∑︁
a=1

Ma
Mtot

(︂
dua
dT

)︂
N

+
N−1∑︁
a=1

Ma
Mtot

(︂
dua
dT

)︂
PNc

, (84)

where the index N indicates the Newtonian acceleration,
given e.g. by (79) for the Sun, and where the index PNc
means the PN correction to the acceleration of a planet.
The latter correction is given for this model by the term
with the square brackets in (78) minus the Newtonian
acceleration due to the Sun. (See around (69).) The first
sum in the rightmost side of (84) is like the sum of the
Newtonian interaction forces in a system of point parti-
cles (divided byMtot) and is hence zero by the actio-reactio
principle. (This is easily checked directly.) We are thus left
with

dV
dT =

N−1∑︁
a=1

Ma
Mtot

(︂
dua
dT

)︂
PNc

̸= 0. (85)

In the present work (although not in the older work
on v1 [18]), we have taken this into account. Updating V is
done by adding it to the unknowns in the ODE solver, with
(85) as the corresponding ODE and with V(T0) as the ini-
tial data. (It is now V0 = V(T0) that belongs to the solved-
for parameters of the optimization program.) However, we
find that the time variation of V is fully negligible, at least
over the time period investigated (one century).

(D)Value ofV. As was shown above, the equation of
motion of a test particle in the gravitational field of a
uniformly moving spherical object in SET, (64), coincides
for V = 0 with (74). Now some ephemerides are based
on (74) plus the Newtonian attractions due to the plan-
ets, as with (78) and (79) of SET (and possibly includ-
ing also oblateness corrections for the Sun’s gravitational
field): e.g. VSOP82 [31, 32], VSOP2000 [33], VSOP2013 [34].
(Also, the Warsaw ephemeris WAW [35] is based on the
same approximation, although it uses the Painlevé SSS
solution of GR [36] instead of the spatially isotropic SSS
solution of GR.) As mentioned at Point A, in our equa-
tion of motion of a planet that includes the Newtonian
attractions of the other planets, (78), more precisely in h
and hV that enter this equation and that are given by the
expressions (65) and (66), the velocityV is replaced by uN,
the velocity of the Sun – because the Sun does play the
role of the supposedly unique massive body in (64). As
the VSOP2000 ephemeris is based on (74) plus the Newto-
nian attractions of the planets and as (64) coincides with
(74) for V = 0, it follows that the equations of motion for
VSOP2000 and for the present calculation are equivalent
when uN = 0. We ran a parameter optimization for the
Sun and the eight major planets, aimed at best fit the data
of the DE403 ephemeris of the JPL [37] over one century.
Among the solved-for parameters is the velocity vector V.
Now, the difference between VSOP2000 and DE403 is very
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small [33].¹⁰ Therefore, one expects that the optimization
program tries tomakeuN as close as possible to0, because
then the equations of motion of SET are equivalent to
thoseused inVSOP2000,which givenearly the same result
as DE403. This means that V, now defined as the veloc-
ity of the barycentre, should be found by the optimiza-
tion program to be as close as possible to the velocity of
the barycentre with respect to the Sun. The latter velocity
varies in time but is approximately 40 km/h. And indeed,
we find the modulus V (or equivalently V0) to be of the
order of 40 km/h.We believe that the foregoing discussion
shows that this result is fully expected.

(E) Comments. Nevertheless, the latter finding does
not imply that SET has an accurate celestial mechanics
only if V, the absolute velocity of the barycentre of the
solar system, is nearly equal to zero – the latter being
of course difficult to accept given what we know about
galactic motion. It does not imply that mainly for two
reasons:

(i) As we know, the ephemerides are not direct obser-
vations but are a fitting of the true observations, which are
diverse in nature [39], by the equations of motion based
on the standard PN approximation of GR (essentially (74)
plus the Newtonian attractions of the planets – see Point
D above). Moreover, even these observations themselves,
or at least many among them, are analysed and corrected
precisely by using ephemerides ormore generally by using
GR. For instance, the reduction of ranging data does use
ephemerides [38]. This means that the observational data
are in fact influenced by the theory (or more precisely by
the approximate equations by which it is replaced in prac-
tice) that is used to “reduce” them – in the present case,
GR or more precisely its standard PN approximation.

(ii) The equations for extended bodies got for v1 had
strong structure effects (including an effect of the self-
rotation), and it is likely that something similar will apply
to v2. Thus, the correct equations of motion of the plan-
ets are quite different from those for test particles orbiting
the Sun. Due to this difference, the correct 1PN equations
of motion for extended bodies do not coincide with (74)
[plus the Newtonian attractions due to the planets, as in
(78) and (79)] for V = 0. As a matter of fact, it had been
found higher velocities (of the order of a few km/s) while

10 In the accurate ephemerides such as DE403 and followers,
VSOP2000 and followers, WAW, EPM [38], etc., the numerical preci-
sion is greater than in the present calculation; more bodies are taken
into account: Pluto andmany asteroids, etc. Hence, the present calcu-
lation cannot aim at a similar accuracy; e.g. the longitude differences
with DE403 are here at the 10 mas level over one century, except for
Mercury (0.2 arcsec).

fitting the corresponding equations of v1 to the DE403
ephemeris [18].

7 Conclusion
By studying in detail the equations of motion of a test par-
ticle in the investigated theory (SETv2), we have been able
to put them in a tractable form. This allowed us to imple-
ment a first version of celestial-mechanical equations of
motion for that theory in a software for ephemeris cal-
culation with parameter optimization. Those simplified
equations of motion coincide with equations used in the
celestial mechanics of GR, when the absolute velocity of
the Sun is zero. Therefore, they can lead to an equiva-
lent celestial mechanics, but with an unrealistically small
velocity V for the barycentre of the solar system. To be
able to really check what the theory says about V, one will
need to develop a more realistic PN approximation, tak-
ing into account the self fields. Above all, one will need
to make comparison with “direct” observations instead of
ephemerides and preferably with the observations being
“reduced” (corrected) by using the investigated theory
instead of GR. Especially the latter will be a hard special-
ized work.

References
[1] S. J. Prokhovnik, The Logic of Special Relativity, Cambridge

University Press, Cambridge 1967.
[2] S. J. Prokhovnik, Z. Naturforsch. 48a, 925 (1993).
[3] G. Builder, Austral. J. Phys. 11, 279 (1958).
[4] P. Acuña, Stud. Hist. Philos. Sci. B: Stud. Hist. Phil. Mod. Phys.

46, 283 (2014).
[5] M. Arminjon, Found. Phys. 34, 1703 (2004).
[6] M. Arminjon, Braz. J. Phys. 36, 177 (2006).
[7] T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028 (2001).
[8] T. Jacobson, in: From Quantum to Emergent Gravity: Theory

and Phenomenology, Proc. of Science, Vol. 43 (2008).
[9] M. Soffel, S. A. Klioner, G. Petit, P. Wolf, S. M. Kopeikin, et al.,

Astron. J. 126, 2687 (2003).
[10] V. A. Fock, The Theory of Space, Time and Gravitation, 2nd

English edition, Pergamon, Oxford 1964.
[11] M. Arminjon, Rev. Roumaine Sci. Tech.– Méc. Appl. 42, 27

(1997).
[12] M. Arminjon, Phys. Essays 14, 10 (2001).
[13] M. Arminjon, Int. J. Geom. Meth. Mod. Phys. 10, 1350027

(2013).
[14] M. Arminjon, Open Phys. 16, 488 (2018).
[15] M. Arminjon, Int. J. Mod. Phys. A17, 4203 (2002).
[16] M. Arminjon, Theor. Math. Phys. 140, 1011 (2004).
[17] M. Arminjon, Open Phys. 14, 395 (2016).
[18] M. Arminjon, in: Recent Research Developments in

Astronomy & Astrophysics (Ed. S. G. Pandalai), Research Sign
Post, Trivandrum 2003, Vol. 1, p. 859.

Brought to you by | provisional account
Unauthenticated

Download Date | 1/14/19 6:16 PM



12 | M. Arminjon and R. W. Winkler: Motion in the Scalar Ether Theory of Gravitation

[19] M. Arminjon, Arch. Mech. 48, 551 (1996).
[20] C. Cattaneo, Nuovo Cim. 10, 318 (1958).
[21] C. Cattaneo, in: Fluides et Champ Gravitationnel en Relativité

Générale (Eds. A. Lichnerowicz, M.-A. Tonnelat), Editions du
CNRS, Paris 1969, p. 227.

[22] J. Norton, Stud. Hist. Phil. Sci. 16, 203 (1985).
[23] M. Arminjon, J. Geom. Symmetry Phys. 46, 1 (2017).
[24] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields,

3rd English edition, Pergamon, Oxford 1971.
[25] C. Møller, The Theory of Relativity, Clarendon Press, Oxford

1952.
[26] M. Arminjon, Rev. Roumaine Sci. Tech. – Méc. Appl. 43, 135

(1998).
[27] J. D. Jackson, Classical Electrodynamics, 3rd edition, Wiley,

Hoboken 1998.
[28] S. Weinberg, Gravitation and Cosmology, John Wiley & Sons,

New York 1972.
[29] M. Arminjon, Meccanica 39, 17 (2004).

[30] M. Arminjon, Astron. Astrophys. 383, 729 (2002).
[31] J.-F. Lestrade and P. Bretagnon, Astron. Astrophys. 105, 42

(1982).
[32] P. Bretagnon, Astron. Astrophys. 114, 278 (1982).
[33] X. Moisson and P. Bretagnon, Cel. Mech. Dyn. Astron. 80, 205

(2001).
[34] J.-L. Simon, G. Francou, A. Fienga, and H. Manche, Astron.

Astrophys. 557, A49 (2013).
[35] G. Sitarski, Acta Astron. 52, 471 (2002).
[36] G. Sitarski, Acta Astron. 33, 295 (1983).
[37] E. M. Standish, X. X. Newhall, J. G. Williams, and W. M. Folkner,

JPL planetary and lunar ephemerides, DE403/LE403, Jet Prop.
Lab. Interoflce Memo. 314.10–127 (1995).

[38] E. V. Pitjeva, Solar Syst. Res. 39, 176 (2005).
[39] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park,

and P. Kuchynka, IPN Progress Report 42-196 (2014).
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
planets/de430_and_de431.pdf.

Brought to you by | provisional account
Unauthenticated

Download Date | 1/14/19 6:16 PM

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_and_de431.pdf
https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_and_de431.pdf

	Motion of a Test Particle According to the Scalar Ether Theory of Gravitation and Application to its Celestial Mechanics
	1 Introduction and Summary
	2 Main Equations of the Theory
	3 Exact Equation of Motion of a Test Particle
	4 Case of a Uniformly Moving Massive Body
	5 Case of a Spherical Uniformly Moving Massive Body
	6 Implementation in a Software for Ephemeris Calculation
	7 Conclusion


