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Abstract

The standard interpretations of special relativity (Einstein-Minkowski)
and general relativity (GR) lead to a drastically changed notion of
time: the eternalism or block universe theory. This has strong conse-
quences for our thinking about time and for the development of new
fundamental theories. It is therefore important to check this thor-
oughly. The Lorentz-Poincaré interpretation, which sees the relativis-
tic effects as following from a “true” Lorentz contraction of all objects
in their motion through the ether, uses a conservative concept of time
and is in the absence of gravitation indistinguishable from the stan-
dard interpretation; but there exists currently no accepted gravitation
theory for it. The scalar ether theory of gravitation is a candidate for
such a theory; it is presented and discussed. The equations of motion
for a test particle are derived; the case of a uniformly moving mas-
sive body is discussed and then specialized to the case of spherical
symmetry. Formulas for the acceleration of test particles are given in
the preferred frame of the ether and in the rest frame of the massive
body that moves with velocity V with respect to the ether. When
the body rests in the ether (V = 0), the acceleration is up to order
c−2 identical to GR. The acceleration of a test particle for V 6= 0 is
given; this makes it possible to fit observations in celestial mechanics
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to ephemerides with V as a free parameter. The current status of such
fits (though to ephemerides and not to observations) is presented and
discussed.

Keywords: alternative theories of gravitation; Lorentzian metric; pre-
ferred reference frame; test particle; celestial mechanics.

1 Introduction and summary

There are two empirically indistinguishable interpretations of special rela-
tivity: the Lorentz-Poincaré interpretation, which sees the relativistic effects
as following from the “true” Lorentz contraction of all objects in their mo-
tion through the ether, and the standard (Einstein-Minkowski) interpreta-
tion [1, 2]. The latter is currently preferred for various reasons. An im-
portant argument is that general relativity (GR) is an extension of the stan-
dard (Einstein-Minkowski) relativity and is not compatible with the Lorentz-
Poincaré interpretation [3]. In standard relativity, the concept of time is com-
pletely different from what we experience: there is no observer-independent
flow of time and there is no simple concept of present. Instead, the idea
of eternalism (the block universe theory) appears to be the notion of time
that best corresponds with standard relativity. These are significant changes
to our understanding of the world, which we should challenge if we wish to
make sure that they are really correct. We will therefore examine in this
paper a theory of gravity which is based on the Lorentz-Poincaré interpre-
tation. That theory interprets gravity as Archimedes’ thrust exerted by a
perfect fluid or “ether” on the matter particles — those being viewed as ex-
tended objects, more precisely as organized flows in that same fluid. This
interpretation of gravitation has been discussed in detail [4]. It couples natu-
rally with the Lorentz-Poincaré interpretation of special relativity. This leads
to a relativistic theory of gravitation with a preferred reference frame, based
on a unique scalar field [5]: hence the name “scalar ether theory” or SET.
The other motivations for that theory have been discussed in detail recently
([6], §1). Even more recently, in order to formulate a consistent electrody-
namics in the presence of gravitation for that theory, one had to postulate
an interaction energy, and that energy turns out to be a possible candidate
for dark matter [7]. The experimental check of such an alternative theory
of gravitation involves of course many points, a good number of which have
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been already checked, see among others Refs. [5, 8, 9]; for a summary, see
again Ref. [6], §1. (As noted there, this scalar theory differs from all known
scalar theories.) In particular, the celestial mechanics has also been checked
for this theory [8, 10], but this was for an earlier version of the theory (“v1”,
see Ref. [9] and references therein), which had to be modified to the current
version (“v2”, see Ref. [5]). The aim of the present research is to begin the
check of the celestial mechanics of the “new” version, v2. That beginning
consists essentially in assuming for simplicity that the mass centers of the N
bodies move as test particles in the gravitational field of the other bodies. In
this framework, the main task of the present work was to derive a tractable
equation of motion for a test particle in SET.

In Section 2, we present the main equations of the theory. We note there
that a general expression of the acceleration of a test particle obtained for
v1 holds true for v2, and we show the spatial covariance of the equations.
Section 3 derives a simple and exact expression of the acceleration in the most
general case. In Sect. 4 we prove that, in the case where the gravitational
field is produced by a uniformly moving massive body, the source of that field
can be defined in the uniformly moving frame as a time-independent scalar
field. We obtain then the explicit exact solution for the gravitational field,
Eq. (50). That case is further specialized in Sect. 5 by assuming that the
massive body has spherical symmetry. We provide there the expression of the
acceleration both in the preferred frame and in the moving frame. Section
6 discusses the application to the effective calculation of an ephemeris. 1

We show that the approximation done in the present work to calculate the
post-Newtonian (PN) correction, that each planet moves as a test particle
in the field of the spherical Sun, plus the fact that comparison is made with
an ephemeris based on GR, necessarily lead to the result found, that the
velocity of the barycenter is unrealistically small. Therefore, the next steps
should be (i) to derive fully consistent equations at the PN level, that take
into account the self fields (as was previously done for v1 [10]), and, most
importantly (ii) to adjust the theory on “direct” data, as little affected as
possible by a reduction using GR.

1 In order to test this theory in celestial mechanics, it is preferable to calculate
ephemerides. In any case, one cannot use the parameterized PN formalism, since in that
theory the test particles generally do not have a geodesic motion [5, 11].
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2 Main equations of the theory

A) Metrics. The theory which is studied (SET) is a scalar theory with a
preferred reference frame and two Lorentzian spacetime metrics: a flat one
(Minkowski’s metric) γ0 and a curved or “physical” one γ, the latter being
related to γ0 through a scalar field [5]. The preferred reference fluid 2 E
assumed by the theory is an inertial frame for the flat metric γ0, i.e., there
are spacetime coordinates xµ which are both adapted to E 3 and Cartesian
for γ0 — that is, γ0µν = ηµν , where ηµν (µ, ν = 0, ..., 3) are the components of
the standard matrix η = (ηµν) := diag(1,−1,−1,−1). The time T := x0/c is
well defined up to a constant shift 4 and is a preferred time: the inertial time
in the inertial frame E . (Here, c is the velocity of light.) In such coordinates,
we have also, by assumption:

γ0i = 0 (i = 1, 2, 3). (1)

The latter equation (“synchronization condition”) implies that the spatial
metric g associated in the reference fluid E with the spacetime metric γ
[12, 16, 17] is just the spatial part of the spacetime metric γ, i.e. gij = −γij
(i, j = 1, 2, 3) in such coordinates [16]. The spatial metric associated in
the reference fluid E with the flat metric γ0 is an Euclidean (i.e. flat and
Riemannian) spatial metric g0 that is time-independent, i.e., ∂g0ij/∂x

0 = 0
in any coordinates that are adapted to E . The metric g is assumed to have
a simple relation with g0:

g = β−2g0, (2)

2 A reference fluid is a 3-D congruence of reference world lines, each of which defines
the trajectory of a point bound to that reference fluid [12]. This notion does not imply
the presence of a real fluid. However, in the case of the preferred reference fluid E , we do
imagine (at a heuristic level) that it represents the averaged motion of some kind of fluid,
the “micro-ether”, see §3.3 in Ref. [4].

3 Spacetime coordinates xµ adapted to a given reference fluid F are ones for which
the reference world lines have constant spatial coordinates xi (i = 1, 2, 3) [13, 14]. For
a change from one set of coordinates adapted to F to another one (i.e., for an “internal
transformation of coordinates” [12]), the change in the spatial coordinates has to be in-
dependent of the time coordinate, but the change in the time coordinate is arbitrary [12].
Hence we can speak of adapted spatial coordinates xi as well. By a reference frame, we
mean a reference fluid endowed with a given time coordinate map. For more detail on
these notions and their development, see Ref. [15], and references therein.

4 If x′µ are other coordinates that verify those two conditions, we have ∂x′ρ

∂xµ
∂x′σ

∂xν ηρσ =

ηµν and ∂x′i

∂x0 = 0 (i = 1, 2, 3). It follows easily that ∂x′0/∂xi = 0 and ∂x′0/∂x0 = ±1.
Therefore, asking ∂x′0/∂x0 > 0, the time coordinate is well defined up to a constant shift.
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where
β :=

√
γ00. (3)

This means that, in a gravitational field, the measuring rods are contracted
and the periods of clocks are dilated, in the same ratio β (usually β ≤ 1). The
reason for this assumption in the framework of the hypothesis of a perfectly
fluid “ether” is explained in detail in Ref. [4]. Thus, in Cartesian coordinates
that are adapted to the reference fluid E , we can write the line elements of
the flat metric and the “physical” metric respectively as

(ds0)2 := γ0µνdx
µdxν = (dx0)2 − dxidxi, (4)

ds2 := γµνdx
µdxν = β2(dx0)2 − β−2dxidxi. (5)

B) Equation of motion of a test particle. In SET, motion is defined by an
extension to curved spacetime of the special-relativistic form of Newton’s
second law: force = time-derivative of momentum, the latter involving either
the velocity-dependent relativistic mass or the energy of the photon (divided
by c2) [11]. That extension involves an acceleration vector g of gravitation,
defined as follows:

g := −c2
gradg β

β
, (6)

where (
gradgβ

)i
:= gijβ,j, (7)

(gij) := (gij)
−1 being the inverse matrix of matrix (gij). The precise writing

of the curved-spacetime Newton second law has been discussed in detail in
Ref. [11] and has been summarized, for example, in Ref. [6]: Sect. 2, Point
(iii). Here we will need only the “coordinate acceleration” which has been
deduced from it in Ref. [18], Eq. (18) there:

dui

dT
=

1

β

(
∂β

∂T
+ 2β,ju

j

)
ui − Γijku

juk − 1

2
gij

∂gjk
∂T

uk − c2

2
f(∇0f)i, (8)

with ui := dxi/dT , f := β2, ∇0 := gradg0 , and where the Γijk ’s are the
Christoffel symbols associated with the spatial metric g. In Ref. [18], which
belonged to a first version of SET (“v1”), the assumed relation between the
two spatial metrics differed from Eq. (2) above. However, the derivation
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of Eq. (8) above depended of that relation only through the following re-
expression of the space vector (6) (Eq. (2) in Ref. [18]):

g = −c
2

2
∇0 f. (9)

Now, with the relation between the two spatial metrics assumed in the second
version of SET (“v2”) [4, 5], Eq. (2) above, we have for the inverse matrices
(gij) and (g0 ij):

gij = β2 g0 ij, (10)

so that the gravity acceleration (6) is:

gi := −c2 g
ijβ,j
β

= −c2β
2 g0 ijβ,j
β

= −c2βg0 ijβ,j = −c
2

2
g0 ijf,j := −c

2

2
(∇0 f)i.

(11)
Therefore, Eq. (9) remains valid for v2, and hence the same is true for Eq.
(8). We emphasize that the equation of motion (8) is valid for a massive test
particle as well as for a photon [18].

C) Equation for the scalar field. This is the flat-spacetime wave equation for
the scalar field ψ := −Log β [5]:

�ψ := ψ,0,0 −∆g0 ψ =
4πG

c2
σ. (12)

Here ∆g0 is the usual Laplace operator, defined with the Euclidean space
metric g0 (thus ∆g0 ψ = ψ,i,i in Cartesian coordinates for g0, i.e. such that
g0ij = δij). And σ is the energy component of the total energy-momentum
tensor T of matter and non-gravitational fields in the reference frame E (i.e.,
the reference fluid E endowed with the preferred time coordinate x0 = cT ,
with T the inertial time in E):

σ :=
(
T 00
)
E . (13)

(We take T in mass units, i.e., it is c2σ which is truly a volume energy den-
sity.)

D) Covariance. A first point is that all equations written above, except for
Eqs. (4), (5), and (8), are manifestly covariant under any purely spatial
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coordinate change

x′0 = x0, x′i = ψi(x1, x2, x3). (14)

For instance, the fact that Eq. (6) is covariant under any change (14) results
immediately from the facts that β [Eq. (3)] is obviously invariant under such
a change and that then Eqs. (6)–(7) manifestly define a spatial vector, 5 i.e.,
after such a change the components gi become

g′i =
∂x′i

∂xj
gj. (15)

Similarly, γ0i (i = 1, 2, 3) are manifestly the components of a spatial vector,
hence Eq. (1), if it is valid in some coordinate system, remains valid after
any spatial change. Moreover, rewriting Eqs. (4) and (5) after a change
(14) is easy: replace dxidxi with g0ijdx

idxj. The coordinates obtained after
a change (14) are still adapted to the preferred reference frame E , but of
course the new spatial coordinates x′i are generally not Cartesian for g0. As
to the acceleration (8): it is not a spatial vector [18], but Eq. (8) becomes
(manifestly) space-covariant if one puts the term Γijku

juk on the l.h.s., thus
expressing the “absolute” derivative of the 3-vector u w.r.t. T (and based
on the metric g of the time considered [11]), instead of its total derivative
w.r.t. T — so that also Eq. (8) holds true after any purely spatial coordi-
nate change (14). Thus, as one expects from a preferred-frame theory, all
equations written above are spatially covariant, except for Eqs. (4) and (5)
which are easily rewritten in spatially-covariant form.

In addition, the “synchronization condition” (1), as well as the defini-
tion of the gravity acceleration (6), are stable also by a change of the time
coordinate having the special form

x′0 = ϕ(x0). (16)

However, the relation (2) between the flat and the curved spatial metrics,
as well as the field equation (12), are valid only if the time coordinate is
x0 = cT — and in any spatial coordinates that are adapted to E . Indeed β

5 A “geometric” definition also exists for this: a spatial vector is a vector in the tangent
space, at some point, to the space manifold associated with the reference fluid E (see Ref.
[15], §4.2).
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is not invariant under a change (16) of the time coordinate, in contrast with
g and g0, hence Eq. (2) is not covariant under such a change. Hence neither
is the rewriting (11) of the vector g, nor the equation of motion in the form
(8). The scalar field of the theory has therefore to be defined more precisely
(in spatial coordinates adapted to E) to be [5, 9]:

β̃ := (
√
γ00)x0=cT . (17)

In this paper, we take x0 = cT as the time coordinate, hence we may forget
the distinction between β and β̃.

3 Exact equation of motion of a test particle

The equation of motion (8) does not fully take into account the explicit form
(2) of the spatial metric g, e.g. it is valid also for the first version of SET,
for which it was first derived. With (2), we have in Cartesian coordinates
for the Euclidean metric g0: gij = φδij with φ = β−2, hence the Christoffel
symbols of g are given by:

Γijk :=
1

2
gil (glj,k + glk,j − gjk,l)

=
φ−1

2
δil (φ,kδlj + φ,jδlk − φ,lδjk)

=
φ−1

2

(
φ,kδ

i
j + φ,jδ

i
k − φ,iδjk

)
=
−1

β

(
β,kδ

i
j + β,jδ

i
k − β,iδjk

)
. (18)

We get also from (2):
1

2
gijgjk,T =

−β,T
β

δik. (19)

We thus obtain from (8):

dui

dT
=

1

β

(
β,T + 2β,j u

j
)
ui+

1

β

(
β,k u

i uk + β,j u
j ui − β,i uj uj

)
+
β,T
β
ui−c

2

2
f(∇0 f)i.

(20)
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In Cartesian coordinates for the Euclidean metric g0, the last term is

−c
2

2
f(∇0 f)i = −c2β3β,i. (21)

Hence we can rewrite (20) as

dui

dT
=

1

β

[(
2β,T + 4β,j u

j
)
ui − β,i uj uj

]
− c2β3β,i. (22)

We still reexpress this in terms of the field ψ := −Log β that enters the field
equation (12). We have

β,µ
β

= (Log β),µ = −ψ,µ (23)

and

β3β,i = β4β,i
β

= −e−4ψψ,i (24)

so that Eq. (22) rewrites as

dui

dT
= −2ψ,Tu

i − 4ψ,j u
j ui + ψ,i u

j uj + c2e−4ψψ,i. (25)

4 Case of a uniformly moving massive body

Consider a massive body, say B, which is in a translation, at a uniform and
constant velocity V, with respect to the preferred reference frame E . This
means that, at any time T , the spatial velocity vector u of any point bound
with B is the same spatial vector V. 6 Hence the spatial positions of that
point at time T = 0 and at time T fulfil

x(T )− x(T = 0) = ṼT. (26)

6 The velocity of a given point bound with B is in general a time-dependent spatial
vector in the reference frame E , having components ui(T ) = dxi/dT in any spatial coor-
dinates xi adapted to E . The uniformity, at any given time T , of the 3-vector V, refers
to the connection associated with the Euclidean metric g0: it means that V is parallely
transported along any spatial curve xi = xi(ξ). It thus means that the components V i stay
unchanged (dV i/dξ = 0) along any curve in any Cartesian spatial coordinates adapted to
E (Note 3), in other words V i does not depend on the spatial position. The constancy of V
means that this spatially uniform vector field actually does not depend on T , dV i/dT = 0.
Thus V i is a true constant in any Cartesian spatial coordinates adapted to E .
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Here x(T ) := (xi(T )) ∈ R3, the xi ’s being any Cartesian spatial coordinates
adapted to E , and accordingly Ṽ := (V i) ∈ R3. 7 The energy density relative
to E , Eq. (13), follows that translation and verifies hence:

σ(T,x + VT ) = σ(T = 0,x). (27)

This relation remains true in a more general situation, in which the body
has, in addition to its uniform translation, a stationary rotation with an axis
that follows the translation at V, and around which the energy distribution
σ is rotationally symmetric. Consider now the global reference fluid, say EV,
that follows (only) the uniform translation, at velocity V, of body B. That
is: at any time T , the spatial velocity vector u of any point bound with EV
is the same spatial vector V — but now the initial position x(T = 0) in Eq.
(26) can be any vector x0 ∈ R3. The reference fluid EV is also an inertial
frame for the flat metric γ0, as is E . The reference fluid EV, endowed with
its own inertial time T ′, will henceforth be called “the moving frame”. We
can define the field σ, as it is “seen” in the moving frame, as follows:

σ′(X′) := σ(X(X′)) (σ(X) := (T 00)E(X)). (28)

Here, X′ := (x′µ) are spacetime coordinates adapted to the moving reference
fluid EV, and with x′0 = cT ′; whereas X := (xµ) are spacetime coordinates
adapted to the preferred frame E , and with x0 = cT . Of course, σ′ is in
general not the T 00 component in the new coordinates, i.e., σ′(X′) 6= T ′00(X′)
in general, since

T ′00(X′) =
∂x′0

∂xµ
∂x′0

∂xν
T µν(X) 6= T 00(X) = σ(X), (29)

and since the latter is by the definition (28) equal to σ′(X′).

Proposition. If the relation (27) is true, then the field σ′ defined by (28)
does not depend on the inertial time T ′ in EV:

σ′ = σ′(x′1, x′2, x′3) = σ′(x′). (30)

7 Thus x and Ṽ are “coordinate 3-vectors”. They are not spatial vectors (see after Eq.
(15)). This is because to define the spatial position as a spatial vector one needs to choose
an origin point. When the coordinate system is changed, x and Ṽ change to x′ := (x′i)
and Ṽ′ := (V ′i), but the spatial vector V that has the V i ’s as components in the first
coordinate system and the V ′i ’s in the second one, is the same vector. Hereafter, for the
simplicity of notation, V will denote both the spatial vector and the “coordinate vector”.
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Proof. Note first that the energy density (13) involved in the relation (27)
is invariant under any purely spatial coordinate change (14). Hence, if (27)
is true for one set of spatial coordinates xi which are adapted to E and are
Cartesian for the Euclidean metric g0, then it remains true if we change the
spatial coordinates for ones with the same property. Also, if (30) is true with
one set of coordinates x′i (whether they are Cartesian for some Euclidean
metric or not), it holds true after a purely spatial coordinate change (14)
applied to the x′i ’s. So we can choose the spatial coordinates xi (adapted to
E and Cartesian for g0) and the spatial coordinates x′i (adapted to EV) as
we wish. Starting from coordinates (xµ) = (cT, x, y, z), which are adapted
to E and with x, y, z being Cartesian for g0, we obtain coordinates adapted
to the moving frame by doing a Lorentz transformation, which can be made
special through the choice of the axes:

F : T ′ = γ

(
T − V x

c2

)
, x′ = γ(x− V T ), y′ = y, z′ = z (31)

(here γ = (1−(V 2/c2))−1/2 is the Lorentz factor). The inverse transformation
is

F−1 : T = γ

(
T ′ +

V x′

c2

)
, x = γ(x′ + V T ′), y = y′, z = z′. (32)

Let us evaluate σ′(T ′,x′)− σ′(T ′ = 0,x′). To apply (28) we define

(T,x) := F−1(T ′,x′) and (T0,x0) := F−1(T ′ = 0,x′). (33)

To obtain (T0,x0) we first apply (32) with T ′ = 0 and get

T0 = γ
V x′

c2
, x0 = γx′, y0 = y′, z0 = z′. (34)

Then, since from (33) we have (T ′,x′) = F (T,x), we enter precisely (31) into
the latter equation to get

T0 =
γ2V (x− V T )

c2
, x0 = γ2(x− V T ), y0 = y, z0 = z. (35)

Now we want to use (27). We rewrite it as

σ(T1,x + VT1) = σ(T = 0,x) = σ(T2,x + VT2) (36)
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(for any given x and any two times T1 and T2), from which we see that

σ(T1,x1) = σ(T2,x2) if x2 − x1 = V(T2 − T1). (37)

(Note from (35) that y and z are constant in our current manipulations, cor-
responding with the fact that V = (V, 0, 0).) We apply (37) with (T1,x1) :=
(T0,x0) defined in Eq. (33)2 and computed in Eq. (35). So (37) allows us to
write:

σ(T0,x0) = σ(T0, x0, y0, z0) = σ(T0, x0, y, z) = σ(T2, x, y, z) (38)

provided that
V (T2 − T0) = x− x0. (39)

From this and (35) we compute the corresponding time T2 as

T2 = T0 +
x− x0
V

=
γ2V (x− V T )

c2
+
x− γ2(x− V T )

V
, (40)

that is

T2 = x

(
γ2V

c2
− γ2 − 1

V

)
+ T

(
γ2 − γ2V 2

c2

)
= T. (41)

This and (38) mean that

σ(T0,x0) = σ(T,x). (42)

But by the definitions (28) and (33), we have precisely

σ(T0,x0) = σ′(0,x′) and σ(T,x) = σ′(T ′,x′). (43)

We thus obtain that, for any value T ′ of the time of the moving frame and
for any position x′ in this frame:

σ′(0,x′) = σ′(T ′,x′). (44)

This proves the Proposition. �

Remark: If instead of the Lorentz transformation (31) the coordinate
transformation is the Galileo transformation:

(T ′,x′) = F (T,x) := (T,x−VT ), (45)
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then the same Proposition is true also, its proof being then much simpler.
On the other hand, if the coordinate transformation F is fully general (and
in particular non-linear), then one cannot deduce anything like this. What
one can write then is:

σ′(T ′,x′) := σ(T,x) with (T,x) := F−1(T ′,x′)

= σ(0,x−VT )

= σ′(T ′0,x
′
0) with (T ′0,x

′
0) := F (0,x−VT ), (46)

and this cannot be transformed further to obtain (30).

In the same way as in Eq. (28), we define

ψ′(X′) := ψ(X(X′)). (47)

Since the flat wave operator is (in particular) Lorentz-invariant, it follows
from (12), (28) and (47) that we have when the coordinates x′µ (adapted
to EV and such that x′0 = cT ′) are moreover Cartesian for the Minkowski
metric γ0:

�ψ′ =
∂2ψ′

∂(x′0)2
− ∂2ψ′

∂x′i∂x′i
= κσ′, κ :=

4πG

c2
. (48)

The relevant solution for an (assumed) isolated massive body B is the pure
retarded potential (i.e. without the addition of a solution of the homogeneous
wave equation), because it corresponds to the situation without an external
field [16, 19]. Thus

ψ′(T ′,x′) =
κ

4π

∫
B

σ′
(
T ′ − |x

′ − y′|
c

,y′
)

d3y′

|x′ − y′|
. (49)

However, due to the time-independence of σ′ (30), the retardation has no
effect and we get a stationary field:

ψ′ = ψ′(x′) =
G

c2

∫
B

σ′(y′)

|x′ − y′|
d3y′. (50)

The exact solution (50) for the gravitational potential ψ is thus just like
the Newtonian potential, but remind that it has to be transformed to the
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preferred frame E by a Lorentz transformation. In order to use (50) in the
equation of motion (25), we have to express the derivatives w.r.t. the “fixed”
coordinates xµ in terms of derivatives w.r.t. the “moving” coordinates x′µ.
This will be done in the next section in the case of spherical symmetry. In
practice the velocity vector V is an unknown, more precisely it is a “solved-for
parameter” in the optimization software [10], see Sect. 6. As a consequence,
we cannot use a special Lorentz transformation, instead we use the general
version of the Lorentz transformation (e.g. Weinberg [20], §2.1):

T ′ = g(T,x) := γ

(
T − V.x

c2

)
, (51)

x′ = f(T,x) := x +
γ − 1

V 2
(V.x)V − γTV. (52)

From this, we find easily using the fact that ∂ψ′/∂T ′ = 0 (Eq. (50)):

(∇xψ)(T,x) = (∇x′ψ′)(f(T,x)) + (γ − 1) (V.(∇x′ψ′)(f(T,x)))
V

V 2
(53)

= ∇x′ψ′ + (V.∇x′ψ′)
V

2c2
+O(c−4) (54)

(all equations without an O(c−n) remainder are exact), and also

∂ψ

∂T
(T,x) =

∂ψ′

∂x′j
(f(T,x))

∂f j

∂T
(T,x) = −γV j ∂ψ

′

∂x′j
= −γV.∇x′ψ′. (55)

5 Case of a spherical uniformly moving mas-

sive body

Let us assume that the source σ′ in Eq. (50) is spherically symmetric, i.e.

σ′(x′) = σ′(r′), r′ := |x′ − x′b|, (56)

where x′b is the (fixed) position, in the moving frame EV, of the center of
spherical symmetry (the mass center of body B) and |x′| := (g′0(x′,x′))1/2 =
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x′i x′i, with g′0 the Euclidean spatial metric associated with the Minkowski
metric γ0 in the moving frame EV. 8 Then we get:

ψ′(r′) =
GM

c2 r′
, (57)

and

(∇x′ψ′)(x′) = −GM
c2

x′ − x′b
r′3

, (58)

with

M :=

∫
B

σ′(r′) d3x′. (59)

(Of course, Eqs. (57) and (58) are valid only outside the massive body B,
that is for r′ > R, where R is the radius of B, i.e., σ′(r′) = 0 for r′ > R.
Note that the assumption that the energy density be spherically symmetric
is indeed more correct in the frame that moves with the body, for there is
then no Lorentz contraction to account for.) We note xa(T ) and xb(T ) the
positions in the preferred frame of a test particle (which could be the mass
center of a planet) and of the center of body B (which could be the Sun),
and

rab(T ) := xa(T )− xb(T ). (60)

The positions in the moving frame are related to xa(T ) and xb(T ) by the
Lorentz transformation (51)–(52):

x′a(T ) := f(T,xa(T )), f(T,xb(T )) = x′b = Constant. (61)

Setting
r′ab(T ) := x′a(T )− x′b, R′ab(T ) := |r′ab(T )| , (62)

we have from (58):

(∇x′ψ′)(x′a(T )) =
GM

c2
h′, h′(T ) := − r′ab(T )

R′3ab(T )
. (63)

We can then use (53) and (55) to rewrite the acceleration (25) more explicitly
as

du

dT
=
GM

c2
[
−2hV u− 4(h.u)u + u2h + c2β4h

]
, (64)

8 Since the Lorentz transformation (51)–(52) transforms the Cartesian coordinates xµ

for γ0 to Cartesian coordinates x′µ for γ0, it follows that the new spatial coordinates x′i

are Cartesian for the Euclidean spatial metric g′0. Simply: (ds0)2 = (dx0)2 − dxi dxi =
(dx′0)2 − dx′i dx′i = (dx′0)2 − g′0ij dx′i dx′j .
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in which, from (53):

h :=
c2

GM
(∇xψ)(T,xa(T )) = h′(T ) + (γ − 1)

V.h′

V 2
V

= h′ +
V.h′

2c2
V +O(c−4), (65)

and from (55):
hV := −γh′.V, (66)

with, moreover (to be calculated at x = xa(T )):

β = β(T,x) = e−ψ(T,x), (67)

where, according to Eq. (57),

ψ(T,x) = ψ′(T ′,x′) =
GM

c2r′
. (68)

We want to compute the (first) post-Newtonian (PN) approximation, that
includes the O(c−2) corrections to the Newtonian acceleration. The latter is
order zero w.r.t. c−2 and comes from the GM

c2
c2β4h = GMβ4h term in the

acceleration (64). Indeed we compute from (67) and (68):

β4 = 1− 4
GM

c2 r′
+O

(
c−4
)
. (69)

The 1 on the r.h.s. of (69) gives the term GMh in the acceleration (64); this
contains the Newtonian acceleration GMh′, see Eq. (65).

The acceleration (64) can be reexpressed in the moving frame EV, by
using the Lorentz transformations of the velocity:

u′ =
1

1− u.V/c2

[(
u.V(1− γ−1)

V2
− 1

)
V + γ−1u

]
(70)

and the acceleration:

du′

dT ′
=

du
dT

γ2(1− u.V
c2

)2
−

( du
dT
.V)V(γ − 1)

V 2γ3(1− u.V
c2

)3
+

( du
dT
.V)u

c2γ2(1− u.V
c2

)3
. (71)

16



Neglecting all terms of order c−4 or higher, and setting r′ := r′ab and r′ := R′ab,
we obtain after a somewhat tedious calculation:

du′

dT ′
= −GM

r′3

(
r′ +

A

c2

)
+O(c−4), (72)

with

A = − (r′.V + 4r′.u′) (V + u′) +
[
u′2 + 4(u′.V) + 2V 2

]
r′ − 4

GM

r′
r′. (73)

Thus, that part of the acceleration which is independent of V is:(
du′

dT ′

)
V=0

= −GM
r′3

{
r′ +

1

c2

[(
u′2 − 4

GM

r′

)
r′ − 4 (r′.u′)u′

]}
+O

(
c−4
)
.

(74)
This is exactly the PN acceleration of a test particle in an SSS (static spher-
ically symmetric) field as found in GR from the spatially-isotropic SSS solu-
tion of GR. See e.g. Weinberg [20], Eqs. (9.5.3) and (9.5.14), or Ref. [5], Eq.
(89). Equivalently, Eq. (74) is exactly the SSS case of the PN acceleration of
a test particle as found in GR when one starts from the so-called “standard
PN metric”. (The latter is spatially isotropic, see e.g. Weinberg [20], Eq.
(9.1.60).) In fact, Eq. (74) can be easily checked directly by doing V = 0 in
the acceleration in the preferred frame, Eq. (64), since we have then

u = u′, hV = 0, h = h′ = −r′/r′3, (75)

and since we can use Eq. (69). The other part of the acceleration is:(
du′

dT ′

)
−
(

du′

dT ′

)
V=0

=
GM

c2 r′3
{

[r′. (V + 4u′)]V + (r′.V)u′ −
(
4u′.V + 2V 2

)
r′
}

+O
(
c−4
)
.

(76)
Up to O (c−4), we can absorb the last term into the Newtonian acceleration
through a redefinition of the active mass M to

M ′ := M
[
1 + 2(V 2/c2)

]
. (77)

6 Implementation in a software for ephemeris

calculation

A) Principle, equations of motion. The equation of motion (64) has been
implemented in a software for ephemeris calculation with parameter opti-

17



mization. The main program loops on the numerical integration of the equa-
tions of motion for the major bodies of the solar system in order to minimize
the least-squares residual [21]. The solved-for parameters of the optimiza-
tion are: the initial conditions (position and velocity) for the N bodies, their
masses, and (for SET only) the “absolute” velocity of their barycenter. That
software had been built for v1, and it had been indeed used for v1 [10], after
having been tested (i) with the Newtonian equations of motion (for spherical
attracting bodies) [21] and (ii) with the Newtonian equations of motion mod-
ified to include, for the planets, the PN correction that comes from the Sun
considered as a spherical body [22]. Here, besides using the same ODE inte-
gration scheme and the same optimization algorithm as in Refs. [21, 10, 22],
we also use the same approximation as in the latter work [22] for the equa-
tions of motion. That is, in view of (64), we compute the acceleration, in the
reference frame E , of the planet with number a (a = 1, ..., N − 1), as:

dua
dT

=
N−1∑
d=1
d6=a

−GMd (xa − xd)

|xa − xd|3
+
GMN

c2
[
−2hV ua − 4(h.ua)ua + u2

ah + c2 β4h
]
.

(78)
The last body, with number N , is the Sun. Its acceleration is computed as

duN
dT

=
N−1∑
d=1

−GMd (xN − xd)

|xN − xd|3
. (79)

Thus, in this model we take into account the Newtonian attractions of the
planets on the Sun, hence the velocity uN of the Sun w.r.t. E is not exactly
a constant. To compute the contribution of the Sun to the acceleration of
body a (a < N), i.e. the term with the square bracket on the r.h.s. of (78),
we substitute uN for V into the expressions (65) and (66). By doing so,
essentially, we neglect the effect of the very small (and variable) acceleration
of the Sun on the gravitational field that it produces. This is in addition to
neglecting the departure from spherical symmetry of the gravitational fields
of the Sun and the planets, to neglecting the PN corrections on the motion of
the Sun that are due to the planets, and, perhaps most importantly [5, 10],
to considering that the mass centers of the N bodies move as test particles
in the gravitational field of the other bodies, i.e., essentially, to neglecting
the effect of the self fields, which depend on the structure (density profile,
self-rotation, etc.) [10].
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B) Different frames. The data are referred to the heliocentric reference frame,
sayH, whereas the equations of motion (78)–(79) are written in the preferred
reference frame E . To transform the initial conditions for the planets’ po-
sitions and velocities from H to E , we first transform them from H to the
barycentric frame B, by using the following coordinate transformation:

x′ = xh − xB h, (80)

where xh is the set of heliocentric spatial coordinates and

xB h =

(
N−1∑
a=1

Maxa h

)
/

N∑
a=1

Ma (81)

is the heliocentric position of the barycenter (accounting for xN h = 0). The
two reference frames H and B are endowed with the same time coordinate
cT ′. Accordingly, the corresponding heliocentric and barycentric velocities
exchange by:

u′a :=
dx′a
dT ′

= ua h − uB h (a = 1, ..., N), ua h :=
dxa h
dT ′

. (82)

Then, assuming that the velocity of the barycenter w.r.t. the reference frame
E is the vector V, we transform the initial conditions from the uniformly mov-
ing frame EV to E by using the Lorentz transformation (51)–(52), or rather its
obvious inverse. After having integrated the equations of motion (78)–(79)
we do the reverse transformations. While going from E to EV or conversely,
we have to correct the positions and velocities from “simultaneity gaps” (the
fact that, e.g., the values T ′a of the time in EV which correspond to the events
(T,xa), that are simultaneous in E , depend on a through Eq. (51)); we do
that by using first-order Taylor expansions.

C) Variation of V. The velocity V of the barycenter w.r.t. the reference
frame E :

V :=
dxB
dT

:=
d

dT

(
N∑
a=1

Ma

Mtot

xa

)
=

N∑
a=1

Ma

Mtot

ua, Mtot :=
N∑
a=1

Ma, (83)

is not exactly a constant in this model, since from Eqs. (78)–(79) we have

dV

dT
=

N∑
a=1

Ma

Mtot

dua
dT

=
N∑
a=1

Ma

Mtot

(
dua
dT

)
N

+
N−1∑
a=1

Ma

Mtot

(
dua
dT

)
PNc

, (84)
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where the index N indicates the Newtonian acceleration, given e.g. by Eq.
(79) for the Sun, and where the index PNc means the PN correction to the
acceleration of a planet. The latter correction is given for this model by the
term with the square brackets in Eq. (78), minus the Newtonian acceleration
due to the Sun. (See around Eq. (69).) The first sum in the rightmost side
of Eq. (84) is like the sum of the Newtonian interaction forces in a system
of point particles (divided by Mtot), and is hence zero by the actio-reactio
principle. (This is easily checked directly.) We are thus left with

dV

dT
=

N−1∑
a=1

Ma

Mtot

(
dua
dT

)
PNc

6= 0. (85)

In the present work (though not in the older work on v1 [10]), we have taken
this into account. Updating V is done by adding it to the unknowns in the
ODE solver, with Eq. (85) as the corresponding ODE, and with V(T0) as the
initial data. (It is now V0 = V(T0) that belongs to the solved-for parameters
of the optimization program.) However, we find that the time variation of V
is fully negligible, at least over the time period investigated (one century).

D) Value of V . As was shown above, the equation of motion of a test particle
in the gravitational field of a uniformly moving spherical object in SET, Eq.
(64), coincides for V = 0 with Eq. (74). Now some ephemerides are based
on Eq. (74) plus the Newtonian attractions due to the planets, as with Eqs.
(78)–(79) of SET (and possibly including also oblateness corrections for the
Sun’s gravitational field): e.g. VSOP82 [23, 24], VSOP2000 [25], VSOP2013
[26]. (Also, the Warsaw ephemeris WAW [27] is based on the same approx-
imation though it uses the Painlevé SSS solution of GR [28] instead of the
spatially-isotropic SSS solution of GR.) As mentioned at Point A: in our
equation of motion of a planet that includes the Newtonian attractions of
the other planets, Eq. (78), more precisely in h and hV that enter this equa-
tion and that are given by the expressions (65) and (66), the velocity V is
replaced by uN , the velocity of the Sun — because the Sun does play the role
of the supposedly unique massive body in Eq. (64). Since the VSOP2000
ephemeris is based on Eq. (74) plus the Newtonian attractions of the planets,
and since Eq. (64) coincides with (74) for V = 0, it follows that the equa-
tions of motion for VSOP2000 and for the present calculation are equivalent
when uN = 0. We ran a parameter optimization for the Sun and the eight
major planets, aimed at best fit the data of the DE403 ephemeris of the JPL
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[29] over one century. Among the solved-for parameters is the velocity vector
V. Now, the difference between VSOP2000 and DE403 is very small [25].
9 Therefore, one expects that the optimization program tries to make uN
as close as possible to 0, because then the equations of motion of SET are
equivalent to those used in VSOP2000, that give nearly the same result as
DE403. This means that V, now defined as the velocity of the barycenter,
should be found by the optimization program to be as close as possible to the
velocity of the barycenter with respect to the Sun. The latter velocity varies
in time but is approximately 40 km/h. And indeed, we find the modulus
V (or equivalently V0) to be of the order of 40 km/h. We believe that the
foregoing discussion shows that this result is fully expected.

E) Comments. Nevertheless, the latter finding does not imply that SET
has an accurate celestial mechanics only if V , the absolute velocity of the
barycenter of the solar system, is nearly equal to zero — the latter being of
course difficult to accept given what we know about galactic motion. It does
not imply that mainly for two reasons:

i) As we know, the ephemerides are not direct observations but are a
fitting of the true observations, which are diverse in nature [31], by the equa-
tions of motion based on the standard PN approximation of GR (essentially
Eq. (74) plus the the Newtonian attractions of the planets — see Point
D above). Moreover even these observations themselves, or at least many
among them, are analysed and corrected precisely by using ephemerides, or
more generally by using GR. For instance, the reduction of ranging data does
use ephemerides [30]. This means that the observational data are in fact in-
fluenced by the theory (or more precisely by the approximate equations by
which it is replaced in practice) that is used to “reduce” them — in the
present case GR, or more precisely its standard PN approximation.

ii) The equations for extended bodies got for v1 had strong structure ef-
fects (including an effect of the self-rotation) and it is likely that something
similar will apply to v2. Thus the correct equations of motion of the planets

9 In the accurate ephemerides such as DE403 and followers, VSOP2000 and followers,
WAW, EPM [30], etc.: the numerical precision is greater than in the present calculation;
more bodies are taken into account: Pluto and many asteroids; etc. Hence the present
calculation cannot aim at a similar accuracy. E.g. the longitude differences with DE403
are here at the 10 mas level over one century, except for Mercury (0.2 arcsec).
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are quite different from those for test particles orbiting the Sun. Due to this
difference, the correct 1PN equations of motion for extended bodies do not
coincide with Eq. (74) [plus the Newtonian attractions due to the planets,
as in Eqs. (78)–(79)] for V = 0. As a matter of fact, it had been found
higher velocities (of the order of a few km/s) while fitting the corresponding
equations of v1 to the DE403 ephemeris [10].

7 Conclusion

By studying in detail the equations of motion of a test particle in the in-
vestigated theory (SETv2), we have been able to put them in a tractable
form. This allowed us to implement a first version of celestial-mechanical
equations of motion for that theory in a software for ephemeris calculation
with parameter optimization. Those simplified equations of motion coincide
with equations used in the celestial mechanics of GR, when the absolute ve-
locity of the Sun is zero. Therefore, they can lead to an equivalent celestial
mechanics — but, with an unrealistically small velocity V for the barycenter
of the solar system. To be able to really check what the theory says about
V , one will need to develop a more realistic PN approximation, taking into
account the self fields. Above all, one will need to make comparison with
“direct” observations instead of ephemerides, and preferably with the obser-
vations being “reduced” (corrected) by using the investigated theory instead
of GR. Especially the latter will be a hard specialized work.
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des planètes, Astron. & Astrophys. 105, 42–52 (1982).
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