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Parficle in a curved spacetime: from classical fo guantum and conversely

Context of this work

» Long-standing problems with quantum gravity may mean:
we should try to better understand (gravity, the quantum,
and)

the transition between classical and quantum, especially in
a curved spacetime

Quantum effects in the classical gravitational field are
observed on spin % particles = Dirac egn. in a curved ST
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Foregoing work

» Analysis of classical guantfum-correspondence: results from

An exact mathematical correspondence (Whitham):
wave linear operator «— dispersion polynomial

de Broglie-Schrodinger idea: a classical Hamiltonian
describes the skeleton of a wave pattern

(M.A.: il Nuovo Cimento B 114, 71-86, 1999)

Led to deriving Dirac egn from classical Hamiltonian of a
relaftivistic test particle in an electromagnetic field orin a
curved ST

In a curved ST, this derivation led to 2 alternative Dirac egs,
in which the Dirac wave function is a complex four-vector

(M.A.: Found. Phys. Lett. 19, 225-247, 2006,
Found. Phys. 38, 1020-1045, 2008)
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Foregoing work (continued)

» The guantum mechanics in a Minkowski spacetime in
Cartesian coordinates is the same whether

the wave function is fransformed as a spinor and the Dirac
matrices are left invariant (standard transformation for this case)

or the wave function is a four-vector, with the set of Dirac
maftrices being a (2 1) fensor ("TRD”, fensor representation of
Dirac fields)

(M.A. & F. Reifler: Brazil. J. Phys. 38, 248-258, 2008)

In a general spacetime, the standard egn & the two
dlternative egs based on TRD behave similarly: e.g. same
hermiticity condition of the Hamiltonian, similar
non-unigueness problems of the Hamilfonian theory

(M.A. & F. Reifler: Brazil. J. Phys. 40, 242-255, 2010;

M.A. & F. R.: Ann. der Phys., to appearin 2011)
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Outline of this work

» Extension of the former derivation of the Dirac egn from the
classical Hamiltonian of a relativistic fest particle:
with an electromagnetic field and in a curved ST

» Conversely, from Dirac egn to the classical motion through
geometrical optics approximation:

The general Dirac Lagrangian in a curved spacefime
Local similarity (or gauge) transformations
Reduction of the Dirac egn to a canonical form

Geometrical optics approximation into the Dirac canonical
Lagrangian

Classical trajectories

de Broglie relations
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Dispersion equation of a wave equation

Consider a linear (wave) equation (e.g., of 2nd order):
Py = ao(X)y + af (X)0uy + a” (X)0,0u¢ = 0, (b
where X « (ct,x) = position in (configuration-)space-time,

Look for “locally plane-wave” solutions: ¢ (X) = A explif(X)],
with, at Xo, 0, K,(Xo) =0, where K,, = 9,,6.
K < (K,) < (—w/c, k) = wave covector.

Leads to the dispersion equation:
My (K) = ao(X) +ia(X)K, +i%a” (X)K, K, =0.  (2)

Substituting K, — 0,, /¢ determines the linear operator P
uniquely from the polynomial function (X, K) — Il x (K).
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The classical-quantum correspondence

The dispersion relation(s): w = W (k; X), fix the wave mode.
Obtfained by solving TIx(K) =0 for w = —cKqy. Witham:
propagation of k obeys a Hamiltonian system:

dKj o (9W da:j o 8W
Oxd’ dt 8Kj

dt

Wave mechanics: a classical Hamiltonian H describes the
skeleton of a wave pattern. Then, the wave egn should give a
dispersion W with the same Hamilfonian frajectories as H.
Simplest way to get that: assume that H and W are
proportional, H = AW ... Leads first fo E = hw, p = hk, or

P, =hK, (u=20,....,N) (= de Broglie relations).  (4)

Then, substituting K,, — 0, /4. it leads to the correspondence
betftween a classical Hamilfonian and a wave operatftor,
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The classical-quantum correspondence needs
using preferred classes of coordinate systems

The dispersion polynomial ITx (K) and the condition

0, K, (X) = 0 stay invariant only inside any class of
“infinitesimally-linear” coordinate systems, connected by
changes satisfying, af the point X ((z})) = X ((z)) considered,

an/p
oxHoxV

=0, w,v,p € {0,...,N}. 5)

One class: locally-geodesic coordinate systems at X for g, i.e.,

g,UJ/,P(X) — 07 My Vs P S {07 7N} (6)

Specifying a class «— Choosing a forsionless connection D on
the tfangent bundle, and substituting 9,, — D,,.
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A variant derivation of the Dirac equation

The motion a relaftivistic particle in a curved space-fime derives
from an “extended Lagrangian” in the sense of Johns (2005):

L(xt, u”) = —mer/guvutu? — (efe)Vyut, uw’ =dz¥/ds  (7)
The canonical momenta derived from this Lagrangian are
P, =0L/0u" = —mcu, — (e/c)V,,. €))
They obey the following energy equation (¢""u,u, = 1)
ghv (Pu + ZV“> (Py + ZV,,) —m?c? =0, ©

Dispersion equation associated with this by wave mechanics:

gt (hKu + EVM) (hKy + EV,/) —m?2c® = 0. (10)
C C
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A variant derivation of the Dirac equation
(continued)

Applying directly the correspondence K,, — D, /i fo the
dispersion equation (10), leads to the Klein-Gordon egn.
Instead, one may fry a factorization:

IIx (K) (9" (K +eVy) (Ky +eVi) —m?] 1
=? (a+ KL B+i¢"Ky). (h=1=¢) D

Identifying coeffs. (with noncommutative algebra), and
substituting K,, — D, /i, leads to the Dirac equation:

(V" (Dp +ieVy) —m) =0,  with y#yY +yYy# = 21" 1.
(12)
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General Dirac Lagrangian in a curved spacetime

The following Lagrangian (density) generalizes the “Dirac
Lagrangian” valid for the standard Dirac egn in a curved ST:

I =v—g % [Ty (D) — (Dp®) YU + 2imTT],  (13)
where X — A(X) is the field of the hermitizihg matrix:

AT = A, (Ay"M)T = Ay and ¥ = U1 A = adjoint of ¥ = (U),

Euler-Lagrange equations — generalized Dirac equation:

1
YD, = —im¥ — 5/1—1(1)“(141%))\11. (14)

Coincides with usual form iff D, (A~*) = 0. Always the case for
the standard, "Dirac-Fock-Weyl” (DFW) egn.
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Local similarity (or gauge) transformations

Given coeff. fields (v#, A) for the Dirac equation, and given any
local similarity fransformation S : X — S(X) € GL(4,C), other
admissible coeff. fields are

=S IyMS (u=0,...3), A=stAs. (15)

The Hilbert space scalar product (¥ | @) = [T Ay0®,/—g d3x
fransforms isometrically under the gauge transformation (195), if
one transforms the wave function accordingto ¥ = S~ 1.

The Dirac equation (14) is covariant under the similarity (15), if
the connection matrices change thus:

~

L, =5S"1'T,5+51.9).
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Reduction of the Dirac eqn to canonical form

If D,,(Ay*) = 0 andthe I',’s are zero, the Dirac egn (

14

) writes

(17)

Theorem 1. Around any event X, the Dirac eqgn (14) can be put
info the canonical form (1/) by a local similarity fransformation.

Outline of the proof: i) A similarity T" brings the Dirac egn to

“normal” form (D, (Avy*) = 0), iff

AYH DT = —(1/2)[ Dy (Ay™)]T.

(18)

i) A similarity S brings a normal Dirac egn to canonical form, iff

AvHt9,S = —AyHT',S.

) are symmetric hyperbolic systems.

(19)

[]
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Geometrical optics approx. into Dirac Lagrangian

Lagrangian for the canonical Dirac equation in an e.m. field:

I
| = +/—g % {\IJTA*y“(('?M\IJ) — (8, 0)T AyH T +

21mce

\IJTA\IJ} _

—V/=g (/) "V, (20
with Vv, (Ay*) = 0. Substitute ¥ = e with 9, x < (8,.0)x :

! =cv/—g [(—h@MQ — EVM) yTAyHy — mchAx] (21)
c

Euler-Lagrange eqgs:
(—h@,ﬂ — EVM> AvHx = mcAx
C

O (c\/—_g XTA’Y“X) =0
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Classical trajectories

Theorem 2. From ¥ = ye?, define a four-vector field u* and a
scalar field J thus:

(24)

(25)
(26)

Then the Euler-Lagrange egs (.

27)
g’ uyuy =1, (28)
Vuuy — Vyu, = —(e/mc?) Fj. (29)

The fwo last eqs imply the classical equation of mofion for a fest
parfticle in an elecfromagnetic field in a curved spacetime.
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De Broglie relations

Canonical momenta of a classical particle, Eq. :

P, =0L/0u" = —mcu,, — (e/c)V,. (30)

Definition (24) of a 4-velocity field u,, from the phase 6 of the
wave function of a Dirac quantum parficle:;

3N
or (remembering the definition K, = 9,,0):
—mcuy, — (e/c)V,y = hK,.
Thus, we get the de Broglie relafions:

P, = hK,,.
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Conclusion

» The Dirac egn in a curved spacefime with electromagnetfic
field may be “derived” from the classical Hamiltonian H of
a relativistic test particle. One has to postulate H = hWW
where W is the dispersion relation of the sought-for wave
egn, and to factorize the obtained dispersion polynomial.

Conversely, to describe “wave packet” motion: implement
the geometrical optics approximation into a canonical
form of the Dirac Lagrangian. From the egs obtained thus
for the amplitude and phase of the wave function, one
defines a 4-velocity u#. This obeys exactly the classical egs
of motion.

The de Broglie relations P, = hK,, are then derived exact
eqs.




