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Context of this work

I Long-standing problems with quantum gravity may mean:
we should try to better understand (gravity, the quantum,
and)

the transition between classical and quantum, especially in
a curved spacetime

I Quantum effects in the classical gravitational field are
observed on spin 1

2
particles⇒ Dirac eqn. in a curved ST
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Foregoing work

I Analysis of classical quantum-correspondence: results from

• An exact mathematical correspondence (Whitham):
wave linear operator←→ dispersion polynomial

• de Broglie-Schrödinger idea: a classical Hamiltonian
describes the skeleton of a wave pattern

(M.A.: il Nuovo Cimento B 114, 71–86, 1999)

I Led to deriving Dirac eqn from classical Hamiltonian of a
relativistic test particle in an electromagnetic field or in a
curved ST

I In a curved ST, this derivation led to 2 alternative Dirac eqs,
in which the Dirac wave function is a complex four-vector
(M.A.: Found. Phys. Lett. 19, 225–247, 2006;
Found. Phys. 38, 1020–1045, 2008)



Particle in a curved spacetime: from classical to quantum and conversely 4

Foregoing work (continued)

I The quantum mechanics in a Minkowski spacetime in
Cartesian coordinates is the same whether

• the wave function is transformed as a spinor and the Dirac
matrices are left invariant (standard transformation for this case)

• or the wave function is a four-vector, with the set of Dirac
matrices being a (2 1) tensor (“TRD”, tensor representation of
Dirac fields)

(M.A. & F. Reifler: Brazil. J. Phys. 38, 248–258, 2008)

I In a general spacetime, the standard eqn & the two
alternative eqs based on TRD behave similarly: e.g. same
hermiticity condition of the Hamiltonian, similar
non-uniqueness problems of the Hamiltonian theory
(M.A. & F. Reifler: Brazil. J. Phys. 40, 242–255, 2010;
M.A. & F. R.: Ann. der Phys., to appear in 2011)
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Outline of this work

I Extension of the former derivation of the Dirac eqn from the
classical Hamiltonian of a relativistic test particle:
with an electromagnetic field and in a curved ST

I Conversely, from Dirac eqn to the classical motion through
geometrical optics approximation:

• The general Dirac Lagrangian in a curved spacetime

• Local similarity (or gauge) transformations

• Reduction of the Dirac eqn to a canonical form

• Geometrical optics approximation into the Dirac canonical
Lagrangian

• Classical trajectories

• de Broglie relations
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Dispersion equation of a wave equation

Consider a linear (wave) equation [e.g., of 2nd order]:

Pψ ≡ a0(X)ψ + aµ1 (X)∂µψ + aµν2 (X)∂µ∂νψ = 0, (1)

where X ↔ (ct,x) = position in (configuration-)space-time.

Look for “locally plane-wave” solutions: ψ(X) = A exp[iθ(X)],
with, at X0, ∂νKµ(X0) = 0, where Kµ ≡ ∂µθ.

K↔ (Kµ)↔ (−ω/c,k) = wave covector.

Leads to the dispersion equation:

ΠX(K) ≡ a0(X) + i aµ1 (X)Kµ + i2aµν2 (X)KµKν = 0. (2)

Substituting Kµ ↪→ ∂µ/i determines the linear operator P

uniquely from the polynomial function (X,K) 7→ ΠX(K).
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The classical-quantum correspondence
The dispersion relation(s): ω = W (k;X), fix the wave mode.
Obtained by solving ΠX(K) = 0 for ω ≡ −cK0. Witham:
propagation of k obeys a Hamiltonian system:

dKj

dt
= −

∂W

∂xj
,

dxj

dt
=

∂W

∂Kj
(j = 1, ..., N). (3)

Wave mechanics: a classical Hamiltonian H describes the
skeleton of a wave pattern. Then, the wave eqn should give a
dispersion W with the same Hamiltonian trajectories as H.
Simplest way to get that: assume that H and W are
proportional, H = ~W ... Leads first to E = ~ω, p = ~k, or

Pµ = ~Kµ (µ = 0, ..., N) (= de Broglie relations). (4)

Then, substituting Kµ ↪→ ∂µ/i, it leads to the correspondence
between a classical Hamiltonian and a wave operator.
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The classical-quantum correspondence needs
using preferred classes of coordinate systems

The dispersion polynomial ΠX(K) and the condition
∂νKµ(X) = 0 stay invariant only inside any class of
“infinitesimally-linear” coordinate systems, connected by
changes satisfying, at the point X((xµ0 )) = X((x′ρ0 )) considered,

∂2x′ρ

∂xµ∂xν
= 0, µ, ν, ρ ∈ {0, ..., N}. (5)

One class: locally-geodesic coordinate systems at X for g, i.e.,

gµν,ρ(X) = 0, µ, ν, ρ ∈ {0, ..., N}. (6)

Specifying a class⇐⇒ Choosing a torsionless connection D on

the tangent bundle, and substituting ∂µ ↪→ Dµ.



Particle in a curved spacetime: from classical to quantum and conversely 9

A variant derivation of the Dirac equation

The motion a relativistic particle in a curved space-time derives
from an “extended Lagrangian” in the sense of Johns (2005):

L (xµ, uν) = −mc
√
gµνuµuν − (e/c)Vµu

µ, uν ≡ dxν/ds (7)

The canonical momenta derived from this Lagrangian are

Pµ ≡ ∂L/∂uµ = −mcuµ − (e/c)Vµ. (8)

They obey the following energy equation (gµνuµuν = 1)

gµν
(
Pµ +

e

c
Vµ
)(

Pν +
e

c
Vν
)
−m2c2 = 0, (9)

Dispersion equation associated with this by wave mechanics:

gµν
(
~Kµ +

e

c
Vµ
)(

~Kν +
e

c
Vν
)
−m2c2 = 0. (10)
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A variant derivation of the Dirac equation
(continued)

Applying directly the correspondence Kµ ↪→ Dµ/i to the
dispersion equation (10), leads to the Klein-Gordon eqn.
Instead, one may try a factorization:

ΠX(K) ≡
[
gµν (Kµ + eVµ) (Kν + eVν)−m2

]
1

=? (α+ iγµKµ)(β + iζνKν). (~ = 1 = c) (11)

Identifying coeffs. (with noncommutative algebra), and
substituting Kµ ↪→ Dµ/i, leads to the Dirac equation:

(iγµ (Dµ + ieVµ)−m)ψ = 0, with γµγν + γνγµ = 2gµν 1.

(12)
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General Dirac Lagrangian in a curved spacetime

The following Lagrangian (density) generalizes the “Dirac
Lagrangian” valid for the standard Dirac eqn in a curved ST:

l =
√
−g

i

2

[
Ψγµ(DµΨ)−

(
DµΨ

)
γµΨ + 2imΨΨ

]
, (13)

where X 7→ A(X) is the field of the hermitizing matrix:
A† = A, (Aγµ)† = Aγµ; and Ψ ≡ Ψ†A = adjoint of Ψ ≡ (Ψa).

Euler-Lagrange equations→ generalized Dirac equation:

γµDµΨ = −imΨ−
1

2
A−1(Dµ(Aγµ))Ψ. (14)

Coincides with usual form iff Dµ(Aγµ) = 0. Always the case for
the standard, “Dirac-Fock-Weyl” (DFW) eqn.
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Local similarity (or gauge) transformations

Given coeff. fields (γµ, A) for the Dirac equation, and given any
local similarity transformation S : X 7→ S(X) ∈ GL(4,C), other
admissible coeff. fields are

γ̃µ = S−1γµS (µ = 0, ..., 3), Ã ≡ S†AS. (15)

The Hilbert space scalar product (Ψ | Φ) ≡
∫

Ψ†Aγ0Φ
√
−g d3x

transforms isometrically under the gauge transformation (15), if
one transforms the wave function according to Ψ̃ ≡ S−1Ψ.

The Dirac equation (14) is covariant under the similarity (15), if
the connection matrices change thus:

Γ̃µ = S−1ΓµS + S−1(∂µS). (16)
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Reduction of the Dirac eqn to canonical form

If Dµ(Aγµ) = 0 and the Γµ’s are zero, the Dirac eqn (14) writes

γµ∂µΨ = −imΨ. (17)

Theorem 1. Around any event X, the Dirac eqn (14) can be put
into the canonical form (17) by a local similarity transformation.

Outline of the proof: i) A similarity T brings the Dirac eqn to
“normal” form (Dµ(Aγµ) = 0), iff

AγµDµT = −(1/2)[Dµ(Aγµ)]T . (18)

ii) A similarity S brings a normal Dirac eqn to canonical form, iff

Aγµ∂µS = −AγµΓµS. (19)

Both (18) and (19) are symmetric hyperbolic systems. �
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Geometrical optics approx. into Dirac Lagrangian

Lagrangian for the canonical Dirac equation in an e.m. field:

l =
√
−g

i~c
2

[
Ψ†Aγµ(∂µΨ)− (∂µΨ)† AγµΨ +

2imc

~
Ψ†AΨ

]
−

−
√
−g (e/c)JµVµ (20)

with ∇µ(Aγµ) = 0. Substitute Ψ = χeiθ with ∂µχ� (∂µθ)χ :

l′ = c
√
−g
[(
−~∂µθ −

e

c
Vµ
)
χ†Aγµχ−mcχ†Aχ

]
(21)

Euler-Lagrange eqs:(
−~∂µθ −

e

c
Vµ
)
Aγµχ = mcAχ (22)

∂µ
(
c
√
−g χ†Aγµχ

)
= 0 (23)
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Classical trajectories
Theorem 2. From Ψ = χeiθ , define a four-vector field uµ and a
scalar field J thus:

uµ ≡ −
~
mc

∂µθ −
e

mc2
Vµ, (24)

uµ ≡ gµν uν , (25)

J ≡ c χ†Aχ. (26)

Then the Euler-Lagrange eqs (22) imply

∇µ(Juµ) = 0, (27)

gµν uµuν = 1, (28)

∇µuν −∇νuµ = −(e/mc2)Fµν . (29)

The two last eqs imply the classical equation of motion for a test
particle in an electromagnetic field in a curved spacetime.
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De Broglie relations
Canonical momenta of a classical particle, Eq. (8):

Pµ ≡ ∂L/∂uµ = −mcuµ − (e/c)Vµ. (30)

Definition (24) of a 4-velocity field uµ from the phase θ of the
wave function of a Dirac quantum particle:

uµ ≡ −
~
mc

∂µθ −
e

mc2
Vµ, (31)

or (remembering the definition Kµ ≡ ∂µθ):

−mcuµ − (e/c)Vµ ≡ ~Kµ. (32)

Thus, we get the de Broglie relations:

Pµ = ~Kµ. (33)
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Conclusion

I The Dirac eqn in a curved spacetime with electromagnetic
field may be “derived” from the classical Hamiltonian H of
a relativistic test particle. One has to postulate H = ~W
where W is the dispersion relation of the sought-for wave
eqn, and to factorize the obtained dispersion polynomial.

I Conversely, to describe “wave packet” motion: implement
the geometrical optics approximation into a canonical
form of the Dirac Lagrangian. From the eqs obtained thus
for the amplitude and phase of the wave function, one
defines a 4-velocity uµ. This obeys exactly the classical eqs
of motion.

The de Broglie relations Pµ = ~Kµ are then derived exact
eqs.


