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1. INTRODUCTION

The classical Schmid law postulates that a critical value x of the
resolved shear stress Xk must be reached, if a given slip system k is
currently activated in a deformed crystal i.e., if the corresponding shear
rate k is not zero. The experimental verifications are approximate" the
critical values cannot be defined with the same accuracy as the measured
shear stresses and strains this is scarcely questionable as regards the
(not allowed) variation of the measured x[ with the crystal orientation in
single slip situations1. Hence, even though the Schmid law has proved to
be an extremely useful tool, it should not be considered as intangible.
Since it may lead to undeterminacies, e.g. to ambiguous stress states and
lattice spins when the plastic strain rate is known2"4, modifications of the
Schmid law have in fact already been proposed, following the way
introduced by Hutchinson5. In 5, the strain rate sensitivity of the creep
behaviour was taken into account by assuming a power-law relationship
between xkand k the obtained constitutive relation for a crystal was
analysed and applied to calculate global stresses in isotropic polycrystals.
This visco-plastic regularization of the Schmid law has also been used for
textured polycrystals, in the original form6-7 or in the form of a "bilinear
relation" between Xk and 8 .While its application to hot deformation
is naturalS, 7, it is less obvious and remains discussed9 for the case of
cold deformation at ordinary rates, where the experimental rate-sensitivity
is very low.

Here, an analysis of the classical Schmid law is presented and a
regular (power-law) form10 is proposed, solving ambiguities within the
frame of rate-independant plasticity. A comparison is also made .between
the limit behaviours of the proposed and viscoplastic (power-law)
regularizations, as the regularization parameter 1/n tends towards zero.

2. ANALYSIS OF qTqE SCHMID LAW
2.1. The classical Schmid law

The plastic strain-rate tensor D in the considered, homogeneously
deformed crystal, is assumed to be a linear combination of simple shears
occg on crystallographic planes, with normal nk, in crystallographic
directions gk (with gk.nk 0):
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K
D=,’ ’ .s tgxnk) = D()

k=l "’ ( ’k-)l<kK (1)

where K is the total number of slip systems in the crystal (K = 12 for
f.c.c, crystals), g x n = Gk denotes the shear tensor with unit
shear rate, on system (k) Gk.x = (x.nk)g and sG is the
symmetric part of a tensor G. The Schmid law lays down two rules
governing the selection of the active slip systems k and the corresponding
values k 0

(i) for any system k (whether active or not), the resolved shear stress
Xk (O’) (O.nk). gk = " ( gk x nk ) O" Gk (2)

cannot exceed a "critical shear stress" x[ Ix < x (here O" is the
stress tensor) moreover ]x k for active slip systems.

(ii) the shear stress and shear rate have the same sign Xk .k > 0.
Thus Xk-k = X -kl > 0 for active slip systems.
The first requirement defines the yield criterion

f(tr) = f($(0")) = 1 (3)
where

f(’r) ) (’t’) Mx { Ixd / 1 } (4)

and ’17=’1(O)=(%k(O’))1_< is the shear stress vector associated with

2.2. The yield surface in if- or ;- space

The "large" surface Y?l with equation fl(g) = 1 (eqn. (4)) may
be defined in the K- dimensional r- space it is simply a rectangular
parallelepiped with sides 2 x[ (1 < k < K), centered at g = 0.
However, only the points ; = :1(o’) which may be associated with a
stress tensor have a physical meaning. Since nk. gk = 0, the
resolved shear stresses Xk(O’) and thus the vector Xl() do not

depend on the pressure p = -(11 + ff22 + 33)/3 hence only
deviatodc stress tensors (i.e. such that p = 0) have to be considered.
Moreover, the linear mapping 71 from the 5 -dimensional space 0 of

deviatodc stresses into (but not onto) the -space, is one-to-one for
the case of common cubic crystals. The physically relevant pan 1 of
the large surface ’1 is thus the section of ’1 by the 5-dimensional
linear subspace ;1(,0) of the x-space. The ordinary yield surface is

deduced from 1 by the inverse linear mapping :1-1 (only defined on
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*1(0))-Thus the
geometrical appearance
of X is essentially that
of 1 (up tO a kind of
"homogeneous strain").
In particular, the number
of comers, ridges, faces
...as well as the order of
the comers, are the same
in and 1. On the
other hand, these
numbers and orders are
not the same in ’1
and in its section 1 by
171(0), though the very

Fig. 1 Perspective view of ’1 and 1 for a 3-D ’r-space and a

2-D o-space

existence of ridges and comers on is clearly inherited from the large
parallelepiped ’1 (fig. 1).

2.3. Rule of the signs and normality rule

The "rule of the signs" xk .k = x  lfor all k, (trivial when

= 0 ), means exactly that the shear rate vector = (k)<__ lies within
the cone of outer normals to the large surface ’1 at ’t =(xQ. Indeed,
the latter condition is equivalent to say that"

X*. < ;.’ if ;* is on ’1 or within it (5)
Thus renders C. 6/a maximum among the vectors’t* satisfying [x < x
for all k. The value of this maximum is characterized by"

K K

k=l k=l
which proves the stated equivalence. Since E] is a part of E’], is also

a normal to El at . Now, if ,t* = x(O*), we have from (1) and (2)". = o* D() (7)
and the normality of to 1 is thus equivalent to the classical maximum

work principle11 i.e. to the normality ofD to in -spacc.
Hence, the rule of the signs is actually stronger than the classical

normality, since it is much more restrictive to assume that is normal to



1124 M. ARMINJON

’1 than to 1 (unless the normal to 1 were assigned to be within
I;1(,,0)" but this is not the case for the Schmid law).

3. THE PROPOSED REGULAR FORMAND ITS PROPERTIES

3.1. The proposeA regular form, solving ambiguity problems

The yield criterion in x-space (4) associated with the classical
Schmid law is replaced by the following one

K

k--1
in the right-hand side of which n is an exponent. For any n > 1, the

obtained large yield surface E’n)
is regular (i.e. has a unique normal

at any point ) and strictly convex (i.e. does not contain any segment)

so also are its section I:n) by the linear domain 1(,,0) of the attainable

vectors ;, and the yield surface in o-space, I;n ;- ( I;(n ). Moreover

the lrue vector is this time postulated to be normal to 1’n) (the large
one), instead of prescribing the sign of the shears. Thus if is given,

is the unique normal to I;’n (eqn. 8) at ;---x(o’)

g/k= ko n) , sgn(xk) n-1n

0,9 n=8
n=4.

0,8 ’,,,
0,7

0,6

0,5

0,4

0,

0,

0,I0

(9)
where sgn(k) is the sign ofk

(+__ 1) and 2L is the "plastic
multiplier" of classical plasticity, is arbitrary if tt alone is
given. Conversely, if D is
given, o" is given by the
maximum work principle, i.e. tr
is the unique point of such
that D is normal to at o (the
uniqueness comes from the
strict convexity of ). The
shear rates arc then determined
by (9) and (1).

Fig. 2 The classical (n--**) and regular yield surface in a 2-D e-space, in
reduced shear stresses.
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Here again the normality in o-space follows immediately from (7) and
the normality in :-space. For sufficiently large n, the regular yield
criterion (8) is arbitrmily near of the classical one (4), moreover the yield

surface g’n) is interior to g’l and tangent to it at the points ;0), with

components 0) = kl X in the ;-space (fig. 2). Hence (n) is arbitrarily"k
near of and interior to it, but it is not tangent to it since for cubic
crystals no stress can make all the Xk’s nil but one, i.e. the points 0) are
not attainable.

3.2. Solution procedure for polycrystal models

In the Taylor model as well as in the relaxed Taylor theory2at,12 or
in the more general model13-14, the primary (input) variable is D, the
(plastic) strain-rate of the considered crystal (in the Taylor model this is
also the macroscopic strain-rate in the relaxed Taylor theory, only a
subset (Dij (i,j)e IJ) of the D components is needed, and assumed equal
to the macro-components2,4 in 13-14 D lies within a prescribed
neighborhood of the macro-tensor and the distribution of the D’s for the
different crystals minimizes the macroscopic plastic work). First, O i s
(uniquely) dctcmcd by using the maximum work principle

W(D) = o" D = Max *" D f(n) (@*) _< 1} = Max )D(O’*) (I0)

o*" D if f(n)(o*) fl(n)(l(r*))
_

1D(O*) = { 0 otherwise (II)

Then, the direction of the shear rate vector follows analytically (eqn.

(9) wi .= 1). The multiplier . is finally found from (1). In the relaxed

Taylor theory, *" D has only to be replaced by y 2,4. It is easy

to show that the minimum work principle11 also holds10, namely

W(D) =2( = Min "V2 (*) D(’) = D (12)

2(’) =(’f*).’*=Max{ e*.’ f(ln)(*’) < 1 (13)

However (12) does not sccm to provide an easy procedure because

2 (’*) does not depend analytically on **, contrary to the classical
case (eqn. (6)).

Consider now the case where the stress-rate o (corotational to the
lattice15) is the primary variable16. The current stress is then known
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from previous incremental calculations, and determines the direction of

t and D (eqns. (9) (1)). Since the yield condition ftln)(;)= 1 (eqn. (8))
must hold during the whole considered time increment, its time derivative
(including the variation of the ’s as well as that of the Xk’s) is nil15. In
the case of our regular form and when each depends linearly on the

’s15, this gives

=Ek.kk=lKIq;k n-1 ’k sgn(1:10k / k=lE k k

under the loading condition :./)f(ln)/0 = [numerator of (14)] > 0. Here

(z’,) j.=- corresponds to (/) = 0f(n)/ (eqn. (9)), and ik =" Gk.
Thus 0<_<, unless there is no global hardening, i.e. the denominator in
(14-) is negative or nil.

3.3. Limit predictions at large
prections

n vs. classical and viscoplastic

Let D be given and examine the limit of the predicted stress (n) and

shear rate n) as n-oo. From the maximum work principle (10) and the

uniform proximity of f(n)(.) and f(r) with f() < f(n)(o’), it In:st follows
that the work function of the regular form,W(n)(D), tends (uniformly in

D) towards the classical one /(**)(D), as n---),,,,. Since o(n) obviously

has a limit o(**)(D) (due to the monotonic evoluion of the yield surface
y(n) as n increases), this limit must thus satisfy o(**)(D) D =

i(**)(D), i.e. it is associated with D in the sense of the classical yield
surface Y.. Hence, in the general case where D is (strictly) within the

cone of normals to E at a comer, O(**)(D) is the stress at that comer. It is
less obvious to guess which associated stress is obtained, when D is
normal to a ridge, face, of . Moreover, for any shear rate vector

**)which is a possible classical solution, i.e. which obeys the classical

minimum work principle (12), or V(**)(D) = W2(**) (**) ), we have thus

w(n)(D) w2(n) (Cn) ) __>W2(Oo) (oo)) = W(.,)(D) n--)*,, (15)

Using the above argument with , ;, n) and fl in the place of D,
’, f() and f, and substituting eqn. (13) to eqn. (10), it is found that the
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r2(n)() function tends, uniformly in , towards the function

W2()=2")() (eqn. 6).

Now suppose that the classical form leaves no ambiguity in ")(D)
(this holds for any D if the set of critical shear stresses is genetic, i.e. if
no corner of Y belongs to more than 5 critical hyperplanes4). It follows

then from (15) that ,(,0 tends towards (") as n--o [otherwise one

could assume, by extraction, that n)-()whence
2n) (n)) -f)(’) from the uniform proximity of W(2n) and2")

But V(2()>2")(")) from the uniqueness of -0. contradiction
with (15) ].

This essential property of the proposed regular form is hence not
true for the visco-plastic (VP) regularization used in 5-7 which also
depends on an exponent n. Indeed, the comparison between the formulae
in 5-7 and (9) gives"

((kn))vv = tx(D,n)[d ((kn))proposed (16)

where the scaling factor 0 does not depend on the slip system k. As
n--oo, Xk tends towards k for that systems which the classical form

predicts to be active ( (k") 0 ), for the viscoplastic regular form7 as

well as for the present one, since (n) --). Thus the limits of {n))vP
and {n)) poposed are not proportional, which means that {n))vpdoes
not tend towards ")[unless if the k’s are all equal" but then o.)is
generally ambiguous]. This is not unnatural, since the regular yield
criterion (8) differs from the VP stress potential5,7.

4. CONCLUSIONS

1) The proposed regular Schmid law consists in "rounding off the
comers" from the very expression of the law. It solve ambiguity
problems in crystal plasticity whenever they arise, without assuming a
rate-sensitivity or a particular hardening matrix. However it is easy to
adapt the proposed form so as to take into account the rate-sensitivity0 in
a different way from5-8. This leaves the shear rate ratios unchanged.

2) Straightforward procedures have been proposed for implementing this
regularization in the various polycrystal models.
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3) The well-foundcdness of the assumed normality in z-space (eqn. (9))
is confirmed by the result that all the obtained predictions tend towards
the classical ones whenever these latter arc unambiguous -which is the
generic case, cvcn though the simple "Taylor hardening" is then excluded
for the classical form. In contrast, the visco-plastic (power-law)
predictions for the shear rates do not tend towards the classical ones for
unequal critical shear stresses. However, the proposed and visco-plastic
rcgularizations tend towards the same limit for Taylor hardening. This
justifies the use of the visco-plastic (power-law) rcgularization for
solving ambiguities in that case.
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