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This variational micro-macro model is presented in the context of the “pure” and “relaxed” Taylor
models, from which it evolved, but also in relation to the Sachs-type models and, more generally, in
the context of volume-fraction or “one-point” models. It will indeed be shown that any one-point model
must set statistical assumptions and that, to this general frame, the present model adds only one essential
assumption- namely a plausible principle of minimal inhomogeneity. The numerical implementation is
summarized. Predictions for the strain distribution are discussed. Predicted deformation textures are
compared with measurements on steel sheets.
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INTRODUCTION

Prediction of deformation textures is one of the primary goals for models that aim at
making a micro-macro transition in polycrystals. Firstly, because they are so important
in connection with the anisotropy of polycrystalline metals and rocks. Secondly, because
they provide a sensitive test of such models. The latter reason may be worth to be
developed somewhat. As opposed to purely phenomenological models, whose main
interest may be to concentrate empirical information in a suitable form, a micro-macro
model should bring some new information on the macro-scale from micro-scale
information, and vice-versa. But in the micro-to-macro transition, we are sometimes
in the following situation: the number P of a priori unknown parameters that are needed
to run the model, is nearly equal to the total number M of macroscopic data which
are used, in a first step, to calibrate the model (thus to give values to the unknown
parameters) and, in a second step, to fest the model (thus to “predict” values for the
macroscopic data, yet using the now known parameters). In a such situation, this test
can obviously not be very convincing.

For instance, the critical shear stresses 7', in a model for polycrystal plasticity based
on Schmid’s law, are essentially not accessible by direct measurement. If one wants
to predict macroscopic stresses, it is hence nearly unavoidable to “adjust” the values
according to macroscopic mechanical measurements. Depending on the scheme adopted
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for strain-hardening in the constituent crystals, the knowledge of the 7, values in the
model will be determined by some parameters, say dai,..., ap, thus P> p. Hence, at
least the number p will have to be subtracted from M to evaluate the number of data
remaining for the true test of the model. Many models need not only the critical shear
stresses but other “physical”, yet not directly measurable parameters, say b ,...., by,
thus P = p + q. Examples of such b, parameters are the “plastic accommodation
parameter” « of the simplified self-consistent scheme proposed by Berveiller & Zaoui
(1979), or the “average inhomogeneity of the actual strain-rate distribution)" r, of the
here-discussed model (Arminjon, 1991a; Arminjon et al., 1994). The more complex
model one builds, the larger will be the number P of a priori unknown parameters
it involves. However, some important macroscopic quantities may often be predicted
with relatively few unknown (adjusted) parameters. Here, “often” means: in several
rather simple models, among which some widely used ones. An example is provided
by the Lankford coefficients R. When the critical shear stress is assumed uniform in
a polycrystal (case of cubic symmetry with all-equivalent glide systems and “statistically
uniform” hardening), the R values may be computed as soon as one knows the b;
parameters and the texture function (the ODF), the latter being measurable.

In contrast, the macro-to-micro transition is inherently a risky affair, hence an
interesting one. The prediction of deformation textures is really a good example. Under
the same assumption or uniform 7" 's, this prediction also depends on the b; parameters
only- and, of course, of the macroscopic deformation history and the possible initial
texture: these are measurable input data for the model. But the testable output parameters
are now the values of the “deformed” ODF with a reasonable angular resolution (5°,
say) or, what is equivalent but often much more compact, the texture coefficients (Bunge,
1969). Thus, for each deformation mode at each deformation step, we have here several
hundreds of output parameters. If we think of the approximations that one must do
to get a model depending on one parameter only (as the model used here, or the
Berveiller-Zaoui model), we may say that it would be quite surprising if such model
were able to predict these deformation textures within good experimental accuracy. In
our opinion, there is no doubt that a model without any variable parameter, such as
e.g. the pure Taylor model, can absolutely not be expected to do this.

In this paper, we present a model which, indeed, does not predict deformation textures
within experimental accuracy, but which seems to reasonably approach this goal. First,
the new model will be presented in the context of the Taylor model and the “relaxed”
Taylor model (Mecking, 1980; Kocks and Canova, 1981; Van Houtte, 1981), since the
new model started as an extension of the former ones; in this course, some other models,
e.g. the Sachs model and the modified Sachs model (Leffers, 1968; Pedersen and Leffers,
1987), will have to be referred to. Rather than on formal arguments, it will be insisted
on the physical background, which is a bit more subtle a point than one might think,
if one would look merely at the simplicity of the basic algorithm. Full mathematical
justifications, depending on quite general statistical assumptions, have been provided
by Arminjon (1991 a-b) for some crucial properties used in the model. It will be
distinguished between those properties and one physical assumption (Arminjon et al.,
1994) which cannot be derived from the basic laws of deterministic mechanics. The
main features of the recently completed numerical implementation will be presented.
Some salient aspects of the inhomogeneous distributions of strain-rate and stress which
are numerically predicted by the model, will be discussed. Lastly, the deformation
textures newly predicted for a bcc polycrystal deforming by <111>-pencil-glide will
be compared with experimental data for low-carbon steel sheets, already used by
Arminjon and Donadille (1990).
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PRESENTATION OF THIS MODEL IN THE CONTEXT OF OTHER
MODELS

Taylor’s model and the problem of strain compatibility in models with non-uniform
strain

Voigt (1887) proposed to calculate the macroscopic elastic moduli of a polycrystal by
averaging the microscopic ones, and recognized that this amounts to assuming that the
elastic strain is uniform in the elastically deformed polycrystal; much later, Hill (1952)
proved that Voigt’s model leads, for a statistically isotropic polycrystal, to an
overestimate of the bulk and rigidity moduli. Taylor (1938) proposed to use just the
same assumption of a uniform strain (increment) to calculate the yield locus of a
plastically deformed polycrystal from the yield locus of the crystal, and it did not take
that long time until Bishop and Hill (1951) proved that Taylor’s model leads, and also
for a textured polycrystal, to an overestimate (an approach from outside) of the yield
locus. (Thus it seems that we have here a case where elasticity is not easier than
plasticity.) In these theoretical proofs by Bishop and Hill (1951) and by Hill (1952),
a crucial assumption is the no-correlation condition between actual microscopic fields
of stress and strain (or strain-rate, which is more relevant to plasticity), thus for the
stress ¢’ and the strain-rate d: o

o:d=o0:d )

In Eq. (1) the double point means scalar product of tensors, thus ¢’ : d = 0’; dj, and
the bar denotes volume average over a representative volume element (RVE). The prime
indicates that o’ and d are not necessarily “associated” fields, in the sense that the
actual strain-rate d’ that the polycrystal undergoes when the stress field is ¢’, has in
general no relation to d; e.g. the volume average D = d and D’ = @ are in general
different. Hill (1967) has given sufficient conditions in order that Eq. (1) hold, so the
no-correlation condition represented by Eq. (1) is now known as Hill’s condition. The
sufficient conditions given by Hill correspond to what is called a macro-homogeneous
situation, i.e. one in which, in particular, the volume averages depend negligibly on
the chosen RVE (provided it is indeed representative, thus large enough). Obviously,
this is a situation that both theorists and experimentalists would like to enjoy more
often. However, a macro-homogeneous field, say the strain-rate d, is something rather
realistic (at least in some “useful” part of a deformed test sample), whereas a micro-
homogeneous field, d(x) = D, thus a field d that would be seen as uniform at the
micro-scale, is something highly irrealistic- although it is such field that is considered
by the Taylor model. Indeed, any measurement implies a spatial averaging which is
done with a certain step 6 (the step & gives the “scale” of the measurement) and it
thus eliminates those fluctuations whose characteristic distance is smaller than 6. So
the macroscopic measurements, which represent averages at the scale of an RVE, involve
smoothed-out variations: each time we refine the observation scale, we find more plastic
inhomogeneity, until we reach the scale of dislocations which are a “concentrate of
plastic inhomogeneity”. Bishop and Hill (1951) were plainly aware of the
inhomogeneous nature of the fields ¢ and d in a deformed polycrystal, and in particular
they stated (on p. 424) that “it may well be that [the fields o and d] must be allowed
to vary continuously, and not be restricted to take constant values within each of a
finite number of regions (which may be grains or parts of grains)”.
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One may now state more: (i) any piecewise uniform field of strain (or strain-rate)
is necessarily a wholly uniform field, together with the associated field of material spin
(or spin-rate), if the displacement (or the velocity) is asked to be continuous at the
interfaces between the domains where the field is to be constant. The only possible
exception is perhaps the case of all planar interfaces (which is clearly a very particular
situation for a physical aggregate; even in that situation it would be very difficult to
build a piecewise uniform, but not uniform strain field). Although this result may seem
surprising, its proof is quick and elementary (Arminjon, 1991b). So no model should
be argued to be more exact than Taylor’s model, if it assumes a continuous velocity
field and a piecewise uniform strain-rate field, because these two conditions, taken
together, imply that the complete Taylor model (uniform strain-rate and uniform rate
of material spin) must be assumed. If any model predicts one value of strain-rate (and
thus one value of stress) for one constituent (e.g. for one grain, in practice often for
one crystal orientation), then this value can be interpreted at best as the average value
of the strain-rate (or stress) in the constituent. Since this is the case for most models
that have ever been used for texture prediction, the interpretation of these models has
to be reexamined in order to account for this result.

(ii) Now if one merely asks to a model that it should predict correctly the average
values of strain-rate in the different constituents, it will not be trivial to check this
correctness. Indeed, suppose one prescribes any thinkable distribution D=1,
the average strain-rates in a bounded aggregate comprising a finite number n of
constituents with regular boundaries. Then it is possible to build a regular velocity
field v, thus e.g. no sliding at the boundaries, such that the associated field of compatible
strain-rate, d = sym (Vv), has the prescribed average values, i.e. the volume average
of d in each constituent Q" is the prescribed value D*. The construction is technical
(Arminjon, 1991b). Several additional, physically relevant results, have been proved
in connection with this in the same paper and in Arminjon (1991a). Here we merely
add that the theorem is also true if one substitutes (usual) strain for strain-rate, and
displacement for velocity.

In summary, no distinction can be made between different polycrystal models, on
the basis of the compatibility of the predicted inhomogeneous distributions of the strain
(-rate) among the different constituents. Either one assumes a uniform strain inside each
constituent, and then the only model which will produce a compatible strain field is
the complete Taylor model- which is undoubtedly a gross approximation, although it
has the important property of providing an upper limit, thus one extreme behaviour
(the other extreme is provided by the assumption of uniform stress, see below). Or
one does not make that assumption of a piecewise uniform strain field, hence interpreting
the predicted strains as the average ones in the constituents: then, with every thinkable
distribution of the strains, thus predicted by any reasonable or unreasonable model, one
can associate a compatible strain field that leads to precisely this distribution of the
average values. This is not to say that no physical condition restricts the distribution
of the average strains among the different constituents, for the actual distribution is
certainly not purely random (and the proposed model indeed assumes a very particular
kind of strain distribution). But the notion that the strain in a constituent should be
compatible with the strains of the neighbouring constituents has no rigorous consequence
on the range of admissible models, within the class of models which predict one strain
for one constituent. This conclusion is, we believe, unescapable due to the foregoing
mathematically founded arguments. It does not forbid one to use heuristic “compatibility
arguments” based e.g. on the “brick” geometry, provided it leads to clearly defined
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models with some predictive capacity (for polyedric constituents, the compatibility of
a piecewise uniform strain field does not automatically imply its complete uniformity).

Energy minimization as a criterion to select the inhomogeneous strain distribution

Under some testing conditions, e.g. rolling or channel-die compression, a homogeneous
material, thus e.g. a single crystal (or a polycrystal, but seen at the macroscopic scale),
undergoes a “mixed” state of partially imposed stress plus partially imposed strain,
instead of a “pure” state of fully imposed strain or fully imposed stress. That is, some
components of strain-rate, D; with ije IJ, as well as the other, “complementary”
components of stress, thus %; with ij ¢ IJ, are imposed by the boundary conditions.
Consider, for instance, the case of frictionless channel-die compression with (1) the
compression axis and (3) the channel direction. Then D,; (negative), D,; and D;, (both
zero) are imposed, whereas X3, X3 and X33 are imposed zero, due to the free surface
perpendicular to the channel axis (Kocks and Chandra, 1982). (Due to plastic
incompressibility, only two of the data Dy;, D» and D3; may be imposed, thus in that
case the imposed data D, = 0 and D,; determine D33 = —D,,. Also note that a
heterogeneous material, e.g. a bicrystal, subjected to such boundary conditions as e.g.
frictionless channel-die compression, will in general not undergo a uniform stress/strain
state, hence the foregoing description of the mixed stress/strain state does not apply.)
The detailed implications of such mixed conditions for a single crystal obeying the
Schmid law were first studied by Renouard & Wintenberger (1976). In particular, they
proved that the crystal must select a set of active slip systems and slip rates such that
the difference of the total work-rate and the work-rate of the imposed stresses, is
minimal. A result similar to that of Renouard & Wintenberger (1976) was obtained
by Van Houtte (1982), though his work concerned the equivalence between a “minimum
internal work” principle and a “maximum external work” principle in the same context,
rather than a deduction of either principle from Schmid’s law.

Since the virtual work-rate may indifferently be defined in terms of either the virtual
slip rates or the associated virtual strain-rate, the result of Renouard and Wintenberger
(1976) may be reexpressed in saying that the crystal must select a strain-rate that
minimizes the same difference. In particular, when the imposed stresses are zero, the
crystal must select a strain-rate D° that minimizes the work-rate among strain-rates
D* whose components D*;;, with ij € 1J, have the imposed values, D*; = Dj. This result
may be considered as the basis of the relaxed Taylor theory, in the “minimum internal
work” form proposed by Van Houtte (1981). [This form was proved by Van Houtte
(1982) to be equivalent to the “maximum external work” form, proposed by Mecking
(1980) and by Kocks and Canova (1981).] We indeed may say that the relaxed Taylor
theory is a model in which one assumes that, at large proportional strains, each
constituent crystal of a polycrystal is subjected to a “partially imposed” strain with
zero “complementary” stresses. From the considerations in §2.1, it follows that such
assumption should concern the average strain in the constituent crystal, so we do not
find the usual “grain shape argument” very convincing. (According to this argument,
flattened grains during rolling at high strains might undergo shear strains in planes
perpendicular to the rolling plane (1-2), thus D3 and D3, at a lower “incompatibility
cost” than for a shear in the rolling plane, Dy,. So D;3 and/or D,; might be relaxed,
i.e. not be taken in the set of the imposed components.) One may also doubt this
argument if one looks at real microstructures: at moderate strains, the strain is already
non-uniform, whereas at high strains the grains are fragmented into more or less equiaxed
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domains. It interesting in this context to recall that a “shear relaxation” was proposed
in a different way by Leffers (1968), without invoking grain shape arguments, and that
it was successfully applied to the simulation of the copper texture. Recently, Van Houtte
(1995) has used an upper bound method in a simplified “matrix-inclusion” situation,
to assess the “accommodation work™” in the matrix, that occurs due to the different
strain in the grain and the matrix. In this framework, he has confirmed that it is
energetically favourable to have an inhomogeneous strain distribution. Two important
points are that (i) he finds this to be true regardless of the grain shape, and (ii) within
an upper bound method, a solution that leads to an energetic gain is automatically closer
to the exact solution.

Thus the analysis of Schmid plasticity for a crystal subjected to partially imposed
strain with zero complementary stresses shows an example where the actual strain-rate
minimizes the work-rate done, and the analysis of a matrix-inclusion system shows
another example. In both situations, the minimization principle is true regardless of
the grain shape. In the second example, the fotal plastic work-rate must be minimized
with respect to the incompressible velocity field v* satisfying the boundary conditions
on the entire boundary. This is in fact a general theorem for plasticity with boundary
conditions in velocity (the proof of which is easy) which demands only that the maximum
work principle applies to the local constitutive law (Hill, 1950). The incompressibility
condition, div v*¥ = tr d* = 0, is there to ensure that the associated strain-rate,
d* = sym(Vv¥*), is indeed a normal to the local yield criterion and thus may be associated
with at least one admissible stress tensor o*. And the maximum work principle indeed
applies to any crystal obeying Schmid’s law (Bishop and Hill, 1951). Thus for any
crystal aggregate (), whether statistically homogeneous or not, the actual velocity field
minimizes the global work-rate among velocity fields which are incompressible and
satisfy the boundary conditions:

Woaetat < Woina = [oo*:d* dV, d* = sym(Vv*), o* and d* associated by Schmid’s law (2)

[As a consequence, the strain-rate (field) in each constituent crystal, taken separately,
does not minimize the work-rate done in this constituent.] But to apply directly this
result so as to “solve the problem of polycrystal plasticity”, we should know the exact
boundary conditions that apply to an RVE, which is not possible (e.g. the exact boundary
conditions vary from one RVE to its neighbour, whereas we want to solve one problem).
And we should consider continuous fields of velocity rather than distributions of strain-
rates among constituents. But since we want to get a volume-fraction model or “one-
point model”, predicting one strain-rate for one constituent, we really must keep a
discrete sum over the different constituents. So to deduce a useful model from the general
minimization theorem, we need to replace the integral in Eq. (2) by a discrete sum
over the different constituents. Here several notions of statistical homogeneity, all needed
to make licit the operation of any one-point model, have to be used.

Statistical homogeneity and the justification of using a one-point model

(i) When we use a micro-macro model, we want to obtain relations between micro-
and macro-scale in a macro-homogeneous situation, thus one in which the macroscopic
fields of stress and strain, ¥ and D, do not vary significantly in space (in practice,
this is true only in some “useful part” of specially suited test samples, e.g. the central
part of a tension sample, but then the macro-law between X and D may be used pointwise
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for any work-piece). Since those macro-fields are just the volume averages of the micro-
fields o and d in an RVE, this is translated into approximate conditions (asymptotically
exact in the ideal situation of a space-filling material) on the fields o and d. Such
conditions were first defined by Hill (1967) and imply, in particular, Hill’s no-correlation
condition (1). In other words, they hence allow to state that the virtual work-rate spent,
per unit volume, by an actual stress field o7 (thus in particular a self-equilibrated one)
and an actual strain-rate field d, not necessarily associated with the former (see above),
is simply

W* = [oo :d dVIV(Q) = ¥ : D 3

Equation (3), together with the maximum work principle (at the micro-scale), implies,
among other things, that the macro-law between X and D also obeys the maximum
work principle (Bishop and Hill, 1951).

(ii) Obviously, a macro-homogeneous situation for the mechanical fields depends on
the implicit assumption that the material itself is statistically homogeneous (SH), i.e.
two RVE s Q and Q' should differ only in statistically unsignificant details. To state
this assumption precisely, one must first identify which microstructure parameters are
relevant to the mechanical behaviour. To do this in an operational way, one just has
to list which parameters enter the micro-law, and that list X we call the “state” for
short. Thus for a polycrystal made of crystallites obeying Schmid’s law with usual local
hardening, we have the crystal orientation R and the integrated amounts of slip on
each slip system, ¥ with s = 1, ..., S(S is the number of independent slip systems,
e.g. S = 12 for f.c.c. crystals), so the state is the joint data X = (R, (7°)s=1,.5). However,
in practice, the amounts of slips will be a function of R and the past history of
deformation (moreover, it is often assumed, and it will indeed be assumed in the
applications presented here, that all crystals are equally hardened, to get simple
calculations). So here we retain only R for simplicity. In the case that R is assumed
to vary continuously, the precise definition of an SH material (Arminjon, 1991a) becomes
rather transparent: it simply means that the average difference between the ODF’s f
and f’ is negligible for any two RVE s Q and '’ that are large enough [this concerns
the statistical homogeneity of the one-point information; the general definition are easy
to adapt to the N-point information, Arminjon (1991a)]. But here we will consider a
discrete orientation distribution, thus a true aggregate of (perfectly oriented) crystals.
A precise, though a bit more technical definition of an SH material may be given in
that case also (Arminjon, 1991a).

(iii) Let us specialize to one-point micro-macro models. In such models, as already
noted, we have one stress and one strain for one “constituent”, and it is now evident
that what must be called “constituent” in a one-point model is not a unique (connected)
geometrical entity, but instead the zone Zx of the material where the state (thus here
the crystal orientation R) has some value X. Hence the zone Zz may well contain a
lot of non-contiguous crystallites with the same orientation R. And “the” value of e.g.
the strain-rate for the orientation R must obviously be defined as the volume average
d(R) of the micro-field d in the zone Zz. But to take that volume average, we have
to select an RVE Q, i.e. we have to take the average of d over those points in 2
that have the orientation R (thus over Q N Zg). The question then arises whether we
would get the same result if we would take another RVE Q’. Of course, we may only
expect that, in some favourable situation, the difference between the two averages is
small (if Q and Q" are truly representative). In this situation, precisely defined by
Arminjon (1991a), we say that the field d is statistically homogeneous (SH).

(iv) Last requirement of statistical homogeneity: in a one-point model, not only do we
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have one stress and one strain (-rate) for one “constituent” (one orientation R), but
still these two, which are volume averages of the fields o and d in the zone Zg, are
assumed to be related together by the micro-law (thus here by Schmid’s law). In order
that this may be true, the same kind of condition should apply in Zr as it applies at
the macro-scale to ensure the existence of a macro-law between X and D. The fields
o and d must hence satisfy Hill’s “macro-homogeneity” conditions in the zone Zg [in
the present case, it is rather a meso-homogeneity, Arminjon (1991b)]. In particular, when
two couples of actual fields, (0, d) and (0%, d), are considered (corresponding to two
macroscopic situations, with here “macroscopic” in the usual sense), one should have
the following no-correlation condition for every orientation R:

o:d®R = g 4R = FR) : dR) @)
where the symbol ~ZR means volume average in the zone Zr. To simplify these notations,
let us assume that our polycrystal (or rather our RVE Q in our polycrystal) contains
n different crystal orientations R, ..., R,, denote zk (k = 1, ..., n) the average value
of 0’ in Q" = Q N Z, and the like for d. Thus we must have for every orientation k:

Jor 0 d av/V(QY) = = : D* 5)
In combining (3) and (5), we get (using the fact that IQ = fgl + ..+ IQ..):
W =3 :D=£Z":D" + .. + LZ":D", fi = V(Q)V(Q) (6)

(fc is the volume fraction of orientation Ry, thus fi + ... + f, = 1). So we have indeed
replaced the integral expression of the virtual power (3) by a discrete sum, in which
the k term is the virtual power spent in orientation k. [But we did not do that for
expression (2), which applies to virtual fields, and indeed expression (2) does not reduce
in general to a sum like (6).] Furthermore, the average stress and average strain-rate
in R, ' and D, are related by the local constitutive law, thus by Schmid’s law.

The Taylor-Bishop-Hill upper bound (revisited)

Equation (6) applies in particular to the case where 6" = o is indeed the actual stress
field that occurs in the material when the strain-rate field is d. It thus gives the actual
work-rate per unit volume at the macro-scale, as the weighted averaged of the volume
work-rates spent in the different “constituents” (crystal orientations):

WD)=Z:D=£X:D'+..+£2:D"= f W (D) +.+ £, W (D" @)
[It has been accounted for the fact that, due to the maximum work principle, the Schmid
law makes the work-rate, though not the stress, depend uniquely on the strain-rate D",

W = W' (D").] From the definition of £ as & and that of the actual average stress
= in @, we get:

=D = [Jo 0adV/IVQ)I:D = [(qu 6dV +..4+ g cdV)VQID=£, ' D +..+£,ZD (8)

Let us consider, in every constituent k, a stress Z‘.s..p" that is associated, by Schmid’s
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law, to the macroscopic strain-rate D. By the maximum-work principle, we have =D
< Zo' : D = W (D), hence we obtain by (8):

WD) =D =f£Z': D +.+,Z"D <fi W (D) +...+ f, W'(D) = Wyp(D) )

This is the Taylor-Bishop-Hill upper bound. However, it has not been assumed here
that the stress and strain-rate fields are uniform within a given constituent (orientation),
and yet, due to the assumptions of statistical homogeneity, a discrete sum has been
obtained instead of an integral.

Extreme energy minimization: the lower bound model and the Sachs-type models

It is well-known that a lower bound is obtained if one assumes that the stress is the
same for each crystal orientation: this was proved by Bishop and Hill (1951, p. 425).
It is also known that this assumption (the “static” model) is different from the model
proposed by Sachs (1928), according to which the stress is uniform up to an orientation-
dependent multiplicative factor such that the critical shear stress is reached on the best-
oriented glide system(s) of the considered crystal orientation. The static model predicts
that, in general, only the “weakest point of the aggregate” (Bishop and Hill, 1951),
i.e. the weakest grain orientation for the considered stress, will reach the yield point.
This is obviously different from Sachs’ assumption, hence the latter does not really
provide a lower bound. On the other hand, the static model is clearly an unreasonable
model, except for the very beginning of plastic strain: one cannot hope to correctly
model deformation textures with one grain deformed! (however, it is fair to say that
this would not be necessarily the same grain along the deformation, in the case that
the grain would rotate towards a “harder” orientation). Thus it is likely that the Sachs
model, not the static model, represents an “equivalent of crudeness” in the opposite
direction to the Taylor model. As noted by Leffers and Juul Jensen (1991), the Sachs
model, when interpreted in the usual way, “does not fulfil the continuum requirement
(neither in strain or stress)”. But, according to the interpretation proposed here for one-
point models, the strains and stresses “in the constituents” predicted by those models
are just the average values, in the constituents, of fields that are heterogeneous in any
constituent (though “meso-homogeneous” in the sense outlined hereabove). If one
accepts this interpretation, then the above criticism (which would indeed apply to any
intermediate model between the static model and the Taylor model) can be overcome.
Nevertheless, by modifying Sachs’ model through the introduction of random stresses,
Leffers (1968) and Pedersen and Leffers (1987) could obtain a significantly better
simulation of the brass texture as compared with the original Sachs model (and still
more if one compares with the Taylor model), indeed they obtained a correct simulation
[see also Leffers and Juul Jensen (1991)]. Probably, the addition of random stresses
makes the model less extreme in two different ways: it enhances the power spent (as
compared with the Sachs model), and also the randomness, in itself, leads to less sharp
textures.

Now we indicate how the lower bound appears in our formulation. The actual power
W(D) is the weighted average (7) of the powers corresponding to the actual average
strain-rates in the constituents, D* (k = 1,..., n). On the other hand, the weighted average
of that actual average strain-rates themselves is the macroscopic strain-rate:

fiD' +.+£,D"=D 10)
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Hence, if we minimize the weighted average of the powers under the mere constraint
that the weighted average of the strain-rates is D, we get a lower bound for the actual
power:

WD) 2 WidD) =

= Min{f; W D) +..+£, W (D' ") under constraint f; D"' +..+ £,D™ =D} (11)

It turns out that this lower bound does correspond to the static model, i.e. if one has
the (or any) dlStI‘lbllthﬂ of strain-rates, (Dmf )= Ly that reaches the minimum (11), then
the stresses T, which are associated to the Dy ‘s by the local constitutive law are
all the same. This has been proved in the general context of a local behaviour
deriving from a regular convex potential by Arminjon (1991a). This proof does not
strictly apply to rate-independent plasticity, however, because the latter does not lead
to an everywhere continuous dependence of the stress as function of the strain-rate.
A careful examination of this point is left to a future work, because the proposed model
does not actually need that the lower bound Wi,(D) indeed correspond to uniform
stresses.

We emphasize that, up to know, we have just started clearly (at least, we tried to
do so) some assumptions which should be common to all one-point polycrystal models.

The proposed model

Let us introduce the average inhomogeneity of a possible distribution (D™)er,..n Of the
(average) strain-rates in the different constituents k& = 1,..., n:
h = H®™) = fi ID" -D¥||+.+ f, D™ - D¥| (12)
with D* the weighted (macroscopic) average of those strain-rates:
D' =f D" +.+ f£,D" a13)

(and where IITIl = [tr T = [T; ,~,-]"2 is the Euclidean norm of a tensor T). Consider,
for a given positive number r and for a given tensor D, the following minimum problem:

W,= WD) =Min {iW'D") +..+ f,V"(D"") under constraints D* =Dand h<r} (14)

Obviously, W, is a decreasing function of r. For r = 0, the solution is the uniform
distribution, D* = D for all &, and the value W, of the minimum is hence just the
Taylor-Bishop-Hill upper bound [Eq. (9)], thus Wo = W, On the other hand, once
r reaches the mhomogenelty value R = R(D) corresponding to the lower bound, R =
h((D.,.fz)), then W, remains equal to the lower bound [Eq. (11)], thus W, = W for
r 2 R".

Wig =W, S W< W = Wsup (15)

2 If it happens that several distributions (D %), (D,",... with different inhomogeneities R,, R,,... give
the lower bound (11), then we take the R the infimum of R, R,,...: R also must be the inhomogeneity
of some distribution (D, ) such that fW' (D) +..+ f,W"(D," = W, (D) (this may be proved by
a “compacity argument”).
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Hence, there exists a value ro, which a priori depends on D, and with 0 < ro(D) <
R(D), such that the actual power W is equal to the minimum W,. Moreover, this value
ro is unique, because W, is actually a strictly decreasing function of r for 0 < r <
R (Arminjon et al., 1994). For this same reason, the minimum W,D) is, for 0 < r
< R, always reached by a strain-rate distribution (D,") that has exactly the inhomogeneity
r. As a consequence, the inequality constraint 2 < r may be replaced by an equality
constraint in the minimization problem (14), 2 = r (once the value that gives the lower
bound, more precisely the smallest possible value R giving the lower bound, has been
determined).

Here again, the existence of the number ro(D) depends only on very general
assumptions: the assumptions of statistical homogeneity, plus the fact that the micro-
law obeys the maximum work principle, or more generally derives from a convex
potential. The particular model proposed depends on two assumptions that have a very
different status from each other. First, no available framework enables us to predict
the value of ro(D) from microscopic data. So to determine the dependence ro = ro(D),
we must have recourse to a phenomenological assumption. In the two applications
developed so far (Arminjon et al., 1994, for determining the macro-law of reinforced
mortars, and the present work, for predicting the deformation textures of steels), we
have found that the simplest assumption, ro(D) = Const. = a (for IIDIl = 1, thus r¢D)
= a |IDIl if IIDII varies), is sufficient. Some indications on what could be done otherwise
have been given by Arminjon et al. (1994). Thus at present, we determine a value
a that gives a correct prediction for one macroscopic strain-rate D,, and then we assume
this same value for other tensors D, i.e we assume , ro(D) = Const. = a (for DIl
= 1).

The principle of minimal inhomogeneity

We turn to the second, essential assumption. The parameter ro (depending a priori on
D) is, by definition, such that

WD) = W,(D) (16)

where W,(D) is the minimum (14) (with the relevant value r, in the place of r). Thus,
the distribution (D,;) that gives the minimum must satisfy

WD) = AW O,) + .. + LW D) a7

On the other hand, the actual power is the weighted average of the powers spent in
the different constituents [Eq. (7)]:

WD) =fiWw' ®) + .. + LW D) (18)

Moreover, the weighted average of both distributions: the actual one, (Dk), and that
one which is the solution of the minimum problem (14), is the macroscopic strain-
rate D [Eq. (10), and Eq. (13) with D* = D from the constraint in Eq. (14)]. At first
sight, it seems hence obvious that the distribution (D,o") is the actual distribution, or
at least (if the minimum is reached by several distributions) that the actual distribution
must be one solution to the minimum problem (14). But this is not necessarily the
case. That this is indeed the case, is the basic physical assumption of the model. This



202 M. ARMINJON AND D. IMBAULT

assumption does not play any rdle for the micro-to-macro transition, but it is necessary
for the macro-to-micro transition- and thus for the prediction of deformation textures.
Now why is this an assumption, and why then a physical assumption? If the actual
distribution of strain-rates is a solution to the minimum problem (14) for the relevant
value r = ry, i.e. that one for which Eq. (16) is true, then it must satisfy the constraint
h < ro, in fact it even must satisfy s = ro, as noted previously. Hence, the necessary
assumption is that the relevant value ry is precisely the inhomogeneity of the actual
distribution of strain-rate. It thus implies that the value ro has a clear physical meaning.
This assumption may be reexpressed as the following equivalent principle (Arminjon
et al., 1994): among those distributions of the strain-rate between the constituents that
lead to the actual macroscopic strain-rate D and that spend the same power as the power
actually spent to have this strain-rate D, the actual distribution has the least
inhomonegenity. One still may say that the inhomogeneity occurs only in so far as
it allows to reduce the energy consumption.

Note that the formulation of the principle is in terms of the proposed notion of
“constituent-averaged” fields of stress and strain (-rate), i.e. here the average value of
stress and strain-rate for a given crystal orientation. It would not make sense to formulate
this principle in terms of the space-dependent microscopic fields of stress and strain,
for in the latter case we have a minimization theorem, which demands that one restricts
to (velocity) fields satisfying the boundary conditions, assumed known- which is
impossible in practice [see around Eq. (2)]. Thus the principle makes sense in highly
“stochastic” situations for which the exact boundary conditions do not really matter,
as long as one wishes only to access to those ‘“constituent-averaged” fields- a very
statistical output. This principle of minimum inhomogeneity may be uniquely formulated
for any physical behaviour for which a convex potential exists that has a clear
interpretation as an energy. In particular, it makes sense for standard plasticity (as here),
and also for pure elasticity, elastoplasticity and viscoplasticity. This physical principle
does not seem to be reducible to (deducible from) the laws of deterministic mechanics.
Instead, it may be seen as similar to a general principle in statistical mechanics, according
to which the equilibrium states are those for which the largest possible number of
equivalent realizations exist.

NUMERICAL IMPLEMENTATION

The algorithm for solving the minimum problem

We have to solve the convex minimum problem (14) involving one linear constraint,
D* = D with D* the weighted average (13), and one convex constraint, A < r with
h given by Eq. (12). The algorithm used now is different from that described by
Arminjon et al. (1994), which was used for fiber-reinforced mortars. In the new
algorithm, the constraint D* = D is utilized (and thus accounted for) to eliminate the
strain-rate of the last constituent (k = n):

D =(D—:);:i £ D%) 1 1, (19)

,,,,,

is written as: . o o
F(Y) =2 fi W (D) = 2 fW'D*) + W'D -Z, iD*) 20)
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and the inhomogeneity is reexpressed as a function of the list Y:
n-1 n-1
K(Y) = Z £ ID* - DIl + | T £ @ - D) @1

At this stage (solution of the minimization problem), the “crystallographic” W* function
(which is the same for all crystals up to a rotation) was replaced by a function of
the form [Q(D")]”2 with Q a quadratic form that represents the least squares fitting
of the square of the actual W* function. The incompressibility condition means that
only five independent components have to be retained for each strain-rate D™, and these
are Dy, Dy, Dy, D3 and Dy, (the D33 component, when needed, is calculated as Ds;
= Dy — D).

Recall that the constraint # < r may be replaced by the equality constraint,
h = r, and this is actually done. However, the problem with equality constraint will
only give the correct minimum (14) if r is not greater than the [largest] inhomogeneity
R’ giving the lower bound, and R’ is not known in advance. For r > R’, the minimum
obtained with &4 = r becomes an increasing function of r [it is constant for R < r <
R’, if R # R’). Hence, R the [least] value of r that gives the lower bound, may be
determined as giving the least value of W’(D), with W'(D) the minimum obtained with
h = r. Once this has been done, if we take any value r < R [or even r < R’], then
we know that the solution obtained with 4 = r is correct. In practice, R depends relatively
little on D and moreover the relevant value ro(D) is significantly smaller than R. The
constraint 4 = r may be written as C(Y) = h(Y) — r = 0, and this is accounted for
by the penalty method. Thus we select a large “penalty coefficient” p, here p = 10°%,
and we search for the minimum of the function

Fu(Y) = F(Y) + pC(Y) (22)

without any constraint. Generically, the minimum of F; should be reached for a unique
value Yo, but a more detailed study is deferred until later. The minimization method
is the method of the conjugate gradient, which is standard. However, this method
manages only the choice of a new “descent direction” Z.i, such that the (m + 1)-
th approximation of Y, is given by

Ym+l = Ym + A'Zmﬂ

(23)
for some value A. The latter is determined by a specific algorithm for unidirectional
minimization. We use the Newton method combined, in case it fails to converge, with
a kind of dichotomy (though with three points!) which ensures that, at least, F; (Y1)
< Fi(Yn). The convergence test is double: one checks that (i) the Euclidean norm of
the gradient of the function to be minimized is lower than some tolerance, IV Fill <
€ = Ne [with N = 5(n—1) the number of minimization variables, here N = 2089 x 5
= 10445, see below], and (ii) the maximum difference between any component of the
retained solution vector Yy and the same component of the vector Yy _, corresponding
to some past, rather distant iteration, is lower than some other tolerance 7. In this work,
the following values were adopted: € = 10%, 1 = 107 and p = 100. The initial vector
Yn-1 was obtained by random perturbation of the vector corresponding to the Taylor
model, Yryior = (n-1) times D. For a given number r, small as compared with the
value R giving the lower bound, and for a given tensor D, the program runs some
4 to 5 hours on a PC 486/ DX2/ 66 MHz computer to get the solution vector Y,
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with these parameters But when r increases so that ‘many “grains” k undergo practically
zero strain-rate, D = 0 (r > 0.5, see below), it 1s not always possible to reach the
tolerance £ for IIV Fll. This is because VW* = Z* is discontinuous at D* = 0, hence
the minimum of F; corresponds in such cases to a point Y, such that VF(Y,) is not
exactly zero.

Physically relevant aspects of the computation procedure

As for the work by Arminjon and Donadille (1990) and Arminjon and Imbault (1993,
1994), which was based on a different polycrystal model in the actual computations,
the plastic deformation of bcc crystals was assumed to occur by “pencil-glide” in <111>
directions, using the method proposed by Royer et al. (1979). Apart from the
determination of the strain-rate distribution, which is characteristic from the polycrystal
model and has just been described for the present model, the same computation procedure
was used for texture prediction as the procedure used in those previous works [except
for that part in Arminjon and Imbault (1993, 1994) which concerns the continuity
equation for the ODF, not used here]. In particular, the lattice spin-rate tensor Q =
Q(D, R) (the antisymmetric tensor such that R= Q.R) is calculated once and for all,
for a regularly spaced orientation network in Euler’s space (10° for each angle: @,
from 0° to 180°, @ from —-5° to 95°, @, from 0° to 90° thus n = 19x11x 10 =
2090 orientations). After this preliminary step has been completed, to calculate the
evolution of any set of orientations, the value of Q for the relevant orientation R is
obtained by linear interpolation. In the new model, however, the different orientations
R, are coupled together, in the sense that their volume fractions f; and thus the texture
field do have an influence on the Q. But in this work, we have considered an isotropic
texture when calculating the field Q. This has been done in putting the weight f; =
sin @ on the orientation R¢ (@i, D, @u) of the regular network. Thus, the variation
of the field Q with the texture has been neglected. Previous work has indeed shown
that rather accurate texture predictions can be obtained for quite different initial textures
with one and the same rotation field.

The field Q being calculated for an isotropic texture, it is an isotropic function of
its arguments, i.e. the macroscopic strain-rate D and the crystal orientation R (Arminjon
and Imbault, 1993). This means that, for any rotation tensor Q:

QQ.D.Q", Q.R) = Q.QMD,R).Q" (24

This allows us, in the long preliminary step, to calculate Q(D, R) for diagonal tensors
D only:
D=diag (1,—¢,9-1)=A(g) (0<g<0.5+dy), ’ (25)

thus 6 values of ¢ for an interval 6q = 1/8 (interpolating then also with respect to
q to get Q at the stage of texture prediction). Moreover, since we take Q as a function
of D and R only, we have to specify the axes relative to which Q measures the rate
of rotation of the crystal axes. As before, these axes have been here those that rotate
with the same spin rate W as the RVE- and for the deformations studied here, these
were simply the sheet axes (rolling direction, transverse direction, normal direction).
(And we thus select those axes as the reference axes, so W = 0.) These axes are
convenient, for we assume that every constituent undergoes the same material spin-
rate, and thus also the same spin-rate as the RVE: W* = W for all k. This assumption
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is enforced in our model, at least for a rigid-plastic behaviour, since the spin-rate, as
an antisymmetric tensor, does not enter the power function of a constituent.’

Then, the calculation of the deformation texture for an imposed deformation path
follows a set of n’ = 1800 orientations R;. This set has been initially selected by quasi-
random generation so as to represent an isotropic texture when affected with identical
weights. To do this, the angle @ was selected with a probability proportional to sin
@, thus a uniform law for cos @, ¢, and ¢,. When an initial texture is present, it
is accounted for in affecting each orientation R, with the value of the initial ODF f,
for the initial orientation R,’, hence

fi = R 1 R+ ... + fuR)] (26)

After the final orientations have been computed, a continuous ODF f is obtained by
setting a Gaussian spread on each orientation, here ¢ o = 6° or 9°, and calculating
the corresponding coefficients on the basis of generalized spherical harmonics (Bunge,
1969), for even values of / [see Arminjon and Donadille (1990) for some justification
on this point], and with the truncation order /n.x = 22. In this work, cubic-orthotropic
symmetry has been assumed at the stage of the actual ODF calculation, consistently
with the imposed deformations. The default deformation step was 6 = 0.025, but in
some cases it was necessary to reduce the step so as to reach the imposed accuracy
when extracting the Euler angles from the updated rotation matrix (this is due to the
“explicit” scheme adopted for updating the rotation matrix, R = R + 8eQ(D,R).R,
which gives only an approximately orthogonal matrix R’; due to the rate-independence,
time is identified with strain).

RESULTS AND DISCUSSION

Predicted inhomogeneity of the strain-rate and stress distributions

The strain-rate distribution(D,")k.l,,,, » was calculated for several values of the
inhomogeneity parameter r [Eqs. (12) and (14)] and for the (N, + 1) diagonal tensors
D = A(g) [Eq. (25)], with ¢ = (i—1) X &g (i = 1,..., N, + 1). In a first step, a smaller
set of regularly distributed orientations (n = 462, with weights sin @ corresponding
to an isotropic texture) and only two tensors D were considered, but a number of different
values were taken for r, so as to get a tendency for the distributions and to have an
idea of the zone corresponding to the lower bound (r = R). It was found that R is
larger than 1 (Figure 1 shows this for g = 0, which corresponds to rolling deformation
in direction 1 and in the plane 1-2). The stress inhomogeneity decreases as the

3 Perhaps it is imposed, more generally, by the use of a true one-point model (no microgeometry).
As noted by Leffers er al. (1995) and by Van Houtte (1995), models with some microgeometry may
describe non-uniform material rotation (in their works, these are “inclusion-matrix” configurations).
A model with non-equal material rotation of neighbouring crystals may be obtained, in the proposed
framework, if one defines the “constituents” to be some cells, each of which containing several crystals.
The power function of each cell is obtained by periodic homogenization, and then the proposed model
is applied to find the distribution of the average strain-rates between the different cells. Such a “two-
scales micro-macro model” has been proposed by Arminjon et al. (1994), and applied to fiber-reinforced
mortars, which are strongly inhomogeneous materials.
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Average power vs. strain-rate inhomogeneity
(n=462, q=0.0)
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Figure 1 Dependence of the minimum average power, given by Eq. (14), on the value r of the average
inhomogeneity in strain-rate.

strain-rate inhomogeneity r increases, as expected (Figure 2), but it does not seem to
evanesce as r tends towards R (cf. the above discussion of the lower bound model).
Whereas the value of the minimum W, decreases smoothly for 0 < r < R (Figure 1),
the individual strain-rate inhomogeneities (the average value of which is constrained
to be the given value r) evolve drastically with r. At small values of r, the individual
values of any strain-rate component are regularly distributed around the mean
(macroscopic) value (r < 0.3 on Figure 3 for D;, the major macroscopic component).
As r is increased, certain “grains” (orientations) undergo large strain-rates. Beyond some
value (r = 0.5 here), these “soft” grains undergo even a larger strain-rate, and moreover
some other grains are practically undeformed. The number of the extremely deformed
grains, as well as the number of the undeformed ones, increases with r.

Since a situation with undeformed grains seems rather unrealistic from what we know
about microstructures of deformed low-carbon steels [e.g. Kern and Bunge (1984)], full
calculations (for n = 2090 regularly distributed orientations with weights sin @ and
for (N, + 1) = 6 tensors D) were done for two small values of r: 0.20 and 0.25. Figure
4 shows the histograms of the inhomogeneity in norm and those of the inhomogeneity
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stress inhomogeneity vs. strain-rate
inhomogeneity (n=462, q=0.0)
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Figure 2 Dependence of the average inhomogeneity in stress on the value r of the average
inhomogeneity in strain-rate.

of the 5 independent components, at r = 0.25, for ¢ = 0 (rolling). Figure 5 shows
the same, except that ¢ = 0.5 (which corresponds to uniaxial tension for an isotropic
material). In these histograms, e.g. for the D; component, the height H(a, b) of each
column represents the volume fraction of that orientations in the regular network with
uniform texture (thus with weights sin @) for which the inhomogeneity is in the range
[a,b] corresponding to the column. Thus :

Hifa, b) = (Sum of sin & for orientations k with a < Dkil—Dij < b)/(Sum of sin @) 27

It is seen that the distribution of the inhomogeneities is rather regular and symmetrical
for the shear components: in several cases, e.g. D\, and D,; for rolling, the distribution
looks like a Gaussian one (this is also true for the transverse strain-rate in rolling D).
The diagonal components are in general less regularly distributed, e.g. not symmetrical.
This is true in particular for that component (D;;) which has the greatest average, as
also for D33 (not shown). Less regular histograms are also obtained for the inhomogeneity

in norm. It seems that the grains are separated into several groups for the magnitude
of that inhomogeneity.
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Figure 3 Value of the 1-1 component of strain-rate in the orientation number k, Dy, as function
of k, for different values of the strain-rate inhomogeneity r. The macroscopic value Dy; = 1 is reported.
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Figure 4 Histograms of the inhomogeneity in norm and the inhomogeneities in the independent
components of strain-rate [cf. Eq. (27)], for ¢ = 0 (rolling) and for r = 0.25.
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Figure 5 Histograms of the inhomogeneity in norm and the inhomogeneities in the independent
components of strain-rate [cf. Eq. (27)], for ¢ = 0.5 (simple tension) and for » = 0.25.
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Figure 6 shows the clluadratic average inhomogeneities of the 6 different components,
a;= [Z« fi (DY — D;)"1'": these are not very different from one component to the other
and depend also on the contraction coefficient g. In particular, for rolling (¢ = 0, thus
IQ = 1), the most significant difference, according to the proposed model, is between
the quadratic inhomogeneity of the D;; component and those of the D and D
components, the latter being respectively about 75% or 80% of the former. [Note that
diagonal overall tensors D are considered here; hence, due to the constraint D* = D
in the minimum problem (14), the average value of every shear component is exactly
zero: see Eq. (19).] However, D;, is assumed uniform in the relaxed Taylor model,
thus zero inhomogeneity for Di,, whereas either D3, or D3 and Dy, are assumed
completely “free” in the latter model, depending on the “lath” or “pancake” version
(Van Houtte, 1981). In a finite element simulation of the rolling of an fcc polycrystal,
Beaudoin et al. (1995) find a similar figure for the quadratic average inhomogeneities
of the different shear components for equiaxed grains: they find indeed that the average
inhomogeneity of both Dy, and D»; is about 70% that of Dy5*. That difference is found

Standard deviation aij ; 1Q=1 to 6 (q=(1Q-1)*1/8) ; n=2090, r=0.25

012 -
@at1 [Ma22 [a3s Naz2 Had1 Ba21
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Figure 6 Standard deviations a; of the different strain-rate components Dy, as function of the
contraction coefficient ¢ from 0 (rolling) to ¢ = 5/8 in steps of 1/8, for r = 0.25.

4 They also find higher levels for the inhomogeneity of the shear components: about two times
the levels we find for r = 0.25. Although it is not indicated by Beaudoin ez al., we expect that the
inhomogeneity considered by them is that of the numerical field of strain-rate, thus between strain-
rates at different (Gauss) points, with several points inside each grain (finite element), or perhaps
between strain-rates at different grains- in any case, not between strain-rates averaged over a crystal
orientation as here. Thus they probably define the inhomogeneity at a smaller scale where it indeed
should be larger than at the scale we define it. Anyhow, they consider an fcc material.
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by them to increase with the aspect ratio of the grains, in a way which is rather consistent
with the relaxed Taylor model (although the average of the inhomogeneities of the
different shear components is slightly decreased as the aspect ratio increases, which
is clearly inconsistent with the relaxed Taylor model). However, it should be noted
that, in their computations, “linear” 8-nodes elements have been chosen, thus rather
rigid polyedric ones, and neighbouring finite elements have different orientations. These
two facts tend to make their simulation closer to an ideal situation where the shape
argument of the relaxed Taylor model could indeed apply, i.e. one with polyedric grains,
each of which is rather homogeneously deformed. In particular, the result recalled in
§ 2.1, which forbids a piecewise uniform strain field, does not apply to polyedric grains.
According to the proposed model, there is also little difference between the
inhomogeneities of the shear components and those of the diagonal ones, whereas the
three diagonal components are assumed uniform in the relaxed Taylor model. In the
model implemented for texture predictions for the work by Arminjon and Donadille
(1990), the D,; component was assumed uniform. Thus the present model indeed predicts
a different inhomogeneity as compared with the “old” model.

Deformation textures (steels): comparison with experiment and with Taylor's model

A rather detailed investigation of experimental textures of several low-carbon steel sheets
with weak or strong initial texture, deformed by cold-rolling, simple tension, plane strain
tension, biaxial tension, and simple tension followed by biaxial tension, was carried
out in previous works (e.g. Arminjon and Donadille, 1990). In those works, the
experimental textures were systematically compared with textures predicted by the
Taylor model and by a kind of “inhomogeneous Taylor model”, hereafter named “old
model”, and different from the usual relaxed Taylor models. That “old model” cons1sts
in minimizing the power spent in each grain (k) separately (among strain-rates D*
that belong to some prescribed neighborhood of D). It was considered by Arminjon
and Donadille (1990) as an approximation of a more rigorous model, essentially the
present model.’ Yet the present work represents, for polycrystals, the first implementation
of the more rigorous model. The essential goal of the present computations was,
therefore, to check whether the rigorous model confirms, and possibly improves, the
previously observed agreement between experimental textures and textures predicted
by using the old model. The ODF’s predicted with the new model (be it with r =
0.20 or with r = 0.25) were indeed found to be very similar to those obtained with
the old model, so the comparison will be based only on the “skeleton lines” o (¢,
= 0°, @2 = 45°), € (91 = 90°, @, = 45°) and y (P = 55° ¢, = 45°).

(i) Cold-rolling texture

Figure 7 shows that a, € and 7 lines for the cold-rolling texture at 75% reduction,
either measured for a pure iron with very weak initial texture (“exp”), or calculated
(using a 6° Gaussian spread): with the Taylor model (“Tay”), or with the new model
(r = 0.20: “r020”, r = 0.25: “r025”). The experimental agreement is far closer for the
new model, either with r = 0.20 or r = 0.25, than for the Taylor model: this is apparent

5 However, in Arminjon and Donadille (1990), the maximum inhomogeneity was considered instead
of the average inhomogeneity. The present definition of the inhomogeneity is the relevant one for
rate-independent rigid-plastic behaviour, because only p = 1 meets the conditions used in the proofs
given by Arminjon (1991a, Section 4).
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Figure 7 Skeleton lines of the 75% cold-rolling texture of a bcc metal, as measured for a pure iron

(exp), or calculated either with the Taylor model (Tay) or with the proposed model (r = 0.20: r020,
r = 0.25: 1025). Gauss angle ¢ = 6°.
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for all three fibers and, in particular, for the y fiber. However, the relative heights of
the different peaks are better predicted with r = 0.25 than with r = 0.20, although
all calculations overestimate the intensity on the main peak of the ¢ line, the maximum
of which is at @ = 35° (Taylor), 40° (measurement and r = 0.20), or 45° (r = 0.25).
For the truncation order /m.x = 22, a higher Gauss angle, ¢y > 6°, is certainly more
appropriate in terms of the “cleanness” of the obtained theoretical texture, although
it artificially reduces its sharpness. In our opinion, any one-point model which does
not include a random component, in the algorithm it uses to determine the strain
distribution, must be expected to overestimate the sharpness of the texture. Taylor’s
model is only one well-known example, but the fact that it gives an upper bound to
the yield surface does not imply that it must overestimate the sharpness of the texture
more than other models. In order to compare two different models as to the sharpness
of the predicted textures, it must be carefully checked whether the two numerical
calculations are as accurate, for a less accurate calculation might give the impression
of a better model in that respect! In the present case, the calculations for the Taylor
model and the proposed model differ only at the stage of the determination of the strain
distribution (which is trivial for the Taylor model), and the rather severe tolerances
we have imposed for the proposed model at this stage (see above) give objective reasons
to believe that both models are as accurately operated. So we acknowledge that the
proposed model does not represent a decisive improvement as compared with the Taylor
model, as to the sharpness of the predicted textures.® Thus, to test more exactly the
accuracy of the predicted textures, it is better to use a higher Gauss angle so that the
experimental and theoretical ODF’s have comparable sharpness (and again, ¢y = 9°
is “cleaner” for ln. = 22). Figure 8 shows the same comparison as Figure 7, except
that a 9° Gaussian spread has been used, the “r020” calculation is not shown, and
instead the prediction of the “old” model is shown. (Four lines seems to be a maximum
to keep these figures readable; the effect of changing the Gauss angle is easy to guess.)
With this Gauss angle, the difference between the experimental texture and the prediction
of the new model (with r = 0.25) is probably close to the experimental uncertainty.
In particular, the new model does even better as the old one, due to the better predicted
ratio between {001}<110> (@ = 0° on the & and ¢ lines) and the other peaks. We
emphasize that, here, an important cause of experimental uncertainty, namely the effect
of the initial texture, has been practically eliminated: the initial texture of this pure
iron was very weak due to appropriate thermomechanical treatments (absolute maximum
= 2 for the ODF), and a number of low-C steels with different compositions, all managed
to have a very weak initial texture, lead to very similar cold-rolling textures (Arminjon
and Donadille, 1990). (Moreover, in the latter work, this very weak initial texture was
accounted for, which could not be done here, for the file was lost). This remark may
be worth, because the question arises in the literature whether some rather important
differences between experimental and predicted cold-rolling textures of iron or low-
C steel could lie within the experimental band (Didrmann et al., 1984). There is now
no doubt that the Taylor model does not predict the cold-rolling texture of low-C steels
within experimental band (Raphanel and Van Houtte, 1985; Arminjon and Donadille,

¢ However, to check this precisely, it would be necessary to refine the grid used in the interpolation
procedure for the rotation field, because the 10° step probably contributes to make the textures less
sharp. This may partly mask the difference in the sharpness of the textures which should be predicted
by both models if exactly run.
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Figure 8 Skeleton lines of the 75% cold-rolling texture of a bcc metal, as measured for a pure iron
(exp), or calculated either with the Taylor model (Tay), with the former model (old), or with the
proposed model (r = 0.25: 1025). Gauss angle ¢ = 9°.



216 M. ARMINJON AND D. IMBAULT

1990; Wagner et al., 1991). It is also clear that the “old” model is much closer from
doing this, and that the new model is still closer to experiment than the old one.
Moreover, it is apparent from a comparison of this work with the work by Wagner
et al. (1991) that the proposed model predicts cold-rolling textures that are closer to
the experimental ones than does the relaxed Taylor model or even the viscoplastic self-
consistent code used by Wagner et al. Of course, an entirely convincing proof of the
latter statement would demand to make a comparison for the same material.

(ii) Simple and biaxial tension

Figure 9 shows the comparison between the skeleton lines of the experimental and
theoretical ODF’s of an Al-killed steel [denoted 1], as the same steel was denoted in
Arminjon and Donadille (1990) and in Arminjon and Imbault (1994)], deformed by
€ = 0.30 in simple tension in the transverse direction. A Gauss angle ¢y = 6° has been
taken for the theoretical textures, which turns out to give the same levels for the
experimental and theoretical ODF’s (it is not surprising that a stronger overestimate
of the sharpness of the texture was found at the much higher strain undergone in rolling,
€ = 1.39). Although the difference between the two models is smaller than for cold-
rolling (which is expected, for the same reason), it remains true that the new model
(with r = 0.25 as for cold-rolling), gives a better agreement with experiment than does
the Taylor model. This may be seen also for the theoretical values of the Lankford
coefficient, calculated from the experimental or theoretical deformation textures using
the texture-adjusted fourth-order dual potential (see e.g. Arminjon and Imbault, 1994,
and references therein, for details about this dual potential and its ability to predict
correct values of the Lankford coefficient from the as-received texture). The R values
after prestraining may be influenced by not only the texture evolution, but their
calculation from the deformation textures is a way to translate the differences in a
mechanically more relevant way. It is also seen that the new model does a slightly
better job than does the old one.

Finally Figure 10 shows just the same comparison as Figure 9, but this time for
the textures after € = & + & = 0.52 in biaxial tension, and just the same cenclusions
may be drawn as to the relative performance of the Taylor model, the “old” model,
and the new model. '

CONCLUSIONS

1. Volume-fraction models or “one-point” models are the easiest to use among micro-
macro models, in particular they are for the moment the only ones that lead to
tractable computations for deformation textures. But to justify the use of such models,
a number of statistical assumptions, stated here in a simple form, have to be set.
The “grains” considered by such models must be interpreted as zones with given
state, e.g. zones with given crystal orientation, which in general involve many
separated grains. The stresses and strains in the “grains”, predicted by such models,
must be interpreted as approximations of the average values of the actual fields of
stress and strain for a given orientation.

2. If, to these assumptions of statistical homogeneity, one merely adds the maximum
work principle, then one obtains a tractable form of the lower bound and the upper
bound theorems, the upper bound corresponding to the Taylor model. That form
of bounds is tractable in that it is expressed in terms of the discrete distribution
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Figure 9 Skeleton lines of the texture of the Al-killed steel I1 after 0.30 strain in simple tension,
as measured (exp), or calculated either with the Taylor model (Tay), with the former model (old),
or with the proposed model (r = 0.25: 1025). Gauss angle ¢ = 6°. Also shown are the theoretical
values of the Lankford coefficient R(@) (a from 0° to 90°), calculated from those experimental and
theoretical textures by using the 4™ order dual (C4) potential.
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of the average strains in the “grains” (orientations), instead of the continuous fields.
We introduce the average inhomogeneity / of any possible distribution of that average
strains. Under the same assumptions, we have the following result: there exists a
value ry of A, such that the actual power spent at the macroscopic scale is the minimum
of the average power spent in the “grains” among those distributions of strain that
have this inhomogeneity r,. We assume that the strain distribution giving the
minimum is the actual distribution of the strains among the different “grains”.

3. This model has been numerically implemented for polycrystals and applied to the
prediction of strain distribution and deformation textures. The histograms of the strain
(-rates) have a nice appearance, in several cases they look like histograms of Gaussian
distributions. However, the calculation of the strain distribution is entirely determin-
istic. Only small differences between the average inhomogeneity of the different strain
components (e.g. between different shear components, or between shear and diagonal
components) are predicted by the proposed model.

4. The cold-rolling textures of low-C steels are far better predicted by this model than
by the Taylor model. Except for the sharpness of the texture, which remains
overestimated, the predicted texture coincides with the measured texture nearly within
the experimental accuracy. Thus this prediction seems also more accurate than those
obtained by using the relaxed Taylor model or the viscoplastic self-consistent code,
although the calculations of the latter models do not correspond to the-same material
as here. For simple and biaxial tension (imposed to a textured steel), there is less
difference between different models due to the smaller strains involved, but still the
proposed model does better than does the Taylor model. Finally, the present rigorous
model predicts deformation textures that are close to those obtained by the more
empirical model used previously. This justifies a posteriori the use of the older model
as an approximation of the present one.
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