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Dirac equation
in the flat Minkowski spacetime M

Let χ : M→ R4, X 7→ X ≡ (xµ) be a global Cartesian
coordinate system on M. In such a system, Dirac’s original eqn
writes:

γµ ∂µΨ = −imΨ. (1)

γµ (µ = 0, ..., 3): Dirac matrices: any quadruplet of invertible
4× 4 complex matrices verifying the anticommutation relation

[γµ, γν ]+ ≡ γµγν + γνγµ = 2ηµν 14, (ηµν) ≡ diag(1,−1,−1,−1).

(2)
Ψ : R4 → C4, X ≡ (xµ) 7→ Ψ(X) : expression of the Dirac wave
function in the Cartesian chart considered.
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Transformation of the Dirac equation
in the flat Minkowski spacetime M

Let χ : M→ R4 be a global chart. Let Ψ : R4 → C4, X 7→ Ψ(X)

be the expression of the Dirac wave function ψ in the chart χ.

One asks that after certain linear chart changes : χ ↪→ χ′ = L.χ

with L ∈ G, where G is a subgroup of GL(4,R), Ψ become Ψ′

such that

Ψ′(X′) = S.Ψ(X), S = S(L) ∈ GL(4,C), (3)

for some function S of the 4× 4 matrix L ∈ G. (More detail here.)

This occurs if and only if S is a representation G→ GL(4,C).
[MA, Found. Phys. Lett. 19, 225, 2006]
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Transforming the Dirac eqn in the M ST (continued)

Let’s start from a Cartesian chart, thus we may write the flat
Dirac eqn (1). After a chart change L ∈ G, (1) becomes

γ′ν ∂′νΨ′ = −imΨ′, γ′ν ≡ Lνµ SγµS−1, S ≡ S(L). (4)

Usual statement: “Relativity⇒ γ′ν = γν .” (Then one gets for S
the “spinor representation”.) NO. Archetyp of a relativist eqn:
eqn of motion of a particle with 4-velocity Uµ in the
electromagnetic field Fµν :

m
dUµ

ds
= qFµν U

ν , or m
dU

ds
= qFU. (5)

The matrix F ≡ (Fµ ν) is not invariant: F ′ = LFL−1 6= F .
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Dirac wave function as a 4-scalar or a 4-vector

Two simpler possibilities than the spinor representation for S:

I S(L) = L : Ψ′(X′) = L.Ψ(X), γ′µ ≡ LµνLγνL−1.

I.e., the Dirac wave function is a 4-vector and
the components (γµ)ρν make a (2

1) tensor.

[MA, Found. Phys. Lett. 2006; Found. Phys. 38, 1020, 2008]

I S(L) = 14 : Ψ′(X′) = Ψ(X), γ′µ ≡ Lµνγν :

Dirac wave function is a 4-scalar and the set of the Dirac
matrices transforms as a 4-vector. This is the transformation
law for the standard Dirac eqn in a curved S-T, Dirac-Fock
-Weyl. [MA & F. Reifler, Braz. J. Phys. 38, 248, 2008.]
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Transforming the Dirac eqn in the M ST (continued)

♦ For any pair (G, S) with G a subgroup of GL(4,R)

and S a representation of G into GL(4,C) :

I The Dirac eqn (1) is covariant under all changes
χ ↪→ χ′ = L.χ with L ∈ G : see Eq. (4).

I The anticommutation relation (2) is covariant, too:

[γ′µ, γ′ν ]+ = 2g′µν 14 (6)

(with g′µν = gµν = ηµν if L ∈ O(1, 3)).

I The quantum mechanics associated with the “flat” Dirac
eqn is the same: the equation, hence its solutions, are the
same. [The choice of the quadruplet (γµ) has no effect on
QM: MA & F. Reifler, Braz. J. Phys. 2008.]
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Transforming the Dirac eqn in the M ST (end)

♦ The spinor representation is restricted to L ∈ SO(1, 3). Hence
it cannot be used for a general chart in a general spacetime,

that leads to a general matrix L ≡
(
∂x′µ

∂xν

)
∈ GL(4,R).

♦ In contrast, the representations

I S(L) = 14 (ψ 4-scalar)

I S(L) = L (ψ 4-vector)

hold valid for any L ∈ GL(4,R).

⇒ These two representations extend to a general spacetime.
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General spacetime: a common, simple,
geometrical framework

I Thus, in a general spacetime, the wave function ψ can be
only a 4-scalar or a 4-vector. Depending on either choice,
ψ is a section of a complex vector bundle with base V (the
spacetime manifold), having rank 4, denoted E. Thus
ψ ∈ Γ(E) : V 3 X 7→ ψ(X) ∈ EX , with:

• E = trivial bundle V × C4 for ψ 4− scalar

(“Quadruplet Representation of the Dirac field”, QRD)

• E = complexified tangent bundle TCV for ψ 4− vector

(“Tensor Representation of the Dirac field”, TRD).
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Geometrical framework (continued)

The “intrinsic field of Dirac matrices” γ lives in the tensor product
TV ⊗ E⊗ E◦, where E◦ is the dual vector bundle of E.

The Dirac matrices γµ themselves are local and are made with
the components of γ:

γ|U = γµab ∂µ ⊗ ea ⊗ θb ⇒ (γµ)a b ≡ γ
µa
b (a, b = 0, ..., 3). (7)

♦ They depend on the local coordinate basis (∂µ) on an open
subset U of the spacetime V, and on the local frame field (ea)

on E above U. [(θb) is the dual frame field on E◦ above U.]

♦ They have to verify (∀ chart (χ,U) & ∀ frame field (ea) on E

above U) the anticommutation relation [γµ, γν ]+ = 2gµν 14.
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Geometrical framework (continued)

I For QRD (E = V × C4), the canonical basis of C4 is a
preferred frame field on E, whence the scalar (=invariant)
character of the wave function ψ.

I For TRD (E = TCV), the frame field on E can be taken to be
the coordinate basis (∂µ). Then on changing the
coordinate chart, ψ behaves as an usual four-vector, and γ

as an usual (2 1) tensor.

I Relations between QRD and TRD, and between Dirac eqs
got with different connections, have been studied.

[MA–F. Reifler, Int. J. Geom. Meth. Mod. Phys. 1250026, 2012;
summary: MA–FR, J. Phys. Conf. Ser. 306, 012061, 2011.]
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Geometrical framework (end)

I Usually, mathematicians start from a “spinor structure” on V
(see e.g. Isham, Proc. Roy. Soc. A 364, 591, 1978).

If the spacetime V [is 4-dimensional, non-compact, and]
admits a spinor structure, then there exists a global
orthonormal tetrad field (uα) on TV
(Geroch, J. Math. Phys. 9, 1739, 1968).

In that case, each of the two very simple vector bundles E
defined above is a “spinor bundle”, i.e., there exists a
global “intrinsic field of Dirac matrices” γ ∈ Γ(TV ⊗ E⊗ E◦)
verifying [a coordinate-free form of] the anticommutation
relation [MA–FR, IJGMMP 2012].
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The Dirac equation and the choices of it

Choose

I the representation: E = V × C4 (QRD) or E = TCV (TRD);

I any “intrinsic field of Dirac matrices”, γ, i.e., any section of
TV ⊗ E⊗ E◦ verifying the anticommutation relation;

I any connection on E, D : ψ 7→ Dψ. [In a frame field (ea) on
E, ψ = Ψaea, and D is given by connection matrices Γµ,
such that DµΨ ≡ (DµΨa) = (∂µ + Γµ)Ψ, where Ψ ≡ (Ψa)].

Then, only one Dirac equation may be written [MA–FR, IJGMMP

2012]:
γ : Dψ

(
= γµab DµΨb ea

)
= −imψ, (8)

but it depends on each of the three choices...
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Three classes of Dirac equations

I I. The standard, Dirac-Fock-Weyl eqn, is a QRD eqn got
when one assumes (Brill–Wheeler, Rev. Mod. Phys. 29, 465, 1957;

Chapman–Leiter, Am. J. Phys. 44, 858, 1976; MA–FR, IJGMMP 2012)

that:

• the field γ is deduced from some set (γ]α) of “flat”
Dirac matrices and from some global tetrad field (uα)

on TV, i.e. a field of direct orthonormal bases of TV :

γ = (γ]α)ab uα ⊗ Ea ⊗Θb (9)

[(Ea) = canonical basis of C4, (Θa) = dual base];

• the connection D on V × C4 depends on γ in such a
way that Dγ = 0.
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The standard equation, DFW (continued)

I Remark 1. The condition Dγ = 0 (i.e. Dνγ
µa
b = 0) is not

imposed by the conjunction of gµν;ρ = 0 and of the
anticommutation (2). However, it ensures easily that one
has

Dµ(Aγµ) ≡ (Dµ(Aac γ
µc
b ))a,b=0,...,3 = 0, (10)

with A the “hermitizing matrix” (usually A = γ]0 for DFW).
The condition (10) is necessary and sufficient in order that
the solutions of the curved-S-T Dirac eqn (8) all obey the
current conservation [MA–F. Reifler, Braz. J. Phys. 40, 242, 2010].

I Rmk 2. The condition Dγ = 0 leads to the explicit
expression of the matrices Γµ of the “spin connection” D
on E = V × C4, as function of the tetrad field (uα) — up to
the addition of a term λ14 [Chapman–Leiter 1976].
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The standard equation, DFW (continued)

I Rmk 3. Any two tetrad fields (uα) and (ũα) are related
together by a “local Lorentz transformation”: a (global!)
smooth map

L = (Lαβ) : V→ SO(1, 3) ; ũβ = Lαβ uα. (11)

At least locally (on U ⊂ V), L can be “lifted” to a smooth
mapping S : U→ Spin(1, 3) such that Λ ◦ S = L, with
Λ : Spin(1, 3)→ SO(1, 3) the two-to-one cover of SO(1, 3). If
V is simply connected this occurs globally [e.g. Isham 1978].

In U we have γ̃µ = S−1γµS, and (defining Ψ̃ ≡ S−1Ψ)

the DFW eqs with the fields (γµ,Ψ) and (γ̃µ, Ψ̃)

are equivalent.
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The standard equation, DFW (continued)

I Rmk 4. In the physics literature on the DFW eqn (e.g. in

Brill–Wheeler 1957 or Chapman–Leiter 1976) this covariance of
the DFW eqn under a change of the tetrad field is stated,
not derived. In the maths literature on “spin geometry”, the
argument goes grosso modo like this [see Isham 1978] :

The spin connection D on the spinor bundle E is got
uniquely from the Levi-Civita connection, via i) its extension
to the principal bundle O of orthonormal frames and ii) the
spinor structure. D depends on the spinor structure (thus
essentially on the tetrad field), but equivalent spinor
structures give rise to “gauge-related” connections.
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The standard equation, DFW (continued)

I The idea of “lifting” the Levi-Civita connection (expressed
in terms of parallel transport) was in the initial works [Weyl,
Proc. Nat. Ac. Sci. 15, 323, 1929; Fock, J. Phys. Rad. 10, 392, 1929].
Cf. Scholz, physics/0409158.

I Rmk 5. That the DFW eqn is covariant under a change of
the tetrad field: (uα) ↪→ (ũα), has ultimately to be checked
by explicit computation.

One has to verify that, S s.t. Λ ◦ S = L being defined as
above: on the simultaneous changes γ̃µ = S−1γµS and
Ψ̃ ≡ S−1Ψ, the connection matrices are “gauge-related”
as follows:

Γ̃µ = S−1ΓµS + S−1(∂µS). (12)

This has indeed been checked [Fock, J. Phys. Rad. 1929].
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The standard equation, DFW (end)

I Rmk 6. In the present framework, the transformation S:
γµ ↪→ γ̃µ, Ψ ↪→ Ψ̃, Γµ ↪→ Γ̃µ (with Λ ◦ S = L), resulting from
the change (uα) ↪→ (ũα), is seen as an active local
similarity transformation in the sense of [MA–FR, IJGMMP 2012]:

The frame field on E = V × C4 is not changed by the
transformation. It remains the canonical basis (Ea), as in
Eq. (9) — which is valid also after the similarity, though with
ũα in the place of uα, hence with a new γ field, say γ̃. Also:

— Ψ̃a (a = 0, ..., 3) are the components, in the frame field
(Ea), of a new wave function ψ̃ = Ψ̃aEa ∈ Γ(E).

— Γ̃µ (µ = 0, ..., 3) are the connection matrices, in the
frame fields (∂µ) [on TV] and (Ea) [on E], of a new
connection D̃ on E.
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3 classes of Dirac equations (continued)

I II. The QRD–0 eqs assume that DEa = 0, where (Ea) is the
canonical basis of C4, seen as a constant frame field on
V × C4.

I.e., the connection matrices are zero: DµΨa = ∂µΨa !
[MA–FR, IJGMMP 2012]

I III. The TRD–1 eqs assume the Levi-Civita connection,
extended trivially from TV to E = TCV.
In contrast with DFW, this version is fully compatible with the
equivalence principle. [MA, Found. Phys. 2008]

For each of those 2: the connection D is fixed. The γ field can
still (but need not) be defined from a tetrad field. Generally, two
fields γ 6= γ′ give inequivalent Dirac eqs. Hence: classes of eqs.
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The general Dirac Hamiltonian

I Rewriting the covariant Dirac eqn (8) in Schrödinger’s form:
i ∂Ψ
∂t

= HΨ (t ≡ x0), gives the general explicit expression
of the Dirac Hamiltonian operator H.
[Parker, Phys. Rev. D 22, 1922, 1980; MA–F. Reifler, Ann. der Phys. 523,
531, 2011]

I The Hamiltonian depends naturally on the coordinate
system, or more exactly on the reference frame — an
equivalence class of charts defined on a given open set
U ⊂ V and exchanging by

x′0 = x0, x′j = fj((xk)) (j, k = 1, 2, 3). (13)

[MA–F. Reifler, Braz. J. Phys. 2010; Int.J.Geom.Meth.Mod.Phys. 8, 155,
2011. Thus a chart χ defines a reference frame: the equivalence
class of χ.]
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The Dirac Hamiltonian is Non-Unique
[MA–FR, Ann. der Phys. 2011]

I It has been found that the Dirac Hamiltonian operator H in
a given chart is not unique: it depends on the admissible
choice of the field of Dirac matrices. For DFW, it means: on
the tetrad field. [See also MA, Int. J. Theor. Phys. 52, 4032, 2013.]

Idem for the energy operator E (the Hermitian part of H for
the relevant scalar product).

I The spectrum of E is itself non-unique. All of this applies
already in an inertial frame in a flat spacetime, and also if
there is an external electromagnetic field. So, in contrast
with Dirac’s original eqn, the covariant Dirac eqn (8) can’t
predict the energy levels of the hydrogen atom!! [MA, Int. J.
Theor. Phys. 53, 2014, to appear.]

I This is true for all versions of the covariant Dirac eqn (8).
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Summary

I Spinor transformation not needed to ensure the Lorentz
covariance of the Dirac eqn of special relativity. Wave
function can also be defined as 4-scalar or as 4-vector.

I In a curved spacetime, the Dirac wave function can only
be defined as a 4-scalar, or as a 4-vector.

I Standard version of (generally-)covariant Dirac eqn:
Dirac-Fock-Weyl eqn. Its big advantage: it is unique (in a
topologically-simple spacetime).

I But, there is a severe non-uniqueness problem of the
Hamiltonian and energy operators.
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Concluding remarks

I To solve the non-uniqueness problem of the Hamiltonian
and energy operators, one needs to restrict the gauge
freedom — for DFW, this means to restrict the choice of the
tetrad field.

I When the necessary restriction is implemented, the
alternative eqn “QRD–0” becomes unique, as well as is
DFW [MA, Int. J. Geom. Meth. Mod. Phys. 10, 1350027, 2013].



25

Slide 4, more precise

Let χ0 : M→ R4 be a global chart of M; G a subgroup of
GL(4,R); Ḡ the set of the charts χ = L.χ0 for some L ∈ G :
χ : X 7→ X = L.X0 ∈ R4, where X0 ≡ χ0(X) ∈ R4.

∀ chart χ ∈ Ḡ, let X 7→ Ψχ(X) ∈ C4 be the expression of the
Dirac wave function ψ in the chart χ and in some fixed frame
field (ea) on the vector bundle E, of which ψ is a section.

One asks that, on a change χ ↪→ L.χ, the transformation of
Ψχ(X) be linear and depend on a function S : G→ GL(4,C) in
such a way that

∀χ ∈ Ḡ, ∀L ∈ G, ∀X ∈ R4, ΨL.χ(L.X) = S(L).Ψχ(X). (14)

This happens if and only if S is a representation G→ GL(4,C).


