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Context of this work

I Quantum effects in the classical gravitational field are
observed, e.g. on neutrons: spin 1

2
particles.

⇒ Motivates work on the curved spacetime Dirac eqn

I Minkowski spacetime: under a Lorentz transformation, the
Dirac wave function ψ transforms under the spin group,
while the Dirac matrices γµ are left invariant

I This is not an option in a curved spacetime or in general
coordinates in a flat ST: the spinor representation does not
extend to the linear group

I Standard “Dirac eqn in a curved ST”: Dirac-Fock-Weyl eqn.
In it, ψ ≡ (ψa) transforms as a quadruplet of complex
scalars and the set of the γµ ’s transforms as a four-vector
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Foregoing work

I Tensor representation of Dirac field (TRD):

• Wave function ψ is a complex four-vector

• Set of components of Dirac matrices γµ builds a (2 1) tensor

(M.A.: Found. Phys. Lett. 19, 225–247, 2006)

I In a flat ST in Cartesian coordinates, the three representations of ψ
(spinor, scalar, vector) lead to the same quantum mechanics
(M.A. & F. Reifler: Braz. J. Phys. 38, 248–258, 2008)

I In a curved ST, two alternative Dirac eqs proposed, based on TRD
(M.A.: Found. Phys. 38, 1020–1045, 2008)

I The standard eqn & the two alternative eqs based on TRD behave
similarly: e.g. same hermiticity condition of the Hamiltonian, similar
non-uniqueness problems of the Hamiltonian theory in a curved ST
(M.A. & F. Reifler: Braz. J. Phys. 40, 242–255, 2010)
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Outline of the present work

The similar behaviour we found for the Dirac-Fock-Weyl eqn
(with ψ 4-scalar) and our alternative eqs based on TRD led us to
study the relations between the two representations in a curved
ST (ψ 4-scalar vs. ψ 4-vector). In the present study:

I The two representations were formulated in a common
geometrical framework

I Equivalence theorems were proved between different
representations & between different classes of eqns
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A common geometrical framework

I Dirac-Fock-Weyl eqn belongs to the more general
“quadruplet representation of the Dirac field” (QRD)

I For both QRD and the tensor representation (TRD), the
wave function lives in some complex vector bundle with
base V (the spacetime manifold), and with dimension 4,
denoted E:

• E = trivial vector bundle V × C4 for QRD

• E = complexified tangent bundle TCV for TRD

I Other relevant objects (e.g. the field of Dirac matrices) also
expressed using E.
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Geometrical framework (continued)

The “intrinsic field of Dirac matrices” γ lives in the tensor product
TV ⊗ E⊗ E◦, where E◦ is the dual vector bundle of E.

The Dirac matrices γµ themselves are made with the
components of γ:

(γµ)a b ≡ γ
µa
b . (1)

They depend on the local coordinate basis (∂µ) on the
spacetime V, on the local frame field (ea) on E, and on the
associated dual frame field (θb) on E◦.
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Geometrical framework (end)

I For QRD (E = V × C4), the canonical basis of C4 is a
preferred frame field on E, whence the scalar (=invariant)
character of the wave function ψ.

I For TRD (E = TCV), the frame field on E can be taken to be
the coordinate basis (∂µ).

Then on changing the coordinate chart, ψ behaves as an
usual four-vector, and γ as an usual (2 1) tensor.
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The Dirac equation and the choices of it

Choose

I the representation, i.e., E = V × C4 or E = TCV;

I any “intrinsic field of Dirac matrices”, γ, i.e., any section of
TV ⊗ E⊗ E◦ so that the associated Dirac matrices γµ

(that depend on the chart and the frame field) satisfy the
(covariant) anticommutation relation [γµ, γν ] = 2gµν14;

I any connection D : ψ 7→ Dψ on E.

Then only one Dirac equation may be written:

γ : Dψ
(

= γµab (Dψ)bµ ea
)

= −imψ, (2)

but it depends on each of the three choices...
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Four classes of Dirac equations

I 1) The standard, Dirac-Fock-Weyl eqn, obtains when one
assumes that:

• the field γ is deduced from some real tetrad field;

• the connection D on V × C4 depends on γ so that
Dγ = 0.

NB: Any two tetrad fields lead to two equivalent
Dirac-Fock-Weyl eqs (except for non-trivial topologies).
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4 classes of Dirac equations (continued)

I 2) The QRD–0 eqs assume that DEa = 0, where (Ea) is the
canonical basis of V × C4.

I 3) The TRD–0 eqs assume that D ea = 0, where (ea) is some
global orthonormal frame field (tetrad field) on TCV.

I 4) The TRD–1 eqs assume the Levi-Civita connection,
extended from TV to TCV.

For each of those three: the connection D is fixed, but the field
γ is restricted only by the anticommutation relation. In general,
two fields γ 6= γ′ give inequivalent Dirac eqs.
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Equivalence theorems between classes

1) QRD–0 and TRD–0 are equivalent for a given γµ field. (easy)

2) Let γ be any “intrinsic field of Dirac matrices” and let D be
any connection on E. Let D′ be any (other) connection on E.

There is another “intrinsic field”, γ̃, such that the Dirac eqn
based on γ and D is equivalent to that based on γ̃ and D′.

In particular, any form of the QRD (TRD) eqn is equivalent to a
QRD–0 (TRD–1) eqn.

3) 1 + 2⇒ The Dirac-Fock-Weyl eqn is equivalent to a TRD–1 eqn
(thus with vector wave function) in the same spacetime.



M. Arminjon & F. Reifler: Representations of the Dirac wave function 12

Theorem 2: outline of the proof

For a given field γ, the difference between the Dirac operators
D(γ,D) and D(γ,D′) is found to depend just on the matrix

K ≡ γµKµ, (3)

where the γµ ’s are the Dirac matrices associated with γ in the
local chart and frame field considered, and with

Kµ ≡ Γµ − Γ′µ, (4)

Γµ and Γ′µ being the connection matrices of D and D′.

Consider a new field γ̃. We know how to change D for a new
connection D̃ so that D(γ,D) is equivalent to D(γ̃, D̃). Set
K̃µ ≡ Γ̃µ − Γ′µ and K̃ ≡ γ̃µK̃µ. If K̃ = 0, the Dirac operator
D(γ̃, D′) is equivalent to D(γ̃, D̃), hence to D(γ,D).
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Theorem 2: outline of the proof (end)

Let a local similarity transformation V 3 X 7→ S(X) ∈ GL(4,C)

lead to a new field of Dirac matrices:

γ̃µ(X) ≡ S(X)−1γµ(X)S(X) (5)

The condition for K̃ ≡ γ̃µK̃µ = 0 is then

γµD′µS = −KS. (6)

This is a system of sixteen first-order linear partial differential
equations for the sixteen components of S, which can be
rewritten as a symmetric hyperbolic system. Therefore, by
known theorems, this can be solved. �


