Representations of the Dirac wave function in a curved spacetime

Mayeul Arminjon 1,2 and Frank Reifler 3

¹ CNRS (Section of Theoretical Physics)

² Lab. "Soils, Solids, Structures, Risks"

(CNRS & Grenoble Universities), Grenoble, France.

³ Lockheed Martin Corporation,

Moorestown, New Jersey, USA.

DICE2010, Castiglioncello, September 13-17, 2010

Context of this work

- ► Quantum effects in the classical gravitational field are observed, e.g. on neutrons: spin ¹/₂ particles.
 ⇒ Motivates work on the curved spacetime Dirac eqn
- Minkowski spacetime: under a Lorentz transformation, the Dirac wave function ψ transforms under the spin group, while the Dirac matrices γ^{μ} are left invariant
- This is not an option in a curved spacetime or in general coordinates in a flat ST: the spinor representation does not extend to the linear group
- Standard "Dirac eqn in a curved ST": Dirac-Fock-Weyl eqn. In it, $\psi \equiv (\psi^a)$ transforms as a quadruplet of complex scalars and the set of the γ^{μ} 's transforms as a four-vector

similarly: e.g. same hermiticity condition of the Hamiltonian, similar non-uniqueness problems of the Hamiltonian theory in a curved ST (M.A. & F. Reifler: *Braz. J. Phys.* **40**, 242–255, 2010)

Outline of the present work

The similar behaviour we found for the Dirac-Fock-Weyl eqn (with ψ 4-scalar) and our alternative eqs based on TRD led us to study the *relations between the two representations in a curved ST* (ψ 4-scalar vs. ψ 4-vector). In the present study:

- The two representations were formulated in a common geometrical framework
- Equivalence theorems were proved between different representations & between different classes of eqns

A common geometrical framework

- Dirac-Fock-Weyl eqn belongs to the more general "quadruplet representation of the Dirac field" (QRD)
- For both QRD and the tensor representation (TRD), the wave function lives in some complex vector bundle with base V (the spacetime manifold), and with dimension 4, denoted E:
 - $E = trivial vector bundle V \times C^4$ for QRD
 - E = complexified tangent bundle $T_{C}V$ for TRD
- Other relevant objects (e.g. the field of Dirac matrices) also expressed using E.

Geometrical framework (continued)

The "intrinsic field of Dirac matrices" γ lives in the tensor product $TV \otimes E \otimes E^{\circ}$, where E° is the dual vector bundle of E.

The Dirac matrices γ^{μ} themselves are made with the components of γ :

$$(\gamma^{\mu})^{a}_{\ b} \equiv \gamma^{\mu a}_{b}.$$
 (1)

They depend on the local coordinate basis (∂_{μ}) on the spacetime V, on the local frame field (e_a) on E, and on the associated dual frame field (θ^b) on E°.

Geometrical framework (end)

For QRD ($E = V \times C^4$), the canonical basis of C^4 is a preferred frame field on E, whence the scalar (=invariant) character of the wave function ψ .

For TRD (E = T_CV), the frame field on E can be taken to be the coordinate basis (∂_{μ}).

Then on changing the coordinate chart, ψ behaves as an usual four-vector, and γ as an usual (2–1) tensor.

The Dirac equation and the choices of it

Choose

- the representation, i.e., $E = V \times C^4$ or $E = T_C V$;
- any "intrinsic field of Dirac matrices", γ , i.e., any section of $TV \otimes E \otimes E^{\circ}$ so that the associated Dirac matrices γ^{μ} (that depend on the chart and the frame field) satisfy the (covariant) anticommutation relation $[\gamma^{\mu}, \gamma^{\nu}] = 2g^{\mu\nu}\mathbf{1}_4$;
- any connection $D:\psi\mapsto D\psi$ on E.

Then only one Dirac equation may be written:

$$\gamma: D\psi \left(=\gamma_b^{\mu a} (D\psi)_{\mu}^b e_a\right) = -im\psi,$$

but it depends on each of the three choices...

(2)

Four classes of Dirac equations

- 1) The standard, Dirac-Fock-Weyl eqn, obtains when one assumes that:
 - the field γ is deduced from some real *tetrad field*;
 - the connection D on $V \times C^4$ depends on γ so that $D\gamma = 0$.

NB: Any two tetrad fields lead to two equivalent Dirac-Fock-Weyl eqs (except for non-trivial topologies).

two fields $\gamma \neq \gamma'$ give inequivalent Dirac eqs.

Equivalence theorems between classes

1) QRD–0 and TRD–0 are equivalent for a given γ^{μ} field. (easy)

2) Let γ be any "intrinsic field of Dirac matrices" and let D be any connection on E. Let D' be any (other) connection on E.

There is another "intrinsic field", $\tilde{\gamma}$, such that the Dirac eqn based on γ and D is equivalent to that based on $\tilde{\gamma}$ and D'.

In particular, any form of the QRD (TRD) eqn is equivalent to a QRD-0 (TRD-1) eqn.

3) $1 + 2 \Rightarrow$ The Dirac-Fock-Weyl eqn is equivalent to a TRD-1 eqn (thus with vector wave function) in the same spacetime.

Theorem 2: outline of the proof

For a given field γ , the difference between the Dirac operators $\mathcal{D}(\gamma, D)$ and $\mathcal{D}(\gamma, D')$ is found to depend just on the matrix

$$K \equiv \gamma^{\mu} K_{\mu}, \tag{3}$$

where the γ^{μ} 's are the Dirac matrices associated with γ in the local chart and frame field considered, and with

$$K_{\mu} \equiv \Gamma_{\mu} - \Gamma'_{\mu}, \qquad (4)$$

 Γ_{μ} and Γ'_{μ} being the connection matrices of D and D'.

Consider a new field $\tilde{\gamma}$. We know how to change D for a new connection \tilde{D} so that $\mathcal{D}(\gamma, D)$ is equivalent to $\mathcal{D}(\tilde{\gamma}, \tilde{D})$. Set $\tilde{K}_{\mu} \equiv \tilde{\Gamma}_{\mu} - \Gamma'_{\mu}$ and $\tilde{K} \equiv \tilde{\gamma}^{\mu} \tilde{K}_{\mu}$. If $\tilde{K} = 0$, the Dirac operator $\mathcal{D}(\tilde{\gamma}, D')$ is equivalent to $\mathcal{D}(\tilde{\gamma}, \tilde{D})$, hence to $\mathcal{D}(\gamma, D)$.

Theorem 2: outline of the proof (end)

Let a local similarity transformation $V \ni X \mapsto S(X) \in GL(4, \mathbb{C})$ lead to a new field of Dirac matrices:

$$\tilde{\gamma}^{\mu}(X) \equiv S(X)^{-1} \gamma^{\mu}(X) S(X)$$
(5)

The condition for $\tilde{K}\equiv\tilde{\gamma}^{\mu}\tilde{K}_{\mu}=0$ is then

$$\gamma^{\mu} D'_{\mu} S = -KS. \tag{6}$$

This is a system of sixteen first-order linear partial differential equations for the sixteen components of S, which can be rewritten as a symmetric hyperbolic system. Therefore, by known theorems, this can be solved. \Box