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Abstract This paper studies the use of the Embedded

Finite Element Method (E-FEM) for the numerical

modelling of triaxial fracture processes in non-homoge-

neous quasi-brittle materials. The E-FEM framework

used in this study combines two kinematics enhance-

ments: a weak discontinuity allowing the model to

account for material heterogeneities and a strong discon-

tinuity allowing themodel to represent local fractures.The

strong discontinuity features enriched fracture kinematics

that allow the modelling of all typical fracture modes in

three dimensions. A brief review is done of past work

using similar enriched finite element frameworks to

approach this problem. The work continues by establish-

ing the theoretical basis of each kind of discontinuity

formulation and their superposition through the Hu-

Washizu variational principle. Three groups of numerical

simulations are presented afterwards for discussing the

performance of this combined E-FEM model: homoge-

neous sample simulations, simple heterogeneous sample

simulations and simulations considering a realistic hetero-

geneous morphology coming from an actual concrete

sample. Comparisons are made with another E-FEM

model considering a single local fracture mode approach

and with previous experimental data. A concluding

statement ismadeon thebenefits andchallenges identified

for the E-FEM framework in this kind of applications.

Keywords E-FEM modelling � embedded weak

discontinuity � embedded strong discontinuity �
enhanced finite elements � incompatible modes � local
heterogeneity modelling � local fracture � triaxial
fracture � finite element enhancements � mesoscale

analysis

1 Introduction

The numerical study of fracture phenomena in com-

posite materials requires a detailed consideration of

their heterogeneous structure, which contributes to the

emergence of complex and unexpected mechanical

behaviours. Multiscale analysis approaches have been

devised in recent decades to develop mathematical

models capable of capturing and predicting their

response [10]. Classical approaches are based on

homogenisation principles, where it is assumed that it

is possible to represent a given composite material as a

completely homogeneous domain whose mechanical

behaviour is governed by a sufficiently complex

material law taking parameters from studies at smaller

scales. As an example, the representative volume

element (RVE) is a widely spread approach that has

been successfully used both in academic research and

industry [34, 50].

Any of these homogenisation approaches require

the analysis of composite materials at smaller scales
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where the effects of heterogeneities can be assessed in

accurate manner through their spatial layout, material

properties and possible local fractures.

It is clear that any multiscale approach should have

an efficient yet sufficiently accurate numerical anal-

ysis method at the smaller scales to fulfill all

homogenisation requirements in a reasonable time

frame. On this matter, the conventional finite element

method presents considerable challenges both in the

problem of heterogeneity distributions and in the

explicit modeling of local fractures. On one hand, a

mesh has to be adapted to represent the regions having

different material phases. Depending on the natural

shapes of these phases and the kind of information that

can be measured about them on a 3D setting, intensive

adaptive meshing techniques might be required to

ensure mesh continuity through these regions while

maintaining an accurate depiction of all material

interfaces. This will compromise the resulting quality

of the element domains. Element distortions and any

other kind of geometrical anomalies will have an

impact on the quality of results coming from the

numerical analysis as a whole [36]. Excessive mesh

density requirements to avoid bad quality issues will

translate into long computational solving times.

On the other hand, the modelling of a fracture poses

numerous critical challenges for a standard approach

[49]. The path of the fracture should be explicitly

identified and delimited beforehand on the mesh itself.

Spontaneous failure calculations can also be imple-

mented, but the standard methods do not possess any

mathematical features capable of modelling fracture

separation and/or propagation other than complete

element stiffness damage mechanisms or even direct

element removal under certain failure criteria. While

these techniques have gained acceptance in both

academy and industry for their ease of use, they are

well known to produce considerable solution stability

problems and modelling limitations [38, 48].

Advanced finite element approaches provide with

attractive solutions to overcome the aforementioned

problems on local scale material modelling, proposing

integrating frameworks capable of representing both

material heterogeneities and enriched local cracks using

non-adaptive meshes. Among them we can find the

Extended Finite Element Methods (X-FEM) [14, 44],

the Base Force Element Method (B-FEM) [31, 32], the

Augmented Finite Element Method (AFEM) [9] or the

Embedded Finite ElementMethods [18, 27, 35], among

others. Many of them are well-endowed with a math-

ematical flexibility capable ofmodelling different kinds

of discontinuities to account for a variety of material

phases and local fracture modes. They do this through

mathematical enhancements on their supporting func-

tions whether in a nodal base (X-FEM), through their

elemental mechanical fields (E-FEM) or through new

mechanical state variables (B-FEM). Some of them are

even mesh-less, in the sense that their supporting

functions do not depend on a definite division of

elemental domains in space. The representation capa-

bility of these approaches is greatly enhanced at the

expense of increasing operational and implementation

complexities.

In this sense, the E-FEM framework, being the

choice of the authors of this work for the current study,

retains a reasonable balance between mathematical

complexity and representational capability. This is

mainly because it is based on the method of incom-

patible modes [16, 37], allowing the building of

independent mechanical field enhancements on each

element without ensuring rigorous global continuity.

From an operational standpoint, this allows working

all heterogeneity and fracture mathematical enhance-

ments in an internal-element fashion, with the possi-

bility to use operator-split methods [15] and thus

condensing all element internal effects before attempt-

ing a global displacement solution step, whether linear

or nonlinear. The E-FEM framework can then be

developed in such a way that the global FEM

numerical solution engine may be left untouched,

enabling the support of a variety of available FEM

solution platforms for implementation.

The authors of this work have chosen to focus on

the use of the E-FEM framework for approaching the

problem of triaxial failure in quasi-brittle materials. In

Section 2, a review is made on how the E-FEM

framework has recently evolved to approach this

problem. In Section 3, the theoretical basis of the

E-FEM framework used for this study is briefly

described. It makes the integration of a weak and a

generalized strong discontinuity model. No detailed

development of each of the discontinuity formulations

will be done as the bases have already been discussed

in other works [21, 22, 29, 35, 51].

Section 4 will introduce the numerical simulations

done using this generalized E-FEM approach to

discuss its performance in different problem scenarios

allowing to scrutinise each of its enhancements in

  222 Page 2 of 23 Materials and Structures          (2022) 55:222 



progressive fashion. Three different kinds of simula-

tions will be presented in this work: homogeneous,

simple heterogeneous and realistic heterogeneous.

Homogeneous sample simulations will show how the

strong discontinuity component of this E-FEM frame-

work manages to capture stress triaxiality dependence

in a known fracture process. Afterwards, simple

heterogeneous simulations will feature a single spher-

ical inclusion within an homogeneous matrix material

considering different load conditions to discuss on the

mixed 3D fracture processes unfolding due to the

presence of different material phases on a simple

layout. The final set of simulations feature a model of

an extract of an actual concrete sample as conceived

and tested under a compression load setup considering

triaxial confinement. A comparison is made with

respect to another typical E-FEM model considering a

single fracture kinematic mode approach as well as an

experimental test reference to make. Section 5 will

close this work with a final word on the overall

effectiveness of the E-FEM framework, with potential

future works.

2 Evolution of the E-FEM framework

approaching composite quasi-brittle failure

problems

From the founding works that established the main

base of the E-FEM framework [30, 37], this analysis

approach was originally conceived to model localisa-

tion phenomena in general materials as an alternative

to standard techniques with adapted meshes. It started

with the idea of using weak discontinuity enhance-

ments to represent the presence of shear localisation

bands, associating specific damage behaviour laws to

all domains falling between two parallel lines having

an arbitrary separation (shear band thickness). As the

mathematical depth of these developments evolved,

the framework began to turn towards the use of strong

discontinuities equipped with discrete or regularized

crack behaviour laws to gain objectivity in the

definition of strain localisation regions [18, 27].

Applications to quasi-brittle materials began to

emerge at this stage, but only for one or two-

dimensional problems [7, 12]. The pioneering work

byWells and Sluys [51] started with a full deployment

of the approach for 3D problems, pushing the bound-

aries of the framework and evidencing new theoretical

weaknesses in the mathematical structure of strong

discontinuity enhancements. They managed to imple-

ment the E-FEM framework for a linear tetrahedron

including the rigid body displacement crack kinematic

modes of normal separation and sliding, making the

comparison between variationally symmetric and

asymmetric strong discontinuity enhancements. In

all these applications, the local fracture interface is

defined as a plane.

At the same time, the works on improving math-

ematical robustness and kinematic consistency in the

framework are sustained by the notable work of

Jirasek and Oliver [18, 27, 28] in the early 2000s. Non-

symmetrical variational schemes were favored to

achieve consistent modelling of both statics and

kinematics simultaneously. An enrichment of the

fracture formulation was explored by implicitly

incorporating a rotational degree of freedom in the

kinematics of the local fracture plane of a constant

stress triangle (CST) element [1], establishing the

basis for enriched fracture kinematics through non-

uniform strong discontinuity functions. The idea of

having fully local enriched fracture modes for improv-

ing the consistency of fracture kinematics was later

developed in detail on a 2D setting [22]. The authors

managed to fully equip fracture kinematics with

translational and rotational degrees of freedom in

addition to the capability for one of the segregated

domains of the element to have a simple lateral

tension/compression mode. This allowed to reach new

levels of variational consistency and better element

internal equilibrium conditions, while having internal

fracture variables that really described a physically

meaningful state of the local fracture. The idea was

further used in [4, 5, 8, 33, 43] and finally in the works

developed in [29], where a deep theoretical assessment

was made for its generalisation on a 3D setting. The

present work considers this last development.

Concerning the applications to heterogeneous

quasi-brittle fracture, the interest of multiscale

approaches and the eventual need to incorporate the

E-FEM framework into homogenisation procedures

began with the notable works by Markovic [25]. In

particular, it was Markovic who set the point of

departure of heterogeneity modelling by reviving the

effective use of the weak discontinuity formulation

taking the foundations of previous works on the

X-FEM approach [45]. This line of research gave rise

to the first successful integration of strong and weak
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discontinuities within the framework for one-dimen-

sional bar elements in [2, 15]. In these works, an

idealized 3D heterogeneity layout composed by per-

fectly spherical inclusions within a homogeneous

matrix was used for the modelling of concrete

samples. While this method was successful in predict-

ing typical tensile resistance values for concrete, the

disadvantage was that it did not return satisfactory

values for tension/compression resistance ratios. The

use of 1D elements also prevented having an objective

perspective of local stress and strain field distributions.

This line of research began its first truly 3D solid

element approach in the work done by Roubin et al.

[35]. The 3D generalisation of the weak discontinuity

enhancement model for heterogeneities was based on

the works of Markovic [25], while a strong disconti-

nuity model equipped with a discrete traction separa-

tion law was used for local fractures. The strong

discontinuity model was capable of representing a

single fracture mode of normal separation, activated

by a Rankine localisation criterion and followed by an

exponential traction-separation law. The representa-

tion of heterogeneity distributions was evolved to

make use of probabilistic excursion sets, which

enhanced the random nature of material phases

improving their packaging quality and conserving a

degree of smoothness on their interfaces. Despite the

limitation of using a single fracture mode kinematics

approach, typical tension and compression resistance

ratios were found to be more reasonable than the

previous works with 1D bars. Hauseux [13] later

achieved the simulation of fracture sliding modes

(mode II) with the same framework in the context of

simulations of excavations of geomaterials, still based

on a single fracture and activated by means of a Mohr-

Coulomb localisation criterion. The works of Stamati

[40, 41] added a new dimension to the E-FEM

framework experimental validation by means of test

setups having in-situ measurements in concrete sam-

ples that allowed direct comparisons with numerical

simulations at the mesoscale.

One of the most discussed characteristics of these

E-FEM models is the lack of cross-elemental conti-

nuity for the emerging cracks. As the mathematical

foundations of these enhancements are intrinsically

based on the method of incompatible modes [16, 37],

there is no guarantee to keep continuity of a local crack

to neighboring elements once one of them starts to

develop. This leads to the simultaneous creation of

multiple local cracks that, by the mere mechanism of

stiffness damaging and internal force redistribution,

will tend to favour a spontaneous coalescence phe-

nomenon giving rise to a larger scale fracture without

explicitly aiming for it. While nonlocal crack conti-

nuity tracking methods within the E-FEM framework

have already been well studied and implemented in

multiple applications for homogeneous material sim-

ulations [5, 19, 53], the line of research currently

discussed ([2, 13, 35, 41, 42]) intentionally keeps the

locally discontinuous nature of the E-FEM models to

favour this behaviour in the context of complex

heterogeneous materials. This decision is supported by

multiple studies that favour the hypothesis of multi-

cracks at smaller scales contributing to the emergence

of larger fracture processes in such materials [3, 26].

In other recent lines of research, the E-FEM

framework has evolved to provide answers to more

complex modelling problems, such as electromechan-

ical phenomena [23], where local element fractures,

already enriched with nine kinematic modes, are

further enhanced with electric potential modes under a

strictly local elemental condensation scheme. A

successful application of the E-FEM approach to fluid

mechanics is done by Idelsohn et al. [17], where once

again the locality of the E-FEM framework is

exploited to multi-fluid moving interface problems.

Multiscale schemes integrating the E-FEM in a

poromechanics setting can be founds in the recent

works of Lu et al. [24] and Cusini et al. [6]. Local crack

reclosure and healing models have been also explored

through single (3D) [46] and multiple (2D) [11] local

kinematic fracture mode schemes. The performance of

the E-FEM framework approaching dynamic crack

propagation problems is assessed in the works of [52].

The works of Kakarla [20] explore the possibility to

model multiple crossing cracks within a single

element, allowing to consider a more complex evolu-

tion of the internal load direction.

The current work will continue in this line with a

generalized strong discontinuity model integrated

with a weak discontinuity model for considering the

presence of material heterogeneities.
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3 Double enhancement E-FEM formulation

with generalized fracture kinematic modes

The fundamental modelling of an embedded discon-

tinuity within a finite element starts by having a body

representing an elemental domain Xe having bound-

aries oX. The body is crossed by a surface Cd that

establishes the presence of a strain (weak) or dis-

placement (strong) discontinuity, partitioning the

complete domain in two subregions Xþ and X�. The
subregion interface Cd is characterized at each of its

points by normal and parallel unit vectors n̂, t̂ and m̂,

respectively. These are commonly referred to as the

local frame on the E-FEM context. A typical

scheme in two dimensions can be appreciated in

Figure 1.

From now on, while all theoretical premises

presented in this study are applicable to a wide variety

of finite element geometries and configurations, this

study will mostly particularise all works to a specific

base 3D finite element: a linear tetrahedron. The

interface Cd representing whether the local element

rupture or the division between different material

phases is assumed to be planar, characterized by a

constant and unique local frame (n̂, t̂, m̂) and

segmenting a given tetrahedron in two subvolumes

V� and Vþ.

3.1 Weak discontinuity formulation

The weak discontinuity formulation within the E-FEM

framework is used to model the presence of different

material phases within a single element domain. It

introduces a jump on the strain field to account for the

presence of different materials while still retaining

displacement continuity (thus the reason of calling it

weak discontinuity). Its basic construction assumes

that a general displacement field u can be decomposed

as the sum of a homogeneous standard displacement u

and an enhanced displacement field eu in the following

general form:

u ¼ uþ eu ð1Þ

where the enhancement eu has the role of adding a

displacement slope discontinuity representing the

change in material characteristics, i.e., the jump on

the strain field. A typical particularisation to a

tetrahedron element can be appreciated in Figure 2(a),

assigning different linear elastic material properties

E�; m� to each of the subdomains X�.
The model taken for all developments and simula-

tions presented in this study is the one typically used

on the line of research followed in [35] and analysed in

detailed in [21]:

Weak discontinuity enhancement

eu ¼ Hn̂ � x� xCd
ð Þ e½ �nn̂þ e½ �t t̂þ e½ �mm̂

� �

ð2Þ

H ¼
Hþ ¼ V�

V
x 2 Xþ

H� ¼ �Vþ

V
x 2 X�

8

>

<

>

:

ð3Þ

where n̂ � x� xCd
ð Þ is the normal distance from a

given point x to the nearest location xCd
of the surface

Cd. The internal variables e½ �n; e½ �t; e½ �m characterise the

magnitude of the strain jump when crossing Cd .

3.2 Strong discontinuity formulation

The role of the strong discontinuity in this work is to

model the displacement jump associated to an element

local fracture. It is defined by having a general

displacement field u expressed as a continuous base

field u added to a Heaviside function HCd
, whose

trigger location is that of the discontinuity surface Cd.

It is described as:

u ¼ uþHCd
uj j½ �; ð4Þ

where uj j½ � is a vector that describes the displacement

jump in each direction, This study takes advantage of a

non-uniform definition of uj j½ � field components at the

interface to represent fully enriched fracture kinemat-

ics describing the motion of the Xþ domain with

respect to X�. In general, rigid body translations
Fig. 1 Basic schematic of an embedded discontinuity (whether

weak or strong) in 2D
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uj j½ �n; uj j½ �t; uj j½ �m, rigid body rotations hn; ht; hm and

simple tensile-compressive strains in each direction

�n; �t; �m can be all identified on a general linear

definition for each component of uj j½ �. Figure 2(b)

illustrates an example of this enriched set of fracture

kinematic modes for a domain Xþ on a tetrahedron.

The centroid ofCd is taken as the origin for defining all

rigid body modes.

Eq. 4 does not allow a coherent imposition of

boundary conditions, since those that are prescribed on

X� pertain the vector u, while the remaining that

belong to Xþ have their information contained in

uþHCd
uj j½ �. To overcome this, a typical technique in

the framework [27] has been to introduce a new

auxiliary field u function allowing for the following

change of variables:

û ¼ uþ u uj j½ �; ð5Þ

where û is a unified vector that has its node displace-

ments completely consistent with uwhile retaining the

strong discontinuity information continuously spread

inside thanks to theu function. The only mathematical

constraint u is required to satisfy is the following:

u ¼ 1 xi 2 Xþ

0 xi 2 X�

�

i ¼ 1; 2; 3; 4 ð6Þ

where xi denotes a nodal position.
A more robust definition of u is made in this work

to avoid variational and kinematic inconsistencies as

much as possible ([29, 51]). In this work, it will feature

a cubic, piece-wise (Xþ;X� domains), individual

definition per each local direction (n̂; t̂; m̂) of uj j½ �.

Designating local coordinates as (n; g; f), a compound

u can be expressed using a complete cubic polynomial

base P3:

u ¼
u�
n 0 0

0 u�
t 0

0 0 u�
m

2

6

4

3

7

5

u�
j ¼ PT

3a
�
j j ¼ n; t;m

P3 ¼ 1 n g f ng gf nf n2 g2 f2
�

n2g ng2 g2f gf2 n2f nf2 ngf n3 g3 f3
�T

a ¼ aþn a�n aþt a�t aþm a�m½ �T

ð7Þ

This extended definition for u allows the usage of a�j
coefficients as free parameters to aid the satisfaction of

numerous consistency constraints that are helpful on

building a solid strong discontinuity formulation

structure [29].

Introducing this variable change along with the

generalised definition for fracture kinematics through

a kinematic modes vector n allows reaching an

enriched definition for the displacement field account-

ing for a strong discontinuity:

Strong discontinuity enhancement

u ¼ ûþ HC � uð ÞJn ð8Þ

where J is an interpolation matrix based on local n; g; f
coordinates operating on n. The latter contains all the

unknown fracture kinematic modes of translation,

rotation and simple strain:

(a) (b)

Fig. 2 Schematic of the

weak and strong

discontinuities for

tetrahedral element. (Color

figure online)
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J ¼
1 0 0 0 f � g n 0 0

0 1 0 � f 0 n 0 g 0

0 0 1 g � n 0 0 0 f

2

6

4

3

7

5

ð9aÞ

nT ¼ uj j½ �n0 uj j½ �t0 uj j½ �m0
hn ht hm �nn �tt �mm

� �T

ð9bÞ

3.3 Variational integration of both discontinuity

enhancements

To model both heterogeneities and local element

fractures in the same element domain, the aforemen-

tioned definitions have to be integrated within a unique

mathematical framework. The main assumption by

doing this superposition is that both the material

interface and the fracture interface coincide perfectly

at the same surface during all the analysis. Based on

the previous definitions, the following can be reached

by making a linear superposition:

u ¼ ûþ eu þ HC � uð ÞJn ð10Þ

The Hu-Washizu framework has been chosen as the

variational principle in this work. It treats displace-

ment, strain and stress fields (real fields) (u; e; r) as

well as their respective variations (virtual fields)

(du; de; dr) as completely independent of each other.

This allows a considerable flexibility on the discreti-

sation strategy for each of the fields. Expressed already

in a Voigt vector format, the equation system entailed

by this variational framework is the following one:

Z

X

odutr dV �
Z

X

dutf b dV �
Z

oX

dutt dA ¼ 0

ð11aÞ
Z

Xe

drt ou� eð ÞdV ¼ 0 ð11bÞ

Z

Xe

det r eð Þ � rð ÞdV ¼ 0 ð11cÞ

where t and f b are the boundary traction and body

force vectors. The o operator is the equivalent of the

symmetric gradient operator rs (defined as

rs �ð Þ ¼ 1
2
r �ð ÞTþr �ð Þ
� �

) in a Voigt format. An

important distinction is made between the stress field

r eð Þ that is calculated from a linear elastic constitutive

law taking the real strain field e and the real stress field

r, which is independent. In the same way, the real

strain field e is not necessarily equal to the symmetric

gradient of the displacement field ou.

The discretisation strategy for each of the real (and

virtual) fields must be able to capture the physics

sought by the study allowing at the same time for

mathematical simplicity and numerical efficiency.

This work will keep with the strategy already

presented for both strong and weak discontinuity

enhancements presented in [21, 29]. A summary of the

mathematical works on the variational framework is

also presented therein. The choice of a linear tetrahe-

dron as the base element allows for the use of a full

integration scheme.

Among the most important resulting expressions

from the entire variational analysis, we can find an

equation governing the internal-external force

balance:

f eint ¼
Z

X

Btr eð Þ dV ¼ f eext ð12aÞ

f eint ¼Kbbd þKbw ej j½ � þKbsn ð12bÞ

where B is the standard operator corresponding to

the derivatives of the shape functions of the base

element and Kbb;Kbw;Kbs are resulting stiffness

matrix operators corresponding to weak and strong

discontinuity internal variables ej j½ �; n, as well as the
standard nodal displacement vector d. There will be

also another equation governing the local weak

discontinuity behavior:

Kwbd þKww ej j½ � þKwsn ¼ 0 ð13Þ

where, again, Kwb;Kww;Kws are resulting stiffness

matrix operators corresponding to all main local and

global variables in the model. And, finally, an

expression dictating local strong discontinuity behav-

ior, which relates the cohesive traction vector T

associated to a local fracture plane and the bulk

stresses on the elemental domains ðrþ; r�Þ. The weak
discontinuity variable ej j½ � can be reduced by means of

Eq. 13 to reach an expression which is function only of

the standard nodal displacements vector d and the

fracture kinematic modes vector n:
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T ¼ 1

V
Vþrþ þ V�r�ð Þ ð14aÞ

T ¼Ks�bd þKs�w ej j½ � þKs�sn ð14bÞ

T ¼Te þMn ð14cÞ

Te ¼ Ked ð14dÞ

where, again, Ks�b;Ks�w;Ks�s are the corresponding

stiffness matrix operators in this governing equation.

Eq. 14c is the standard form for presenting the traction

vector associated with the local crack on the current E-

FEM framework. Eq. 14c determines the state of crack

traction depending on loads and the kinematic state of

the crack. On one hand, the Te vector represents the

traction imposed by the current load in the element,

depending on the standard displacement vector d. It is

a variable mechanical demand that will guide the

evolution of the fracture process within the element.

The M matrix, referred to in this work as the fracture

stiffness, accounts for the mechanical impact of having

a kinematic state of fracture. It does not depend on

load but only on a mixture between element geometry

characteristics and basic properties of the surface Cd.

This composition of load effects and the crack state

yield a current state for T. In turn, T is to be controlled

(damaged) by a discrete traction separation law.

From now on, the description of all remaining

mathematical structures in the model will be done on

the local frame n̂; t̂; m̂ (with the respective n; g; f
coordinates). For instance, the traction vector T is now

expressed as T ¼ Tn Tt Tm½ �T .

3.4 Localisation criteria

A localisation criterion is required to designate a local

failure within an element and to start introducing the

impact of fracture mechanics through the expressions

developed earlier plus a set of traction separation laws

(Section 3.5).

Localisation also has the secondary role in the case

of homogeneous elements of determining the orienta-

tion and location of the fracture surface Cd. The base

element explored in this work remains a linear

tetrahedron whose real stress field has been set as

uniform. Thus, a localisation criterion can objectively

determine the orientation but not the exact location of

the local fracture. On this matter, the authors of this

study have decided to take the approach followed in

[13, 35] and make Cd to pass through the centroid of

the element reaching localisation. For all heteroge-

neous elements, it has been already stated that the

crack plane will be made perfectly coincident with the

material interface plane.

This work has taken the traction vector components

Tn; Tt; Tm to articulate the localisation criterion on the

normal-shear stress space (rn; s) on Cd. A completely

closed criterion has been built by composing a piece-

wise function with three different sub-criteria:

• ARankine criterion, representedbya straight vertical

line on the (rn; s) plane with a positive abscissa ryR .
For a homogeneous element, this criterion sets the

orientation of the local crack plane as the plane of

the maximum principal stress r1.
• A compression limit criterion. This is also repre-

sented by a straight vertical line on the (rn; s) plane
with a negative abscissa ryC . For a homogeneous

element, this criterion sets the orientation of the

local crack plane as the plane of the minimum

principal stress (maximum compression) r3.
• A Mohr-Coulomb criterion, represented by a

couple of symmetric lines (with respect to the rn
axis) described with the equation s ¼ �C�
tanwð Þrn. For a homogeneous element, this crite-

rion sets the orientation of the local crack plane as

the one maximising the combined shear stress

dictated by the Mohr-Coulomb criterion.

This piece-wise curve remains very simple (4 material

parameters) and ensures that all possible stress failure

states are covered. Figure 3 illustrates this compound

criterion. The element is considered in a localised state

if a load trajectory on the (rn; s) plane intersects the

compound criterion, establishing an intersection point

ry; sy
� �

that serves as the initial yield parameters for

operating the respective traction-separation laws

(Section 3.5).

The collection of traction-separation laws also

involve the crack surface stress components not

explicitly included in the traction vector T, as it is

just a projection of the entire state of stresses r on the n̂

direction. An estimation of the initial yield values

rytt ; rytm ; rymm for these components rtt; rtm; rmm is

done base on the evolution of the entire state of

stresses at the interface just before the localisation

event.
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3.5 Traction-separation laws and local fracture

mechanics

After having reached a state of localization, a local

state of rupture is established in the element, and the

behavior is governed by a traction-separation law. It

describes the evolution of the components of the

traction vector T at the local interface of fracture

according to the kinematic fracture variables. Since

the enriched generalized kinematics proposed for the

local fracture possesses 9 different modes, 9 relations

are required to fully determine the complete internal

state of an element.

A first set of three traction-separation is proposed to

ensure the process of damage to the main components

Tn; Tm; Tt of the cohesive traction vector:

T ¼Te þMn ¼ q ð15aÞ

Tn ¼Ten þ
X

9

k

Mnknk ¼ qn ð15bÞ

Tt ¼Tet þ
X

9

k

Mtknk ¼ qt ð15cÞ

Tm ¼Tem þ
X

9

k

Mmk
nk ¼ qm ð15dÞ

where qj (j ¼ n; t;m) are damage functions that will

control the evolution of each of the traction compo-

nents. k goes through each of the fracture kinematic

modes. To simplify the approach, it was decided not to

involve all nine kinematic modes in the qj functions.

The emphasis will be on the kinematic rigid body

modes uj j½ �n0 ; uj j½ �t0 ; uj j½ �m0
to control the evolution of

the damage process for all traction vector components.

The vector q is then defined using exponential

functions as:

q ¼
qn

qt

qm

2

6

4

3

7

5
¼

ryn
ryt
rym

2

6

4

3

7

5
e
� ryn

GfI
uj j½ �n0þ

ryt
GfII

uj j½ �t0þ
rym
GfII

uj j½ �m0

� �

ð16Þ

where ryn ; ryt ; rym are the initial resistance values

defined from the localisation calculations. The con-

stants GfI and GfII are defined as physical internal

failure parameters which can be perceived as fracture

surface energies for mode I and mode II failures

coming from the classical theory of fracture mechan-

ics, respectively.

This set of equations is further enriched with a more

detailed local fracture mechanics capable of represent-

ing crack reclosure phenomena, sliding by friction

based on the amplitude of normal contact forces and

the possibility of additionalmicroporosity compaction.

The definition of these local physics is based entirely

on the rigid kinematic failure modes linked to the

translation of a rigid body uj j½ �n0 ; uj j½ �t0 ; uj j½ �m0
. Figure 4

shows respectively the behavior proposed for the

kinematic modes of normal separation and of parallel

sliding. Cumulative normal separation and sliding

displacements uj jn; uj jt; uj jm are defined to keep track

of the current damaged state of the local crack and to

Fig. 3 The envelope

localisation criterion on the

(rn; s) plane used in this

work showing

notable intersecting points.

A proportional load is

shown beginning on a zero

state up to reaching an

intersection with the curve at

(ry; sy)
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define the thresholds that determine further damage or

a crack reclosure state. The reclosure (or sliding

reversal) behaviors have been defined as simple linear

functions from the previously accumulated damage

states ðqjÞi�1 down to zero. In the case of a complete

crack normal reclosure, normal forces start to develop

if further compression is registered. The associated

stiffness is defined as the young modulus of the softer

material Ec between both ± domains normalized by

the element characteristic length lc. If the local crack is

compressed enough so that it reaches the compaction

limit ryC , the interface will irreversibly drop its

mechanical resistance down to a terminal value. For

the model used in the final simulations presented later

in this work, this terminal value has been set to zero.

With these considerations, the set of principal

traction separation laws finally becomes:

Ten þMnn uj j½ �n0¼

qn uj j½ �n0 uj jn
qnð Þi�1

uj jn
uj j½ �n0 0	 uj j½ �n0 	 uj jn

Ec

lc
uj j½ �n0 ryC 	 Tn 	 0

qC Tn 	 ryC

8

>

>

>

>

>

<

>

>

>

>

>

:

ð17aÞ

Tet þMtt uj j½ �t0�Tlt ¼
q�t uj j½ �t0

	

	

	

	

	

	 uj jt
qtð Þi�1

uj jt
uj j½ �t0 uj j½ �t0

	

	

	

	

	

	 uj jt

8

>

<

>

:

ð17bÞ

Tem þMmm uj j½ �m0
�Tlm ¼

q�m uj j½ �m0

	

	

	

	

	

	 uj jm
qmð Þi�1

uj jm
uj j½ �m0

uj j½ �m0

	

	

	

	

	

	 uj jm

8

>

<

>

:

ð17cÞ

A second set of three traction-separation equations

is proposed to damage the out-of-plane stress compo-

nents rtt; rtm;rmm:

T 0
et
þ
X

9

k

M0
tk
nk ¼ qtt ð18aÞ

T 0
em

þ
X

9

k

M0
mk
nk ¼ qtm ð18bÞ

T 00
em

þ
X

9

k

M00
mk
nk ¼ qmm ð18cÞ

where alternate stiffness matrices M
0
and M

00
are

derived considering projections of the entire crack

Fig. 4 Illustration for reversible and irreversible behaviours for

crack normal separation (left) and sliding kinematic modes

(right). The path from 1 to 2 is irreversible, while 2-3 is depicted

as a reversible path forced by an insufficient load that fails to

continue crack evolution to point 2a. If the load is reversed

enough, the crack can will be eventually closed (3). Further load

reversibility induces compression for the left plot and sliding on

the opposite side of the crack for the right plot (3-4). Eventually,

one can even reach irreversible behaviour zones once again (4-

5)
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stress state onto the t̂ and m̂ directions, respectively.

Also:

qtt

qtm

qmm

2

6

4

3

7

5
¼

rytt
rytm
rymm

2

6

4

3

7

5
e
� ryn

GfI
uj j½ �n0þ

ryt
GfII

uj j½ �t0þ
rym
GfII

uj j½ �m0

� �

ð19Þ

where rytt ; rytm ; rymm are again retrieved from the

localisation calculations.

In the end, a set of three closing equations is

proposed to complete the system. These equations do

not have a strictly physical meaning, and only serve to

reinforce the hypothesis that the modes of rupture by

translation of the rigid body uj j½ �n0 ; uj j½ �t0 ; uj j½ �m0
are

the most predominant for determine the local fracture

mechanics. These equations make it possible to

weakly decouple the first of these kinematic modes

from the other equations of the system:

X

9

k¼4

Mnknk ¼ 0 ð20aÞ

X

9

k¼4

Mtknk ¼ 0 ð20bÞ

X

9

k¼4

Mmk
nk ¼ 0 ð20cÞ

3.6 Linearisation of the model and global solution

The linearisation process for the application of non-

linear global iterative solutions can be accomplished

by departing from the main relations governing each

of the internal discontinuity variables ej j½ �, n and the

nodal displacements d (Eqs. 13, 12b and the system

17a-20c).

The first and most standard case is the global

internal-external force balance, in which the depen-

dent nonlinear variable increment is taken as the

global residual of internal and external nodal forces

from successive iterations k and k þ 1 for a set of

assembled element force balance equations. For this,

the linearisation of Eq. 12b is assembled repeatedly (A

operator) for all ne elements currently iterating during

the application of a load step pþ 1 coming from an

already solved step p. This yields the following:

A
nel

KbbDd

	

	

	

	

kþ1ð Þ

pþ1

þKbwD ej j½ �
	

	

	

	

kþ1ð Þ

pþ1

þKbsDn

	

	

	

	

kþ1ð Þ

pþ1

( )

¼ �A
nel

f eint

	

	

	

	

kþ1ð Þ

pþ1

� f eext

	

	

	

	

p

( )

ð21Þ

In the E-FEM framework, which is based on the

principle of incompatible modes [37], no global

continuity is guaranteed for any of the internal

variables characterising both weak and strong discon-

tinuities. Hence, none of the linearisations associated

to Eqs. 13, 17a-20c go through any conventional

assembly process. Indeed, there will be one relation to

be satisfied for each element in an independent

fashion. For instance, the weak discontinuity govern-

ing relation (Eq. 13) can also be linearised by defining

its balance through a dependent variable Uw at

element level, which is always sought as zero during

the nonlinear solution process. Taking increments in

this expression leads to the following:

KwbDdj kþ1ð Þ
pþ1 þKwwD ej j½ �j kþ1ð Þ

pþ1 þKwsDnj kþ1ð Þ
pþ1 ¼ DUwjpþ1

¼ 0� Uwjkpþ1

ð22Þ

where Eq. 22 is never assembled in a global format.

Linearisation of the strong discontinuity model

governing relations is not evident since different sets

of traction separation laws were incorporated with

different considerations (Eqs. 17a- 17c, 18a-18c) and

there are also the closing relations coming from purely

algebraic considerations (Eqs. 20a-20a). Once the nine

relations have been linearised, they can be assembled to

build a singlematrix block-based equation to pack down

the nine relations into a single linearised expression

defining DU0 as a collective dependent increment:

Ks�bDdj kþ1ð Þ
pþ1 þKs�wD ej j½ �j kþ1ð Þ

pþ1 þKs�sDnj kþ1ð Þ
pþ1

¼ DU0 ¼ 0� U0jkpþ1

ð23Þ

where the matrices Ks�b, Ks�w, Ks�s contain the

aforementioned small-scale assembly of linearisations

of all traction separation laws and closing equations

previously developed.

Having all these linearisations, the same global

solution approach in [35] is followed. A complete

linearised system is first built in a block-matrix format

as:
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Kbb Kbw Kbs

Kwb Kww Kws

Ks�b Ks�w Ks�s

2

6

4

3

7

5

kð Þ

pþ1

Dd

D ej j½ �
Dn

2

6

4

3

7

5

ðkÞ

pþ1

¼
�A

nel
f eint� f eext


 �

�Uw

�U0

2

6

6

4

3

7

7

5

kð Þ

pþ1

ð24Þ

Considering, once again, that the weak and strong

discontinuity models only have immediate influence at

a local level, the typical global strategy solution for a

nonlinear iteration kþ1 is to take the solution of the

standard displacement vector d solved on the previous

iteration k to internally update the actual state of the

weak and strong discontinuity variables ej j½ �;n using

the nonlinear equation system (Eqs. 17a-20c) and

Eq. 13. With this, the linear system 24 is condensed in

the D ej j½ �;Dn increments to reach a final expression

involving exclusively the increment of the standard

nodal vector Dd and a condensed elemental stiffness

matrix Ksc, which is to one to be assembled and

eventually used to execute a numerical method of

choice by a standard finite element global solution

engine. The final condensed global FEM equilibrium

equation system has the following form:

A
nel

Ksc

	

	

	

	

kþ1ð Þ

pþ1

Dd

	

	

	

	

kþ1ð Þ

pþ1

( )

¼ �A
nel

f eint � f eext

 �

	

	

	

	

ðkÞ

pþ1

ð25aÞ

Ksc

	

	

	

	

kþ1ð Þ

pþ1

¼ Kbb � Kbw Kbs½ �
Kww Kws

Ks�w Ks�s

� �1 Kwb

Ks�b

� 	

	

	

	

ðkÞ

pþ1

ð25bÞ

The calculation of the residuals at each nonlinear

iteration can be calculated as:

f eint

	

	

	

	

ðkÞ

pþ1

¼ VeB
tr

	

	

	

	

ðkÞ

pþ1

¼ Kbbd þKbw ej j½ � þKbsn

	

	

	

	

ðkÞ

pþ1

ð26Þ

4 Numerical Simulations

In this section, an implementation done within the

FEAP program [47] will be tested under a variety of

conditions to study the response of the generalised

E-FEM formulation and its capability for predicting

different kinds of fracture processes. The simulations

will be done side-by-side with a previous numerical

model having a single kinematic mode E-FEM

framework [13, 35, 40].

Three types of simulations will be presented to the

reader:

• Homogeneous sample simulations. These setups

will feature completely homogeneous elements

without the presence of any weak discontinuities.

Torsional load simulations will take place to

discuss the emergence of controlled tridimensional

fracture processes. By controlled, the authors of

this work imply that a specific pattern for a

tridimensional fracture process is already expected

for a given simulation setup knowing its geometry

and load conditions.

• Basic heterogeneous sample simulations. A

cubical homogeneous matrix material domain

having a spherical inclusion in the center is

prescribed with a compressive load. This allows

to test the weak discontinuity and its influence on

the initiation and growth of fractures in this model,

tracking the development of the local crack

networks.

• Micro-concrete sample simulations. Cubical

samples are modelled containing realistic hetero-

geneity distributions coming from actual micro-

concrete samples used during the test campaigns

for the research done by Stamati [41]. With the

associated experimental data of this research, a

correlation for the Mode II parameters used in the

proposed E-FEM formulation of this work is

performed. Having this, the detailed study of the

intricate evolution of the local crack networks,

their eventual coalescence and the entire tridimen-

sional fracture processes emerging in the model is

studied.

4.1 Homogeneous simulations

The proposed numerical model for the following

simulations is a cubic domain having a torsion load on

its upper face and fixing its lower face completely. The

length Lc of the cube is 10 mm, and it features a non-

structured tetrahedral mesh having a characteristic

length of 0.1 mm. The torsional load has been exerted

by means of a displacement profile. A maximum

torsion angle of 0.03
 was prescribed to be model
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(equivalent to a sample shear strain of 3.7�10�4 mm/

mm at the outermost fibers).

A special feature of this setup is that it is has a

weakened material bandwith a height Dh at the center
of the model. Here, the first occurrence of crack

initiation is promoted by letting the remainingmaterial

(above and below the band) to have slightly increased

strength values. This region has exactly the same

linear material parameters as the remaining model.

This is done to avoid any spurious concentrations near

the vicinity of the regions having boundary conditions.

For these simulations, the middle band has been set to

Dh ¼ 0:8Lc.

Material properties for both E-FEM formulations

(single mode [13, 35, 40] and generalised modes [29])

can be found in Table 1. The generalised modes

formulation takes all the parameters in the table, while

the previous formulation (single mode) only takes the

linear and those related toMode I local failures. For top

and bottom thin layers ofmaterial, the only difference is

the increasedryR ;C parameters (by 10%) as previously

discussed, applicable for both formulation cases.

It is of interest to study how the fracture process

switches its nature during the global post-localisation

stage. Differences are expected within the single mode

and generalised mode formulations when shear and

fracture sliding demands become more significant

during the load application. To make a clear point on

this, Figures 5 and 6 are proposed to illustrate the

initiation and consolidation of the local crack net-

works for both models.

Figure 5 focuses on the initiation of the fracture

process, fixed at the first load step where the global

behaviour of the model becomes nonlinear. Here, it

can be observed how both models start to promote the

emergence of classical 45
 fracture processes for a

brittle or quasi-brittle material under torsion, forming

an angular periodic pattern of local crack networks.

Each of the cube model faces presents this initiation as

these are the outermost surface layers of the body

under torsion. The entirety of these local crack

networks feature elements that have localised under

the mode I criterion, i.e., all in tensile failure (shown

as blue elements within the transparent cube).

Figure 6 captures the final state of both numerical

simulations at the end of torsion application. At this

stage, the fracture process related to mode I failure and

kinematics has already completely developed in both

models, having the four local crack networks con-

verging in a slightly helical fashion at the core of the

cubical sample. From this point, a critical divergence

in behaviour can be acknowledged between both

formulations. The single mode formulation is not able

to predict any significant further evolution of the

fracture process, and the generalised formulation

allows a complete change of nature for it: it starts to

focus exclusively on mode II failure and kinematics

(red elements). This allows to finalise the entire

fracture process.

This difference can be better appreciated in

Figure 7, where a global reaction response of the

model was monitored with respect to load application

in both models. The vertical reaction was chosen since

it was the simplest to measure and still provides

information about the current energy being stored in

all the material domain. Indeed, a clear divergence in

global post-localisation behaviour can be easily spot-

ted, where the single mode curve goes off to increase

without any perceptible bound, while the generalised

modes curve suggests a clear loss of mechanical

resistance in the model.

4.2 Basic Heterogeneous Simulations

The next set of simulations aims to study the effect of

weak discontinuities in the formation and propagation

of a tridimensional fracture process considering a

simple heterogeneity distribution and having simple

Table 1 Input material parameters used for the E-FEM formulations in the homogeneous torsion simulations

E-FEM input parameters, homogeneous torsion

Linear E ¼ 14000 MPa m ¼ 0:2

Mode I ryR ¼ 9 MPa GfI ¼ 0:00001 MPa�mm

Mode II C ¼ 36 MPa tan/ ¼ 0:6 GfII ¼ 0:6 MPa�mm lm ¼ 0:6

Compaction ryC ¼ �500 MPa
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load cases. The main simulation setup will focus on a

homogeneous matrix domain having the presence of a

spherical inclusion made of a stronger material.

Fracture processes are expected to start at the material

interfaces and to evolve in particular ways depending

on each load case.

The geometry of the heterogeneous sample is a

cube with a side dimension of 10 mm having a

perfectly spherical inclusion of 6 mm of diameter.

This material phase distribution is projected onto a

mesh conformed by regular (good aspect ratios) but

unstructured tetrahedral elements. The average char-

acteristic length of the elements is 0.15 mm. As a

consequence, a number of these elements have been

cut by the inclusion boundaries, generating a number

of material interfaces modelled through the weak

discontinuity approach. Figure 8 shows the general

mesh built and already projected with the material

Fig. 5 Elements conforming the local crack networks within

the cube domain for a torsion load just right after beginning

global nonlinear behaviour. All blue elements correspond to a

tensile (mode I) localisations. The cube shows also a translucent

contour of resultant nodal displacements having red as

maximums and blue as minimums. (Color figure online)

Fig. 6 Elements conforming the local crack networks within

the cube domain for a torsion load at the end of load application.

All blue elements correspond to a tensile (mode I) localisations,

and red elements are associated to a mode II localisations. The

fracture process has not significantly evolved for the single

mode formulation, whereas the generalised model predicts a

mode II behaviour for the conclusion of the fracture process.

(Color figure online)
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phases for all these simulations, as well as the

generated weak discontinuity interfaces for the sphere

boundary.

The parameters given for both single and gener-

alised modes E-FEM formulations can be found in

Table 2. These resemble those coming from typical

mortar and aggregate material properties found in a

concrete mixture. Note that the interface failure

parameters take the resistance limits coming from

the weakest material phase (mortar).

Linear and mode I properties found in Table 2 were

taken from the calibration process made in the works

of Stamati [40], which are used for both single mode

formulations [35] and generalised modes formulations

[29]. All remaining parameters have been set based on

a correlation with experimental results from an actual

concrete sample.

A pure compressive load case has been contem-

plated for the current simulations. The load is exerted

until a full tridimensional fracture process is devel-

oped in the entire domain, reaching a terminal point in

which the cohesion between the mortar and the

inclusion can be considered as completely broken,

rendering the model no longer capable of offering any

kind of mechanical resistance.

There is a significant difference in both global

resistance and ductility (defined hereby as the sample

strain corresponding to maximum resistance emax)
between single mode and generalised modes

formulations. Thus, different maximum compression

distances have to be used to fully develop their

respective fracture processes: -0.05 mm and -0.1 mm,

respectively. Figure 9 shows the behaviour of globally

defined stress-strain curves for both models.

Each step as identified with a strain value relative to the

sampleductility (emax), covering states before and during
the maximum resistance load steps as well as complete

global post-localisation behaviours. Figure 10 shows a

three step description (e1 � e3) for the case of the

single mode formulation, displaying only blue element

networks corresponding to mode I local failures.

The single mode formulation presents a double

band initiation at the lower and upper hemispheres of

the inclusion for then propagating completely around

it (e1). At maximum resistance, the fracture process

begins to extend out of the sphere vicinity in a rather

uncontrolled and irregular fashion (e2). At post-

localisation, the single mode formulation exhibits a

sudden fall in resistance, and the fracture process

seems to evolve in an arbitrary manner (e3). Cohesion
between the inclusion and matrix material is com-

pletely broken, finishing ending the evolution of the

fracture process.

Figure 11 describe again three evolution steps

(e1 � e3) for the case of the generalised modes

formulation. A two band network initiation and an

eventual takeover of the inclusion surface is also

observed for this formulation. The behaviour starts to

Fig. 7 Total vertical reaction measured with both models during the entire simulation. (Color figure online)
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diverge from this point, where shear-compression

zones initiate at the top and bottom faces of the mortar

domain. These regions contain exclusively elements

associated to a mode II local failure, and also in a crack

closure state, presenting frictional behaviour. These

zones extend vertically until fusing with the inclusion

surface fracture process (e1). At maximum resistance,

a middle shear band emerges and surrounds the

inclusion surface completely (e2), and finally the

fracture extends from this band to all the mortar

domain in a vertical fashion, finishing the tridimen-

sional fracture process (e3). These results suggest that
this predominant mode II state serves to provide more

ductility and resistance to the sample.

Overall, it is observed once again that both

formulations share certain stages of the behaviour of

the tridimensional fracture process, but the generalised

model is able to grant a larger insight of further steps

where mode II local failures and compression having

frictional sliding become significantly important.

Fig. 8 General model mesh description for the basic heteroge-

neous setups featuring a single spherical inclusion. On the left,

the mesh of all elements touched by the inclusion sphere within
a translucent mesh of the remaining bulk of the material matrix

domain. In the middle, a mid-cut section of the entire mesh,

distinguishing exclusive mortar material elements (in blue),

exclusive aggregate material elements (in gray) and bi-phase

elements (in red) generally found at the sphere border. On the

right, a sphere reconstructed by taking the resulting planar

interface surfaces Cd coming from each bi-phase element, along

with their respective normal vector. (Color figure online)

Table 2 Input material

parameters used for the

E-FEM formulations in the

simple heterogeneous

simulations in this work

E-FEM input parameters, simple heterogeneous compression

Mortar-only elements

Linear E ¼ 14000 MPa m ¼ 0:2

Mode I ryR ¼ 9 MPa GfI ¼ 0:0001 MPa�mm

Mode II C ¼ 36 MPa tan/ ¼ 0:6 GfII ¼ 0:6 MPa�mm lm ¼ 0:6

Compaction ryC ¼ �500 MPa

Aggregate-only elements

Linear E ¼ 70000 MPa m ¼ 0:2

Mode I ryR ¼ 45 MPa GfI ¼ 0:0001 MPa�mm

Mode II C ¼ 180 MPa tan/ ¼ 0:6 GfII ¼ 0:6 MPa�mm lm ¼ 0:6

Compaction ryC ¼ �500 MPa

Interface elements (- for mortar, ? for aggregate)

Linear Eþ ¼ 70000 MPa mþ ¼ 0:2 E� ¼ 14000 MPa m� ¼ 0:2

Mode I ryR ¼ 9 MPa GfI ¼ 0:0001 MPa�mm

Mode II C ¼ 36 MPa tan/ ¼ 0:6 GfII ¼ 0:6 MPa�mm lm ¼ 0:6

Compaction ryC ¼ �500 MPa
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4.3 Realistic concrete sample simulations

The last section in this work pertains the numerical

simulations of samples having a realistic material

heterogeneity (pores, aggregates and mortar). As

mentioned during the introduction of this chapter, it

was through the works of Stamati et al. [40–42], both

through the experimental campaigns involving in-situ

X-ray tomography measurements and the contribu-

tions to the dedicated software SPAM [39], that it was

possible to process sample raw digital data to end up

with a projected mesh with all pertinent details in the

coming simulation setups.

The original samples as tested in [41] have a

cylindrical geometry having an average length of 20

mm and an average diameter of 10 mm. For the

simulations in the present work, only a cubical

subregion has been extracted from one specific

micro-concrete cylindrical sample. The cube has a

length dimension of
ffiffiffiffiffi

50
p

� 7:071 mm. The charac-

teristic length of the unstructured tetrahedral mesh to

which the heterogeneities are projected is 0.1 mm.

Fig. 9 Global stress-strain

curves under a compressive

load for the single spherical

inclusion setups for both

single mode and generalised

modes formulations. (Color

figure online)

Fig. 10 Fracture process evolution for the compressive load case considering the single mode formulation. Three different stages are

reported at different strains relative to the maximum resistance strain emax. (Color figure online)
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Figure 12 shows the resulting projected mesh for the

sample managed for all the following numerical

simulations.

Note that the internal pore regions have been

accounted for in this setup as free stress condition

regions (voids).

The load cases considered for this model will be

tension and compression under different levels of

triaxial pre-confinement considering 0, 5, 10 and 15

MPa. This is the entire test program achieved so far by

the works of Stamati et al. [42] for the mesoscale

studies on this micro-concrete material. In this sense, it

is important to note that the single mode I formulation

[35, 40] has already gone through a calibration process

using tension load experimental data, for then testing

its response for all other load type cases. The general

conclusions drawn by Stamati et al. [40–42] from this

process can be summarised as follows:

• The single mode calibration with the tension load

test data allowed to capture global nonlinear

resistance behaviour (stress-strain) and local crack

network distributions.

• This calibrated single model formulation, as it is,

was tested to model another sample undergoing

pure compression with no triaxial pre-confinement.

A reasonable match concerning global resistance

response was obtained (only one case with an error

of 25% was identified).

• The comparisons with the results coming from the

samples undergoing triaxial preconfinement reveal

that the single mode formulation gradually loses

prediction capability. Overall, initial global resis-

tance predictions still remain within a reasonable

margin with more deviation as confinement pres-

sure growths (10-30% errors). Ductility (perceived

as the global strain value at which maximum

resistance is obtained) is not captured accurately in

any of the preconfined cases (errors up to 50%).

Based on these findings, the authors of this work went

on for correlating the additional parameters granted by

the newly proposed E-FEM formulation based on the

data coming from the triaxial test campaign done by

Stamati [42], especially some of those concerning

mode II local failures (C;GfII ; l). After multiple

iterations with the generalised modes formulation, a

set of parameters was found to increase overall the

quality of the model prediction with respect to test

results. This final set of parameters has been already

presented when discussing the spherical inclusion

simulations in Section 4.2. The reader can quickly

refer to Table 2 to recall the specific numerical values.

From a simulation setup standpoint, triaxial con-

finement was implemented in two different phases:

pre-confinement phase and uniaxial loading case. In

the preconfinement case, a hydrostatic pressure is

imposed in two of the horizontal faces of the cube

Fig. 11 Fracture process evolution for the compressive load

case considering the generalised modes formulation. Colours

having a blue palette denote element localisations related to

mode I local failures, while the red palette corresponds to those

related to mode II. The reddest colour specifically indicates

elements under crack closure compression. (Color figure online)
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model (x and y), while a displacement is imposed on

the upper vertical face. The amount of vertical

displacement to prescribe corresponds to that granting

a force reaction equalizing the pressure from the

horizontal faces, thus obtaining an approximately

hydrostatic state. The reason why the upper vertical

face remains displacement-controlled is that it remains

the face in which further uniaxial load will be

specified. The remaining faces have normal displace-

ment constraints as to avoid rigid bodymotion as in the

models managed in previous sections. Afterwards, the

uniaxial loading case just continues to increase the

compressive displacement on the vertical face while

maintaining the same level of lateral pressure. This is

done until fully developing a fracture process in the

sample.

The behaviour from the single mode I formulation,

along with the reference coming from test results and

the response of the generalised E-FEM model are

shown in Figure 13. X markers have been placed at the

maximum resistance positions for each curve, so that

the reader can easily compare the corresponding

ductility characteristics for the models. Results sug-

gest that the proposed E-FEM model is able to drive

the predictions closer to the test reference, in both

ductility and resistance. The model tends to overshoot

over the projected experimental values for low con-

finement pressures, eventually falling behind for 10

and 15 MPa. It should be noted that the behaviour

after localisation cannot be assessed for any of the test

data sets as the load cell was not capable of providing

with reliable measurements in this phase of the test

[42]. For all cases, the proposed E-FEM model

exhibits a more ductile post-localisation behaviour

than the single mode formulation. On the other hand,

the ductility of the generalised model appears to

decrease as the confinement pressure is increased,

struggling each time more to keep up with the ductility

imposed by the projected results.

As in the previous sections, a comparison is made

by capturing the state of the local networks at different

values of global strain with respect to the strain of

maximum resistance emax. Figures 14 and 15 show the

comparison between both models for three states

approximately at the same level of global strain related

to emax: one at maximum resistance, and one in global

post-localisation behaviour. This is done for the case

of a preconfinement pressure of 5 MPa.

Given the large amount of stress concentrators

irregularly distributed in this domain, there is a large

number of elements that will go through a localisation

state, but not necessarily with full participation on the

emerging tridimensional fracture process. The ele-

ments were thus filtered by considering whether the

amount of crack normal separation ( uj j½ �n0 ) or sliding
( uj j½ �t0 , uj j½ �m0

), where a general threshold of 0.4 lm

Fig. 12 Two views of the cubical mesh domain having the

realistic concrete sample heterogeneity already projected. Based

in this projection, element classification is shown on the right.

Pure pore elements were simply removed from the model to

represent stress-free conditions in these regions. (Color

figure online)
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has been considered. If the elements undergo closure

and local compression, a threshold of -0.2 lm of

compression distance has been taken as the minimum

to start displaying in figures 14 and 15.

At maximum resistance (Figure 14), a full fracture

process has taken a classical 45
 definite shape, and it

clearly covers all the cube length scale. The partici-

pation of mode II local failures is significant for the

generalised modes formulation, and almost all these

elements remain in a closure/frictional state. There is

already a very noticeable difference concerning global

resistances between both formulations both E-FEM

formulations at this point (Figure 13). In the post-

localisation stage (Figure 15), the extent of the defined

global fracture remains stable, but recruiting more

surrounding elements and beginning the collapse of

the sample. For the generalised E-FEM formulation, it

is relevant to note the emergence of elements failing

under pure compaction criteria (purple colour).

Results at this at the 10, 15MPa confinement pressures

suggest that the modelling behaviour for these com-

pacted micro-regions play an important role for
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Fig. 13 Global stress-strain

behaviours for both single

and generalised models for

tension and all compression

load cases, along with the

projected tendencies for the

experimental results in this

model. The markers identify

the positions at maximum

resistances for each model,

which allow to compare the

ductility characteristics.

(Color figure online)

Fig. 14 State of local crack networks for the single and

generalised modes in the realistic concrete sample domain

numerical simulation at the state of maximum resistance,

considering a confinement pressure of 5 MPa. All elements in a

blue palette belong to mode I local failures, while the red palette

belongs to mode II-related events. (Color figure online)
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ductility at higher confinement pressures at the post-

localisation stage of the concrete samples.

While the mixed-modes formulation still respects

the strictly local approach desired for the E-FEM

framework to grant flexibility and portability for the

elemental routines, the introduction of a new set of

nonlinear effects inevitably implies more complexity

in the phase of numerical implementation as well as

computational costs. As a reference, the numerical

solution of a single case of the aforementioned

realistic cubical model takes roughly 1.5 days while

using the mode-I formulation while the mixed-modes

formulation takes 3.3 days.

5 Conclusions

This work has introduced the reader to an integration

of a generalised strong discontinuity model with a

weak discontinuity model to conform a numerical

analysis approach capable of delivering meaningful

representations of tridimensional fracture processes

for quasi-brittle materials. A theoretical background is

provided, describing the fundamental mathematical

aspects of the generalised fracture mode kinematics

for the strong discontinuity and the weak discontinu-

ity. A clear description of localisation criteria has been

provided, along with the traction separation equation

system that benefits from the generalised structure of

the fracture kinematic modes to incorporate more

robust local crack physics. It is worth remembering

that the authors of this work gave priority to the

influence of crack rigid body displacements modes

(separation and sliding) for the damage-regulating

definitions.

A number of numerical simulations have been done

to attest to general capabilities of the generalised

models for different situations. In particular, the

authors find a remarkable participation of mode II

mechanics on the emergence of different global and

local crack network behaviours. Results suggest that a

model capable of considering local sliding, compres-

sion and frictional mechanics will be able to gain more

insight at the fracture processes under highly com-

pressive or shear demands at larger scales, specifically

those featuring larger ductility and resistance through

more energy dissipation mechanisms.

The present work has shown that it is still possible

to remain with an E-FEM framework having a strictly

local mathematical structure, benefiting of enough

simplicity without having to make a significant

incursion on a global FE numerical solution platform.

It should be reminded that the essence of this line of

research was to achieve a sufficiently predictive

advanced FE numerical model keeping its computa-

tional burdens and implementation complexities to a

minimum. In this sense, the authors of this work

believe that the E-FEM framework is still an attractive

option worth exploring, offering unique advantages

over other advanced FE techniques.

Fig. 15 State of local crack networks for the single and

generalised modes in the realistic concrete sample domain

numerical simulation a bit after the state of maximum resistance,

considering a confinement pressure of 5 MPa. All elements in a

blue palette belong to mode I local failures, while the red palette

belongs to mode II-related events. Purple elements have failed

under a pure compression criterion (failure by compaction).

(Color figure online)
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A (2005) Prediction of crack pattern distribution in rein-

forced concrete by coupling a strong discontinuity model of

concrete cracking and a bond-slip of reinforcement model.

Eng Comput 22:558–582

8. Dujc J, Brank B, Ibrahimbegovic A, Brancherie D (2010)

An embedded crack model for failure analysis of concrete

solids. Comput Concr. 7: 331
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