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Abstract This paper presents a sensitivity analysis of

the pull-out strength of reinforcement embedded in

concrete. Considering both European and French design

codes, this failure strength depends on the variability of

uncertain parameters such as Young’s modulus of

concrete and yield stresses of materials (concrete and

steel); moreover, two failure modes can be observed in

the studied experimental test. A methodology allowing

the characterization of the sensitivity of the pull-out

strength to these uncertain parameters is derived. These

parameters are modeled by Lognormal random vari-

ables. Results show the evolution of the pull-out strength

for different anchorage lengths. Probability density

functions of the random variable modeling the failure

strength are computed using probabilistic methods. A

finite element model is also built to quantify uncertain-

ties concerning failure modes, computing 95%

confidence intervals.

Keywords Pull-out test � Failure modes �
Stochastic finite element method �
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1 Introduction

The pull-out strength of reinforcement embedded in

concrete depends mainly on material and geometrical

characteristics of the assembly. Both French [1] and

European [2] design codes in reinforced concrete

construction consider that this strength depends on

the variability of the Young’s modulus of concrete

and yield stresses of materials (concrete and steel).

Different failure modes also depend on these para-

meters. Design codes [1, 2] take into account

uncertainties on material characteristics using safety

factors and characteristic values. This semi-probabi-

listic approach uses 5% fractile of the uncertain

parameters as input data for failure strength calcula-

tion. But uncertainties on modes failure should be

quantified too.

This study aims at taking into account uncertain-

ties on materials and on failure modes in the analysis

of a pull-out test.

Thus this work completes others studies character-

ising the mechanical failure: pull-out strength [3],

crack propagation [3, 4], and influence of anchor shape

[5]. A finite element (FE) model is often used herein

due to the complexity of this problem, as reflected by

the nonlinearity of constitutive laws [6–9] and issues

dealing with modelling of the steel-concrete interface

[7, 10–14]. Nevertheless, only one study of a pull-out

test by means of both a non linear damage model and a

probabilistic approach was found [8]. Spatial variabil-

ity of concrete is taken into account, but only one
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failure mode is considered and no probability density

function of the peak load has been evaluated.

By taking into account the statistical variability of

uncertain mechanical parameters, stochastic finite

element methods (SFEM) [15, 16] have been devel-

oped over the past 30 years and provide an

alternative to the well-known Monte Carlo simula-

tions [17]. Featuring a greatly reduced computation

time, these approaches may be applied to complex FE

models. A so-called ‘‘non-intrusive’’ group of SFEM

refers to methods that do not modify the actual FE

model, and these would include response surface

methods. This category of methods has inspired

research work using Hermite polynomials [18, 19].

Other efforts [20, 21] have shown that a Lagrange

polynomial basis may be more precise and less time-

consuming in seeking to obtain statistical moments

(mean, variance, etc.) and probability density func-

tions (PDF). This ‘‘Lagrange method’’ has recently

been applied to a steel connection with material and

geometric nonlinearities [22] and entailed character-

izing some of the mechanical response parameters.

This paper serves as complementary research on

both a non linear modelling of pull-out tests with a

basis in probabilistic tools. Two probabilistic methods

will be used: common Monte Carlo simulations; and

the Lagrange method, which for the first time will be

applied to a composite connection at failure, for

the purpose of evaluating the first-order moments

and probability density functions (PDF) of failure

strength. The evolution in failure strength will be

characterised for various anchoring lengths, in

considering the variability of input mechanical

parameters, such as Young’s modulus of concrete

and yield stresses of both concrete and steel.

Probabilistic methods for sensitivity analyses are

introduced first along with the FE model of the

described pull-out test. A deterministic evolution of

failure strength is then computed, with two failure

modes being examined; numerical results agree with

experimental findings. Next, Monte Carlo simulations

and Lagrange method are applied to the FE model,

while material behaviour remains elastic. Results

from both methods are in good agreement with one

another, and the Lagrange method is eventually used

to study failure modes. The variability in failure

strength for various anchoring lengths is character-

ised using coefficients of variation and a 95%

confidence interval. The paper will conclude with

comparisons involving experimental results and

design codes (French BAEL91 [1] and European

EC2 [2]).

2 Failure strength obtained by means

of a pull-out test

2.1 Presentation of the test

Experimental pull-out tests studied below, concern

two different configurations where the variable

parameter is the anchorage length. A steel reinforce-

ment is embedded in a concrete sample. These pull-

out tests are realized with 8 and 32 cm of embedding

length. Material parameters are summarised in

Table 1 and correspond to those identified by some

available experimental tests (concrete compressive

tests or steel tensile tests) or given by French design

codes [1]. Two failure modes can be observed. In the

first case of 8 cm of embedding, the steel is sliding

out of the concrete (mode 1, Fig. 1). On the contrary,

the 32 cm of embedding steel reach the maximal

strength and breaks (mode 2, Fig. 2). The steel

reinforced bar is pulled out applying a vertical force.

Ten pull-out tests are available, experimental means

and coefficients of variation of failure strength are

given in Table 2 for both of these modes.

2.2 Failure modes from design codes

Considering both failure modes 1 and 2, French

design code for reinforced concrete structures [1]

Table 1 Mechanical parameters of the finite element model

Parameter Mean value Description

Eb 30 GPa Young’s modulus of concrete

mb 0.2 Poisson’s ratio of concrete

qb 2.300 kg/m3 Concrete density

fc28 30 MPa Concrete compressive

yield strength

Es 210 GPa Young’s modulus of steel

ms 0.3 Poisson’s ratio of steel

qs 7.850 kg/m3 Steel density

fy 500 MPa Steel yield strength

Hs 21 GPa Steel hardening modulus

(Es 9 10%)
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stipulates respective values of failure strength F = F1

or F = F2.

F ¼ min
F1 ¼ p� LS � /� ð0:6þ ð0:06� fc28ÞÞ
F2 ¼ p� /2 � fy=4

�

ð1Þ

where / is the diameter of the reinforced steel bar,

fc28 and fy the material yield stresses (respectively

concrete steel). If the anchorage length Ls is greater

than 10 cm, the European design code [2] gives

similar values. From these simple formulas, it seems

useful to study the sensitivity of F to the variability of

fc28 and fy.

2.3 Presentation of the finite element model

A finite element (FE) model is built from available

pull-out tests, in order to illustrate the following

probabilistic methodology. In this work, the strategy

is thus to combine this model to a probabilistic

approach. It is why a compromise between refine-

ment of the model and its ability to reproduce

experimental tests has to be found. In other words,

the FE model has to be as simple as possible, in order

to allow a statistical treatment.

A two-dimensional axisymmetric model will be

considered stemming from the problem geometry

(see Figs. 2, 3). The computation is performed in

large displacements (an actualized Lagrangian).

Boundary conditions are imposed longitudinally at

the base of the concrete specimen and then radially

along the axis of symmetry. A displacement is

prescribed on the free edge of the steel bar. Various

analyses based on non linear modelling of concrete

have shown their ability to model the pull-out test

[6–9]. In this work, the concrete constitutive model is

based on an elastic law with damage (Mazars’ model

[23]). The parameters characterising this law have

been chosen in order to reproduce model mechanical

characteristics of concrete given in Table 2. The steel

bar constitutive model is elasto-plastic with harden-

ing. A simplified model without any bond stress

versus the slip relation at the steel-concrete interface

is thus obtained. Indeed, because of the use of

reinforced steel bars, damage due to micro-cracking

of concrete is not taken into account, that has already

been deemed equivalent to a perfect bond law model

[7]. Eventually, the refinement of the mesh has been

chosen as simple as possible, in order to achieve

agreement with experimental results and to allow a

statistical treatment.

With this objective, numerical criteria denoted Di

and �s are proposed: Di = 0 represents a structurally-

sound concrete, while Di = 1 depicts a damaged

concrete; �s is a deformation limit set for steel equal

to 10% [1]. Figures 4–6 show respectively the

evolution in maximum steel strain �s, evolution in

steel-concrete interface damage Di, and evolution in

failure strength F for various anchoring lengths

(2 B Ls B 32 cm). These evolution patterns can be

broken down into three parts:

z~

100

n=Α

nzsup
~nzinf

~

Z
p~

Fig. 1 Evolution of the probability density function of random

variable and n% confidence interval ½~zn
inf ; ~zn

inf �

Fig. 2 Finite element

model mesh of the steel-

concrete half-connection

(*102–103 elements)

Table 2 Experimental results: means and standard deviations

of the r.v. modelling the failure strength for anchoring lengths

Ls = 8 cm and Ls = 32 cm

F (Ls = 8 cm) F (Ls = 32 cm)

Mean 22 kN 33 kN

Standard deviation 2 kN 1 kN

Coefficient of variation 7% 3%
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• if Ls \ 9 cm, Di values nearly equal 1 and failure

occurs for small steel strain �s values (i.e. less than

0.8%). Failure strength F increases linearly with

anchoring length Ls (see Fig. 5). This part char-

acterises the concrete damage and bond failure;

• if Ls [ 15 cm, steel strain �s values nearly equal

1% and Di is decreasing. Failure strength F is

constant and equal to the steel strength (see

Fig. 4). This part characterises the steel ‘‘failure’’

(plastic yielding); and

• if 9 cm \ Ls \ 15 cm, failure occurs for constant

values of failure strength F, which is equal to the

steel strength (see Fig. 6). This part therefore

would seem to correspond with failure mode 2

(plastic yielding). Yet uncertainty is still obvi-

ously present on the failure mode, due to Di

values nearly equalling 1.

In order to characterise this uncertainty, we will

attempt in the following discussion to quantify the

sensitivity of failure strength evolution to the vari-

ability of three input parameters: the failure stress of

concrete fc28 and the yield stress of steel fy and also

the Young’s modulus of concrete Eb.

3 Sensitivity analysis of the pull-out test

3.1 Probabilistic sensitivity approach

Let’s consider the uncertain parameters of a mechan-

ical system, as modelled by random input variables

(r.v.) Y = {Y1,…,YE} with known probability distri-

butions. The mechanical system is called f, such that

Z = f(Y) is a vector output r.v. Z = {Z1,…,ZS} to be

characterised. For the sake of simplicity, we will

focus on the special case of scalar input and output

variables, i.e. Y = Y1 = Y and Z = Z1 = Z.

If the mechanical function is simple (analytical

function or linear finite element model), Monte Carlo

Fig. 3 Failure modes—

Mode 1: Bond failure at the

steel/concrete interface (a),

Mode 2: Steel bar failure (b)

Fig. 4 Evolution in

maximum steel strain �s for

various anchoring lengths

(2 B Ls B 32 cm)

348 Materials and Structures (2010) 43:345–355



methods can be used. These methods [17] are

based on the same principle, which consists in

selecting N values for input r.v. Y and then indepen-

dently computing for each value yi the mechanical

response zi = f(yi) of the system. But if f represents a

numerical model, even time consuming, some alter-

natives like stochastic finite element methods

(SFEM) are preferred. In this work, A probabilistic

method based on Lagrange polynomials is chosen.

Statistical moments (mean, variance), probability

density function (PDF) and n% confidence interval In

are estimated from an approximation ~Z of the output

random variable Z. The N points required for this

Lagrange method approximation are called ‘‘integra-

tion points’’ (see Appendix).

3.2 Application to the composite connection

(elastic behaviour)

A scalar lognormal input r.v. Y is considered and serves

to model variability in the Young’s modulus of concrete

Eb, with a mean l = 3.1010 Pa and a coefficient of

variation Cv = 10% (i.e. the standard deviation over

mean). The output r.v. Z modelling the variability of

maximum strength Fmax is obtained as a 1-lm displace-

ment and applied to the free edge of the steel bar.

Fig. 5 Evolution in steel-

concrete interface damage

Di for various anchoring

lengths (2 B Ls B 32 cm)

Fig. 6 Evolution in failure

strength F for various

anchoring lengths

(2 B Ls B 32 cm)
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We will now focus on comparing Monte Carlo

simulations and the Lagrange method.

3.2.1 Monte Carlo simulations

Different simulations have been performed for both

modes and for an increasing number of samples

(103 \ K \ 105), with each sample corresponding to

a mechanical FE computation. Because of the high

computational cost associated with this simulation, a

maximum of 105 samples have been computed.

Let’s now consider the 105 sample simulation

estimations as the target results: the means of Z for

both mode 1 (Ls = 8 cm) and mode 2 (Ls = 32 cm)

are approximated by the estimations denoted l̂1
Z ,

equal to 35.0906 N, and l̂2
Z , 35.5984 N, respectively;

moreover, the standard deviations of Z are approx-

imated by the estimations denoted r̂1
Z , equal to

0.1741 N, and r̂2
Z , 0.1345 N, respectively.

For other quantities of samples (K \ 105), relative

errors (in percentage terms) with respect to the above

target results may be identified: Tables 2, 3 shows the

numerical convergence of these relative errors, for

the two failure modes, as the number of samples K

increases. Given this convergence, the target results

are assumed to be sufficiently accurate.

3.2.2 Comparison with the Lagrange method

Statistical moments and PDF approximations will

now be compared with target results for the failure

modes. The Lagrange method approximations are

obtained for various integration points (3 B N B 7).

Relative errors on the expected values lie below

0.01%, regardless of the number of integration points

N for both modes. As for the standard deviation,

errors tend to decrease as the number of integration

points N increases, while remaining below 4% (mode 1)

and 2% (mode 2).

The PDF of response Z can be studied by

examining Fig. 7, which shows the estimated PDFs

of the r.v. Z. These PDFs have been obtained by

Monte Carlo simulations of the approximated

response ~Z (see Appendix, Eq. (7)) and are denoted

p ~Z . Lagrange method approximations ~Z are derived

for various integration points (3 B N B 7). In Fig. 7,

PDF curves are shown only for N = 3 and N = 7, in

mode 1, with the other curves (N = 4, 5, 6, mode 2)

being almost superimposed. In comparing these

approximated PDFs with the PDF estimated by direct

Monte Carlo simulation in the deterministic FE

model (target simulation, K = 105), a good level of

agreement seems to be observed between the target

PDF and the approximated ones.

3.2.3 Conclusion

A number N = 4 integration points is considered

sufficient to obtain good results on PDF and statistical

moments, in comparison with a Monte Carlo method

using 105 calls. The Monte Carlo method is not

feasible for failure analysis due to time-consuming

computations inherent in the pull-out FE model (from

a few minutes to several hours). A 4-point Lagrange

method will therefore be used in the following for the

pull-out test failure analysis.

The validity of the SFEM for n-dimensional cases

was demonstrated in [18], with n limited to 4 or 5 for

practical reasons. [18] showed that the validity in a

one-dimensional case can be extended to the

n-dimensional case while random variables remain

independent, as it will be the case in the following.

Table 3 Relative errors on the mean and standard deviation target estimations ðl̂1
Z ; l̂2

Z ; r̂1
Z ; r̂2

ZÞ, obtained for K = 105 Monte Carlo

simulations (elastic behaviour, failure modes 1 and 2)

Relative mean errors (910-3%) Relative standard deviation errors (%)

K Mode 1 Mode 2 Mode 1 Mode 2

103 10.0 7.5 3.2 3.2

5 9 103 5.1 3.8 1.3 1.3

104 2.4 1.9 1.1 1.1

5 9 104 0.6 0.4 0.2 0.2

105 l̂1
Z = 35.0906 N l̂2

Z = 35.5984 N r̂1
Z = 0.1741 N r̂2

Z = 0.1345 N
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3.3 Application to the failure analysis

The first set of failure computations is conducted with

one or two input r.v. modelling the variability of

mechanical parameters, such as Young’s modulus of

concrete Eb, failure stress of concrete fc28 and yield

stress of steel fy. The output r.v. serves to model the

failure strength F. Let Cv(fc28), Cv(fy) and Cv(F)

denote the coefficients of variation of r.v.s. modelling

the variabilities of fc28, fy and F, respectively.

Figure 8 depicts the evolution of Cv(F) for

different values of Cv(fc28) and Cv(fy); this figure

shows the sensitivity of F to the variability of r.v.

modelling fy in mode 2. A similar figure has been

generated, revealing the sensitivity of F to the

variability of r.v. modelling fc28 in mode 1.

The same analysis has then been performed for Ls

ranging between 2 and 32 cm, in the aim of

characterising failure modes. Three analyses were

carried out, one for each uncertain parameter Eb, fc28

and fy, considering arbitrarly coefficients of variation

Cv(Eb), Cv(fc28) and Cv(fy) equal to 10%. Figure 9

presents the failure strength F evolution for various

anchoring lengths Ls. For each value of Ls, a

dispersion interval has been computed that corre-

sponds to the maximum variability of the three

parameters with a ± 1 standard deviation, which

once again leads to three areas:

• The first, in which F increases linearly with

anchoring length Ls, corresponds to concrete

damage and bond failure; this area is associated

with small values of Ls (\10 cm) and dispersion

intervals here are due solely to Eb and fc28

variabilities.

• The second area, in which F remains constant and

equal to steel strength, corresponds to plastic

yielding of the steel bar; this area is associated

with high values of Ls, namely Ls [ 13.5 cm, and

dispersion intervals here are due solely to fy
variability.

• The intermediate area (10 \ Ls \ 13.5 cm)

reflects an uncertainty on the failure mode

resulting from variability of all three input

parameters, corresponding to the ±1 standard

deviation intervals; this area would tend to

increase for higher dispersion intervals.

This study remains indicative as long as a confi-

dence interval has not been associated with these

variation intervals. This condition requires knowing

the PDF of the mechanical response Z at each

computation point, a step that can be achieved by

Fig. 8 Evolution in the coefficient of variation Cv(F) of

failure strength F, with increasing coefficients of variation for

material yield stresses (concrete: fc28 and steel: fy), failure

mode 2, anchoring length Ls = 32 cm

Fig. 7 Evolution in the

probability density function

p ~Z of the r.v. ~Z, with both

Monte Carlo simulation

(105 FE model runs) and

Lagrange method (3 and 7

runs), mode 1, elastic

behaviour
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applying a Monte Carlo method on the analytical

approximation ~Z of the response Z given by the

Lagrange method (see Appendix, Eq. (7)).

Figure 10 shows failure strength F evolutions for

each anchoring length. The failure strength values F,

as stipulated by design codes [1] and [2], are also

provided along with all mean SFEM computations.

These values reach those of the design code, which is

necessary yet not enough to assess whether or not

these codes are safe: confidence intervals would also

be required. For this reason, PDFs p ~Z of the r.v. ~Z are

performed. For anchoring lengths Ls = 8, 10 cm, the

PDF p ~Z is obtained by considering the uncertain

parameter fc28. For anchoring length Ls = 24 cm, the

PDF p ~Z is obtained by considering the uncertain

parameter fy. The PDFs are truncated only on the 95%

confidence intervals. It is shown herein that the

confidence interval of these design codes exceeds

Fig. 9 Evolution in failure

strength for various

anchoring lengths

(2 B Ls B 32 cm), as

obtained by finite element

computation—Sensitivity to

mechanical parameters:

Young’s modulus of

concrete Eb, material yield

stresses (concrete: fc28 and

steel: fy)—A 1-standard

deviation interval is

associated with each mean

failure strength

Fig. 10 Probability density

functions p ~Z of the r.v. ~Z for

anchoring lengths Ls = 8,

10 cm (uncertain

parameter: fc28) and

Ls = 24 cm (uncertain

parameter: fy)—PDFs are

only truncated on the 95%

confidence intervals—

Failure strength limits

extracted from design codes

(Eurocode 2 [2] and

BAEL91 [1])
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95%. Such a probabilistic analysis therefore seems to

indicate differing safety levels between failure modes

1 and 2. The apparently greater safety margin for

concrete failure has however been justified by more

uncertain characteristics of the concrete and steel-

concrete interface. A reliability analysis and refined

FE model would certainly yield a critical approach

towards the design codes, and ongoing research is

currently addressing this issue.

4 Conclusion

Uncertainties on the parameters of a system can lead

to the use of probabilistic methods as a means of

evaluating their effect on system responses. Such

methods however prove to be time-consuming. One

solution to this issue has been obtained by employing

stochastic finite element methods (SFEM). Unlike

some time-consuming methods, such as Monte Carlo

simulations, SFEM may be feasible for conducting

failure computations. This approach has been illus-

trated here by setting up a recent SFEM method

based on Lagrange polynomials. A probabilistic

study of the pull-out test of a steel bar anchored into

concrete is indeed original and offers a complemen-

tary analysis to other deterministic studies of this

mechanically nonlinear problem (once again using a

recent SFEM). Various sensitivity indicators have

been presented: means, standard deviations, coeffi-

cients of variation, and probability density functions,

for the different failure modes. This sensitivity

analysis has been conducted with regard to failure

strength versus variability of this system’s mechan-

ical parameters: Young’s modulus of concrete, yield

stresses of both materials. The FE model has been

built to be in agreement with failure modes observed

during experimental tests. The variation in this

strength versus anchoring length has also been

computed, and a dispersion interval associated with

this evolution allows characterising the uncertainty

on failure strength and modes. The SFEM approxi-

mation of the mechanical response constitutes an

analytical estimation, on which a Monte Carlo

method has been applied. An approximation of the

PDF of the r.v. modelling failure strength has thus

been computed, and this has confirmed the potential

of associating a confidence interval with failure

strength variability. Moreover, extending such a

sensitivity analysis, in association with a reliability

analysis, would lead to a critical analysis of the

design codes.

Appendix: probabilistic methods for sensitivity

analysis

Monte Carlo simulations

Different Monte Carlo methods [17] are based on the

same principle, which consists of selecting K values

for input r.v. Y and then independently computing for

each value yi the mechanical response zi = f(yi) of the

system. It is possible to estimate the statistical

moments of output r.v. Z, whose mean lZ and

variance rZ
2 are approximated such that:

lZ � ~lZ ¼
1

K

XK

i¼1

zi ð2Þ

r2
Z � ~r2

Z ¼
1

K

XK

i¼1

z2
i � ~l2

Z ð3Þ

where rZ is the standard deviation of Z.

Expressions (2) and (3) can be generalised to E

input r.v. and S output r.v., and the approximations

improve as K increases. Practically speaking how-

ever, the number of mechanical computations K

should range from 104 to 107 in order to produce

accurate approximations of statistical moments or

probability density functions (PDF). This slow con-

vergence rate prevents the use of Monte Carlo

simulations for nonlinear computing that lasts more

than a few hours.

To prevent this situation from arising, stochastic

finite element methods (SFEM) have been developed

over the past 30 years [15, 16]. SFEM allow

approximating statistical moments and PDF, as well

as sensitivity indices of output r.v. with a reduced

number of mechanical model iterations. One recent

model will be considered herein: the Lagrange

method [20, 21].

Lagrange method

Let N be a nonzero integer and (xi)1BiBN a set of N

real numbers (collocation points). The basic idea here
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is to approximate the mechanical response f, which is

a real function of real value x, by projecting it onto

the truncated basis {Li}i=1…N of Lagrange

polynomials

f ðxÞ � ~f ðxÞ ¼
XN

i¼1

ai �
YN

k ¼ 1

k 6¼ i

x� xk

xi � xk
¼
XN

i¼1

ai � LiðxÞ

ð4Þ

where ai is the weight associated with polynomial Li

such as

8 i 2 1 ; Nf g ai ¼ f ðxiÞ ð5Þ

By substituting (5) into (4), the approximation ~f of f

becomes:

~f ðxÞ ¼
XN

i¼1

f ðxiÞ � LiðxÞ ð6Þ

Now, let g be the composite function f � T of the

mechanical response f binding Z to a continuous r.v.

Y with known PDF, and the function T binding Y with

a standard r.v. (i.e. with a mean of 0 and standard

deviation of 1) (s.r.v.) X (Gaussian normalisation)

[16].

Combining the expression of ~f obtained in (6), the

r.v. Z is approximated by r.v. ~Z, such that:

~Z ¼ ~gðXÞ ¼
XN

i¼1

gðxiÞ � LiðXÞ ð7Þ

where (xi)1BiBN are collocation points, as roots of the

Hermite polynomials available in [18].

Approximation of statistical moments

The mean of the scalar r.v. modelling the mechanical

response Z = g(X) is approximated by:

lZ � l ~Z ¼
XN

i¼1

pXðxiÞ � gðxiÞ ¼
XN

i¼1

xi � gðxiÞ ð8Þ

where (xi)1BiBN are the weights associated with

collocation points (xi)1BiBN.

The approximation r ~Z of the standard deviation rZ

of Z can then be expressed as:

r2
Z � r2

~Z
¼
XN

i¼1

ðgðxiÞÞ2 � xi � ðl ~ZÞ
2 ð9Þ

Approximation of the probability density function

The PDF of the r.v. Z, denoted pZ, can be approx-

imated by the PDF p ~Z of the r.v. ~Z, which is an

analytical response surface (7). It is thus possible to

obtain an estimation of the PDF using Monte Carlo

simulations. The curve of p ~Z is often truncated on an

interval I ¼ ½~zinf ; ~zsup�, where ~zsup=inf ¼ l ~Z � a � r ~Z . In

practical terms, a ranges between 3 and 4.

Approximation of an n% confidence interval In

The approximated confidence interval for the approx-

imation ~Z of the r.v. Z, which writes:

~In ¼ ½~zn
inf ; ~zn

sup� ,
Z~zn

sup

~zn
inf

p ~ZðzÞdz� n

100
ð10Þ

A numerical approximation of the bounds ~zn
inf and ~zn

sup

can ultimately be computed; this approximation

delimits the area A on Fig. 1, which displays the

evolution of the PDF of the r.v. ~Z.

In practice, only a small number E of input r.v.

may be considered, namely 4–5, since the number K

of times the mechanical response function f is called

increases exponentially with E for a given number N

of integration points:

K ¼ NE ð11Þ
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