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but it is limited by the number of elements. A multidomain analysis is thus proposed in order to reduce the
computational effort. The structure is split into two subdomains, in each of which the method is adapted
to the behavior of the structure under impact. The DEM is used to model the media close to the impacts.
It easily takes into account the discontinuities. The remaining structure is modelled by the FEM. The aims
of this paper are to present a method with rotations coupling and to propose a way to reduce spurious
wave reflections; it presents an application on a rock impact on a concrete slab.
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1. Introduction

Particular attention must be paid during the design of certain
civil engineering structures in order to predict their response under
severe dynamic loading. One or several impacts of a projectile like
an aircraft or a missile on a sensitive concrete structure may have
disastrous consequences — for example, if the impact provides
perforation on structure that has some protective functions
(airtightness). This paper deals with a new numerical method to
simulate an impact on a concrete structure. The structure is divided
into two subdomains. On each of them, the best fit method is
used. The approach uses a coupling between the Discrete Element
(DE) Method and the Finite Element (FE) Method. In the vicinity
of the impact, where important non-linear phenomena occur, the
medium will be modelled by means of discrete elements. Far from
this area, the response of the structure may be considered as linear
elastic, and this complementary subdomain is modelled with the
FE method.

Contrary to non-linear continuum methods [1], the DE method
easily takes into account discontinuous phenomena. Our approach
uses rigid sphere interactions, such as were used by Cundall [2].
The DE method is used in the impacted subdomain. These methods
have been used first to model the behavior of granular materials,
but also provide very accurate results for cohesive materials like
concrete [3]. The studies of Camborde in 2D [4] or Rousseau et al.
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in 3D [5] have demonstrated the efficiency of such a discrete
approach to deal with impact problems on reinforced concrete
structures. They have also pointed out that such a method is limited
to small structures because of the computation cost. The use of
the FE method far from the impacted area is a way to reduce
this limitation. Meshing softwares drastically reduce the time of
modelling and the calculation may be faster than with a full DE
approach because of the facility to handle different discretization
sizes. Moreover the global behavior shows that the DE method is
not needed on the whole structure. The aim of the coupled method
is the prediction of both the local damage or the penetration of the
projectile, and the global displacement of the structure.

Many studies deal with combined continuum/discrete meth-
ods, mainly with molecular dynamics and FE methods for the
analysis of the fracture process at the atomic scale. A large review
of such methods is proposed in Li and Liu [6], Rabczuk et al. [7].
Many applications have been carried out on concrete structures;
in static by Azevedo et al. [8], Cusatis et al. [9] for the analysis
of the fracturing process in heterogeneous materials; in transient
analyses, and Onate and Rojek [10] studies the contact between FE
and DE, Bicanic et al. [11] proposed a combined approach where
the whole structure is modelled with FE which are disconnected
and transformed to DE, depending on a stress criterion. Concerning
the coupling between DE an FE, the works of Xiao and Belytschko
[12] proposed a coupling using a bridging domain. Ben Dhia and
Rateau [13] proposed the Arlequin method also based on a bridg-
ing domain with a weak formulation of the kinematic relations.
In Xiao and Belytschko [12], the authors present some partic-
ular numerical simplification that improves the computational
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Nomenclature
Z vector of the three displacements of the DE j
w, vector of the three rotations of the DE j
E? vector of the three displacement of FE node i
ny Number of FE nodes
ng Number of DE nodes
npy Number of FE nodes in the bridging domain
Ngp Number of DE nodes in the bridging domain
np Number of FE layers in the bridging domain
o Bridging parameter for the FE node i
B Bridging parameter for the DE j

Relaxation parameter

Mass of the DE j

Inertia of the DE j

Mass of the FE node i

Generalized force vector on FE node i
Total force applied to DE j

Total couple applied to DE j

Lagrange multipliers related to displacement cou-
pling

Lagrange multipliers related to rotation coupling
Displacement coupling matrix

== >§¢ ii‘%l‘%lﬁ?@ b\z =

Rotation coupling matrix

time and decreases the spurious wave reflection given by the
interface.

The originality of our method is that we have to take into
account the rotations of DE. Moreover, the numerical simplification
discussed before does not strongly attenuate the high frequencies’
reflection. We propose a new way to deal with the temporal DE
boundary conditions. We introduce a temporal relaxation of the
kinematic relations. This method strongly attenuates the spurious
reflection due to different size discretization between the two
methods. This method is equivalent to the use of the penalty
method with a penalty parameter adapted to each degree of
freedom (dof).

The discrete model and the main difficulties of coupling are
first presented. Details of the coupling method are given, and a
special emphasis on spurious wave reflections is carried out. Then
we present our method to attenuate spurious reflections. It uses a
relaxation of the Lagrange multipliers associated to the kinematic
continuity. At the end, DE and DE/FE simulations of an impact on a
concrete slab are compared.

2. Model description

The problem deals with fast transient dynamics in two
subdomains of a concrete structure. One subdomain is modelled
with DE, the other one with FE. This separation is done a priori from
an estimation of the size of the damageable area. This step may
be estimated from experimental analyses on a concrete slab [14]
or from design rules (Eurocode 2, [15]). It depends on the kind
of impact (soft [16], hard [17]), the geometry of the structure
and, of course, the velocity of the impactor. Lots of experiments
are accessible to estimate the size of the damageable part of the
structure, so as to know the minimum size of the DE model.
Moreover, we can check a posteriori that the stresses in FE domain
stay in the elastic domain of the media. Another way is to verify
that DE of the bridging domain have stayed in the elastic domain.

2.1. Discrete model

The domain, where discontinuities and non-linearities occur,
is modelled with the DE method. Previous studies have demon-
strated the efficiency of this approach to analyze structures under
high deformation or many non linearities, in 2D [18] or 3D [19], in
statics [9] or dynamics [20]. Our model is close to the one proposed
by Cundall and Stack [2]. The heterogeneous medium is modelled
by randomly positioned rigid spheres of different radii in interac-
tion, link or contact. To represent the cohesive property of concrete,
two elements can interact without being in contact. In [21], Hentz
et al. presents a large description of the DE model. A modi-
fied Mohr-Coulomb criterion associated with softening is used to
model the cohesive behavior of the material, and a classical fric-
tion constitutive behavior is used between the elements in contact.
The material is modelled at a macro-scale, with the size of the DE
being larger than the aggregate size. Nevertheless, the DE size will
be as small as possible with respect to the computational time.
Finally, an identification process is used to ensure that the model
is predictive [21].

The DE degrees of freedom (dof) are three displacements and
three rotations, so three more than the node of the FE model.

More details about complete model of the interaction laws and
damage are available in Rousseau et al. [22] or Hentz et al. [21].

2.2. Continuum model

Far from the impacted area, the structure is modelled with
the FE method under the small perturbation assumption. This
assumption might be seen as a main constraint of the model, but
the FE stresses can be used as an error indicator on the assumption,
and it is still possible to enlarge the DE domain with, of course, a
loss on the computation time or on the discretization size. Another
indicator can be the damage of DE next to FE domain. In this paper,
we focus on simulation with localized damage. The FE method is
used to reduce the times of modelling (meshing) and computation
by reducing the number of DE. The characteristic size of FE is a
function of the structure size and its geometry. The FE size is much
larger than the DE size (the ratio of discretization size is about 5).

2.3. Main difficulties of the coupling

The coupling can be realized by means of an edge to edge
method or with a bridging domain [12] where energy is taken as a
linear combination of each model by using a bridging parameter. In
our case, due to the random positioning of DE, this model naturally
takes into account the non regular boundaries. In some cases,
particular treatment of the bridging domain is a way to reduce
reflections that appear due to the model.

The numbers of dof in each model are not the same. In
addition to the three displacements, the DE node also has three
dof in rotation. The kinematic coupling of DE dof and FE dof
must take into account the rotation continuity. Coupling rotations
decreased error on discrete rotations, but had a slight influence
on the displacements. For example, in a 3D case where the
theoretical displacements and rotations were known, we obtained
the following errors: 5% on discrete rotations and less than
0.5% on displacements. Numerical and physical experiments [23]
show that, under the small perturbation assumption, the discrete
rotation is the rigid rotation linked to the antisymmetric part of
the displacement gradient. In the continuum model, under small
strain, the displacement of N in the neighborhood of M is given by:

S > — — >
U (N) = U (M) +&M)MN + @MN

o= 1= =T. (1)
w1tha)=5 gradU —grad U ).
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Fig. 1. Wave in DE model (left) and Spurious wave (right).
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Fig. 2. Bridging domain and bridging parameter.

The displacement is written as the sum of a rigid body
translation, one part due to strain and one due to rotation.

Another difficulty is that the discretization size is not uniform
between the two models. The discretization size has a direct effect
on the frequency range of the model. It is a key point in transient
dynamics. A high frequency wave propagating from the DE model
(fine) to the FE model (coarse) will introduce spurious wave
reflections if the frequency is greater than the cut-off frequency
of the FE model. The impact on reinforced concrete structure
leads to a large frequency range. The experiments of Zineddin and
Krauthammer [24] present high frequencies.

Fig. 1 shows an example of this reflection at the interface
between the two models. It is a 1D model, where half of the
structure (left) is modelled with coarse regular FE, and the other
half with a fine DE model. The displacement wave is generated in
displacement on the right hand boundary of the DE model by a sum
of two low and high frequencies. The low frequency is transmitted,
but the high frequency is fully reflected. This spurious reflection
has to be suppressed in order to predict the correct response of
the structure in the impacted area. It is to be noticed that such
a problem also appears by replacing the fine DE model by a fine
FE model. It is only due to the size of the coarse mesh that cannot
represent short wave length.

3. The coupled method

3.1. Methods

The proposed method uses a bridging domain in which the
Hamiltonian is taken as a linear combination of discrete and
continuum Hamiltonians. The bridging parameters « and 1 — « are
introduced respectively for FE and DE. They vary linearly, between
0 and 1, inside the bridging domain, and they are constant in
the thickness of the structure. They are introduced to ensure the
continuity of the energetic ration between DE model and FE model.
The size of the bridging domain is defined by the parameter ny
corresponding to the number of FE layers in the bridging domain.
Fig. 2 presents variations of bridging parameters for a bridging
domain where n, = 4. The Eq. (2) defines the expression of the
Hamiltonian.

H = oHp + (1 — o)Hpg. (2)

In the bridging domain, the DE dof are linked to FE dof through
the coupling relations, which can be written at the global scale by
(3) and (4) orat the node scale by (5) and (6). Here, we separate
translation d, and rotation ), dof of the discrete elements. Finally,
there are as many coupling relations as DE dof in the bridging
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Fig. 3. Description of the coupling matrices.

domain. These coupling relations strictly ensure the displacement
continuity. The DE domain is chosen in the vicinity of the impact,
and large enough to assume that all dissipative phenomena are
concentrated in the DE domain. Thus, no severe damage is assumed
to occur in the the bridging domain.

dy = kup (3)

@, =hup (4)
o

Vj<ng d] = Zkﬂ E,) (5)
i1
o

Vi<ng @ =Y hilg. (6)

k;i and h;; are submatrices of k and h, relative to FE node i and
DE node j (Fig. 3). The Eq. (6) is derived from the relation (1)
between the rotation and the antisymmetric part of continuum
displacement.

The solution minimizes the Hamiltonian in each domain by the
introduction of coupling relations in the bridging domain that use
Lagrange multipliers. The minimization of (7) gives local equations.

- —
H, (_d>,70),_u), Ad,x‘“) =H(d.3.7) Y (& —kw)

— =
+35 (B —h). (7)
e Local equations of DE node j:

M; d; = F 8)
15T =
- —

]]a)] — Cjtot (9)

e Local equations of FE node i:

el —>
m; i; = Fg; (10)

e In the bridging domain:

Vins BMd=BET 4 withg=1-o (1)

. 2 preA

Vi<na Blo=pG" + A (12)
Ndh

Vi< amu,_aFg,+Z<k,,A, +h,,A,> (13)
=1

3.2. Algorithm

The time discretization is performed with the central difference
method.

U(t+ At) =2U (t) — U (t — At) + AU (t) . (14)
The dof at time t 4+ At can be expressed by:

A2 [— A
Z(t‘FAt):ZE;(t)—Z(t—At)-l—ﬁj th°‘+5

—
d

_ (15)
]

—_
At? [— AP
@ (t+ At) = 2@ (t) — @ (t — AL + — (C}”‘ + ’) (16)

Ji

AL? -
W (t+ At) =27 (t) —u; (t — At) + —Fg;

i

Tdb __1_

Ndp 7—1-_)
o (Z ki A +Zh,, A,) (17)

As afirst step, a provisional value of the dof is computed without
taking into account Lagrange multipliers.

d (t+At)_2d (t) — d (t—At)+ F“’r (18)
]
A2 —
@ (t+ At =23 (6) — @ (t — At + -G (19)
]

— At? —>
U (t+ AL =27 () = U (¢ — A + —Fg;. (20)
i
The dof aj, wj, 1l; at t + At have to verify the coupling relations

(5) and (6). This constraint leads to the computation of Lagrange
multipliers with the expressions:

- o
§']d = dj(t+ At) — Zkﬁﬁ,‘(t—FAf)
i=1

= = (21)
g—ac|- &l _%ﬁ %’: i A+ hu?
! L A T imm;
— > LA
g’ = & (t+ At — Zhﬁﬁi (t + Ab)
i=1
A " Tl 4kl
= _g_ h], Z Kid + hidy” ) (22)
IBJJJ i—1 = oim;
These expressions can be written in a matrix form:
g9 = ALY + BL® (23)
§° = CAY + Di°. (24)
The matrices are:
kp 1:T
= i KI
Aj = ﬂ_ 22 jp_ Kip (25)
ﬂ] p=1
——T
nfb e
ki, h
By =—At?y 2P (26)
=1 %Mp



J. Rousseau et al. / Engineering Structures 31 (2009) 2735-2743 2739

i —ar S ok (27)
! =1 %My
::T
= At?= D hi h
Dji = i — A2y 2 (28)
il =1 %MMp

The resolution of this matrix system gives the values of La-
grange multipliers. The displacements and rotations of each node
are then computed with the relations (15)-(17).

Note that it is also possible to write this algorithm by means
of a more classical formulation based on velocities (Casadei and
Halleux [25] and Key [26]).

Also note that, in the description of the terms of the matrix, the
coefficients « and § are at denominator. Their value cannot be null
and therefore we chose a minimum value equal to 0.01 for these
parameters because it gives correct results without modifying the
critical time step imposed by the stability condition.

3.3. Numerical simplifications

The previous algorithm rigorously respects the coupling
relations. Some simplifications can be realized to reduce the
computation time. The size of the system to solve is proportional
to the number of DE in the bridging domain, which can be
large in three dimensions. Moreover, the analysis of the previous

matrices shows the predominance of A and D in front of B and
C. Lagrange multipliers are then computed without taking into

account matrices B and C.

Then, the values of the diagonal terms of A and D are prevailing
in relation to the other ones, so the simplifications proposed by
Xiao and Belytschko in [12] are used. The matrix is replaced by a
diagonal matrix where the value of each diagonal term is equal
to the sum of terms of the corresponding line. This numerical
simplification can be considered as a way to relax the strict
coupling relations (5) and (6). It has two advantages: firstly, the
computation time is reduced, and secondly, the spurious wave
reflection is slightly reduced (Chapter 4).

We will demonstrate, in the following paragraph, that this
simplification is equivalent to the use of the penalty method with a
penalty parameter adapted to each dof. Moreover, this parameter

is computed automatically. We will define ‘A as the diagonalized
matrix of A. ‘Aj is the diagonal submatrix related to the DE node j.

The same notation is used for D.
3.4. Equivalence with the penalty method

The equivalence between the previous method with diagonal
matrices and the penalty method is shown on the local equation of
DE displacement. The same demonstration can be carried out for
the DE rotation. The update of DE displacement dof is obtained by:

— — —
d (t+At) =24, (t) — d; (t — AD)

—71—>
A (= A g

Rl A S 5 (29)
J J

On the other hand, the generalized penalty method is obtained
by minimizing the Hamiltonian expressed by:

= T — -
H(_J,Z?,‘u’)+(32—kﬂi) P (a?,_ka;)
- Fo\T=/5 =
—l—(wb—hub) p® (a)b—hub) (30)

where pg and p,, in the general case two symmetric positive-
defined matrices. In this demonstration, we use, as it is most often

done, two diagonal matrices. The DE displacement local equation
is obtained with the penalty method:

FAEPE i R STl
Bimyd; = BFE" +pj (4 =Y ki ). (31

i=1
With the central difference scheme:

— — —
d; (t+ At) = 2d; (t) — d; (¢ — AL)

2 — =
+ — Fj[O[‘ + = (32)
J Bi

— = R
With our notation, (d' - Z?fl kj,'ﬂ,?) is equal to gjd. The
—1
Egs. (29) and (32) are then equivalent if we choose p = ‘Ajj .
The generalization to the DE rotation is easily accomplllshed Each
coupling relation has its own penalty parameter that is computed
automatically.

4. Wave propagations

4.1. Reflections of the high frequency waves

In fast transient dynamics analyses, the discretization size gives
the frequency range of the model. To be correctly described, a
wave must have a length more than 10 times longer than the
discretization size for both of our methods (DE or FE models). Some
small waves can propagate in the fine DE model, but cannot be
described in the coarse FE model. They are reflected as soon as
they enter the bridging domain, which appears for these waves as a
rigid body (Fig. 1). Those spurious reflective waves have no physical
sense and, to keep a predictable model, they have to be deleted or
at least attenuated.

To attenuate this spurious wave, we propose to make numeri-
cal simplifications in the Lagrange method. We will see that such
simplifications have a beneficial effect on the spurious wave. The
presented method with diagonalized matrices slightly reduces the
reflected wave (Fig. 4). But, on the contrary of Xiao's applica-
tions [12], the attenuation of the reflected waves are not enough.
It depends of the frequency range and of the size of discretization.
To improve this transient dynamic phenomenon, we introduce a
relaxation parameter of the kinematic constraints. It introduces a
temporal freedom on DE dof.

4.2. Attenuation with relaxation

With the Lagrange multipliers method, the kinematic con-
straints are rigorously satisfied. Thus, the method gives the same
results as a direct kinematic coupling, and full spurious reflections
occur. In fact, all the DE dof are defined from the coarse discretiza-
tion. The relaxation reduces the value of the Lagrange multipliers,
and the coupling relations are not strictly respected. During the up-
date step of dof, Lagrange multipliers are divided by a relaxation
parameter, 1.

-

— — — At? 0 J{j

d (t+At) =24 () — d t—AD+ — | ™ + (33)
M; Bir

2 }L‘U
@ (t+ At) = 2@ (t) — @ (t — At) + j—}t (C“’t + ﬂ]) (34)
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At? —

U (¢4 At) = 2E*(t)—E*(t—Ar)+7ng
i

—T— —T—

At? odb ki )»;i + hyi )\.?)

oim; = r

(35)

By adding this temporal freedom on the kinematic coupling, the
spurious reflected waves are strongly attenuated. The next figures
show, using a 1D example, the efficiency of the proposed method,
with or without diagonal values, and with or without relaxation.
The percentage attenuation of the spurious reflected energy for
the different methods are compared. The reference is defined with
the full Lagrange method without diagonal matrices and without
relaxation.

Fig. 4 shows the influence of diagonal matrices. The simplifica-
tion, in addition to the time reduction, is a way to reduce the spu-
rious reflected energy. As soon as the bridging domain is defined
with one FE layer, the energy attenuation is greater than 30%.

Fig. 5 shows the attenuation for many FE layers and many values
of relaxation. The relaxation drastically reduces the reflection. For
every FE layer, about 99% attenuation can be reached.

Finally, Fig. 6 describes the attenuation for our proposed
method (relaxation, diagonalized matrices). For at least two FE
layers, the reflection attenuation is greater than 80% and, with
three or more FE layers, the energy contained in the reflected wave
is fully attenuated for a large range of values of the relaxation
parameter.

100 ———

Percentage of attenuation of the spurious energy

10 20 30 40 50 60
Parameter of relaxation

Fig. 6. Influence of diagonal matrices and relaxation.

x1073
2 .

[ Classical Langrange multipliers : Total reflection
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1.5 | | _——_Reflection for 3 FE layers with relaxed Lagrange multipliers and diagonal matrix

Displacement

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
Position

Fig. 7. Spurious reflective wave for each model.

Fig. 7 shows, in detail, the form of the spurious wave for each
method. This wave has not disappeared, but it has negligible
energy.

Any of the previous methods have significant influences on
the propagation of the low frequency wave. The variations of
the transmitted wave energy do not exceed 1%. Moreover, as
soon as the number of FE layers is enough, the attenuation is
effective for a large range of relaxation. A compound must be found
between small DE model and attenuation. An efficient method
would be to use 3 FE layers with a parameter of relaxation about
10 times the ratio of discretization. For example, a relaxation
parameter between 25 and 35 would give correct attenuation
for a discretization ratio of 5 and more than two coupling layers
(Fig. 6).This study on a one dimensional model will be used for
three dimension simulation. The previous tests (Fig. 4 to Fig. 7)
have been realized in 1D to have more explicit results without
the deterioration of the wave form along the structure due to the
many reflections on each face of the solid. But some numerical
experiments have beenrealized in order to verify that the influence
of the relaxation is similar in 1D and 3D. They showed that the 1D
conclusions were usable for 3D simulations.

5. Impact on a concrete slab

In this part, we wish to compare results from a full discrete
elements formulation with the combined finite/discrete elements
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Fig. 8. Combined FE/DE model.

method, with a focus on precision and computation time. The aim
of this part is to validate the coupled approach. The proposed
method is applied to the simulation of a rock impact on a concrete
slab. To make it more realistic, we used data from a real test; more
information can be found in Hentz et al. [27]. Simulation results are

0 x10% x=0

2741

analyzed in terms of displacement and damage. The computation
times are compared for a full DE model and a combined FE/DE
model using three FE layers and a relaxation parameter equal to
35. All the simulations were computed with the same computer.

Fig. 8 defines the geometrical model. It consists of a concrete
slab (2.5 x 2 x 0.28 m). The characteristics of the concrete are:
Young’s Modulus of 31 GPa and a compressive strength of 31 MPa.
Two opposite faces are restrained on the direction perpendicular
to the medium slab plane. The slab is impacted by a concrete cubic
block of DE (30 cm side). The figure shows the ratio of discretization
between DE and FE equal to three in the plane of the slab, and
around one and half in the normal direction, to have enough FE
to represent correctly the behavior of the slab in the FE part.

The velocity of the impactor is 40 m/s. The contact between
the impactor and the slab is treated by means of the contact laws
developed for DE. More details about this can be found in Hentz
etal. [21] or Rousseau et al. [22].

Fig. 9 presents comparisons between both methods. The first
two figures concern the DE displacement in the DE domain, the
next one is DE displacement in the bridging domain and the
last one is the displacement comparison of a DE node with the
nearest FE node. The predictions of maximum displacements of
both models are similar, and the time response is globally the same
for the two models.

The combined model is also efficient in describing the damage
in the vicinity of the impacted zone. In Fig. 10, damages obtained
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(a) Displacement of DE under the impactor.
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(b) Displacement of DE at 0.21 m of the impact.
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(c) Displacement of DE at 0.33 m of the impact.
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(d) DE displacement compares to FE displacement at 1 m of the
impact.

Fig. 9. Comparison of displacement between only DE model (full line) and coupled DE/FE model (dotted line).
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Table 1

Comparison of the duration of the simulation.

Model DE Coupled DE/FE
Number of DE 120808 6588

Number of FE node 0 5935

np (FE layer in bridging domain) 3

Number of time step 100000 100000
Duration of computation 42 h 50 min 3 h 39 min

with the full DE approach and the coupled DE/FE model are
compared at the same time. In this figure, the damage is evaluated
as the ratio between broken links and initial links. Damage is
proportional to the sphere darkness. Black color corresponds to
free DE, the lightest DE have no broken links.

One of the aims of this combined FE/DE modelling is to use the
efficiency of the DE fracturing process on a large structural scale.
This has been possible by reducing both the number of DE and
the computation time. The analysis of computation times for this
problem shows that the coupled FE/DE model is ten times faster
than the full DE model (Table 1).

This difference on the computation time comes from the ration
of DE in the full DE model, and the DE in the coupled model.
This coupled method can easily use a multi-time step algorithm to
further improve the computational time. The computation time in
the FE model is negligible. By reducing the time of simulation, we
can manage to simulate a larger or more complex structure and/or
refine the discretization.

6. Conclusion

The proposed coupled method is able to simulate an impact on
a concrete structure. The domain is divided into two models, DE
or FE, depending on characteristic wave lengths of dynamic phe-
nomena that are essential for a correct prediction of damage. The
coupling is based on a Lagrange multipliers approach, but numer-
ical modifications are introduced in order to reduce the spurious
reflections. The reduction of Lagrange multipliers by means of a
relaxation parameter introduces temporal freedom on DE nodes
in the bridging domain, and the reflection is then attenuated. The
relaxation parameter method, added to diagonal matrices of La-
grange multipliers, is a very efficient way to get a correct predic-
tion of damage in the DE subdomain without spurious phenomena.
Moreover, this method reduces the time necessary to compute La-
grange multipliers and, globally, the computation is faster.

This computation time reduction, obtained with the proposed
coupled approach, allows us to carry out 3D simulations of very
large structures under impact and, locally, a real description of the
media can be modelled at a satisfying scale.
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