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This paper analyses in detail the use of the Embedded Finite Element Method (E-FEM) to simulate local
material heterogeneities. The work starts by a short review on the evolution of weak discontinuity mod-
els within the E-FEM framework to discuss how they account for the presence of multiple materials
within a single element structure. A theoretical basis is introduced through some mathematical weak dis-
continuity definitions and the Hu-Washizu variational principle, for then establishing a set of require-
ments for retaining variational and kinematic consistency for any weak discontinuity enhancement
proposal. From a general definition of a displacement enhancement field, two particular enhancement
functions are derived by considering different consistency requirements: one which has been typically
used in previous works and other which truly possesses variational consistency. A discussion is held
on enhancement stability properties and the impact to global finite element solution processes. In the
end, numerical simulations are made to assess the performance of each of these enhancements on the
task of modelling a classical bi-material layered 3D tension problem and a more realistic heterogeneous
sample having spherical inclusions of different radii. The final discussion evaluates both model perfor-
mance and ease of implementation.
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1. Introduction

The numerical modeling of the heterogeneous nature of some
materials is important for studying and predicting complex fea-
tures of their physical behavior, including their mechanical
response and resistance under specific conditions.

Typical numerical analysis techniques such as the finite ele-
ment or finite difference methods generally approach this problem
considering homogeneous base domains. This requires a
homogenisation procedure for a determined representative patch
of the heterogeneous material. In order for this homogenised patch
to be considered as truly representative, it should be large enough
to exhibit the same mechanical properties of the material at large
scales as in a whole continuum, but should also still remain small
enough to be able to distinguish and explicitly model its heteroge-
neous structure. Such is the basis of representative volume ele-
ment (RVE) approaches [1,2].

At some point, every approach following this line will require a
realistic modeling of a limited domain in the scale in which the
heterogeneities of a given material can be geometrically described
in an accurate way. For such multi-scale simulation processes, a
classical FEM approach will require an adapted mesh for the small
scale to consistently capture the geometrical distribution of mate-
rial heterogeneities in such domain. While sophisticated meshing
adaptation techniques for heterogeneous objects are still an active
subject of study [3,4], the approach remains computationally
expensive and mathematically complicated, depending always on
the arbitrary shapes of the different material phases present on
the heterogeneous structure. This is specially true when a study
requires the analysis of a large amount of heterogeneity distribu-
tion samples for a meaningful statistical treatment, such as in
the execution of Monte Carlo methods that require repetitive sam-
pling for the homogenisation process [5].

Alternative approaches for the numerical modelling of hetero-
geneous material domains have emerged, such as Voronoi cell
techniques [6], discrete elements for granular rocks [7] or rein-
forced concrete [8], or the advanced finite element methods [9–
11]. Some of these approaches will focus more on the material
interfaces, like the Voronoi cells that make use of mixed 1-D finite
elements to represent the presence of different material domains
and the strength of the mechanical connection between them. Typ-
ically, it is the finite element methods in two or three dimensions
that will grant a more meaningful representation of the state of
stresses in continuous material models, since they attempt a more
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Fig. 1. Basic schematic of weak discontinuity enhancements used to represent a
shear band within a triangular 2D element having a local frame n̂; t̂. The shear band
possesses a set of different (damaged) mechanical properties El while the rest of the
element retains its original elastic behvior E. Note the introduction of a thickness d
characterising the shear band.
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direct and accurate geometrical description of material
heterogeneities.

In regards to the latter, the meshfree or non-adaptive mesh
approaches have been introduced as an attractive solution to this
modelling problem. Applications of many advanced FEM tech-
niques can be found, such as the Generalized Finite Element
Method (G-FEM) [12–14], the Extended Finite Element Method
(X-FEM) [15–17], the Base Force Element Method (B-FEM)
[18,19] or the Embedded Finite Element Method (E-FEM) [20–
22], the last one being precisely the scope of study in this work.

Although the specific modelling of 3D crack initiation and prop-
agation events does not remain the principal scope of this work,
the authors would also to remark that meshfree and non-
adaptive mesh approaches have been actively used for recent
advances on this subject, which remains by itself a center of inter-
est for potential applications of the E-FEM framework with embed-
ded discontinuities. From the side of meshfree approaches, we can
account for the use of the local partition of unity (the cracking par-
ticle method) [23,24] or extended versions of the element-free
Galerkin method [25]. On the other side, the X-FEM approach,
which has recently benefited from improved conditioning on
account of Cut Finite Element Methods [26], has been successfully
applied for the study of non-planar crack prorogation problems
and 3D linear elastic fracture analysis [27–31].

One of the most important intrinsic characteristics of the E-FEM
framework is the lack of mechanical field continuity through dif-
ferent internal element domains, as its core foundation is based
on the Principle of Incompatible Modes [32]. The approach retains
a local definition for the mathematical enhancements used to rep-
resent material heterogeneities or internal element fractures. This
implies that the effects of embedded discontinuities and their asso-
ciated degrees of freedom can be resolved at elemental level with-
out the need of incorporating global degrees of freedom to a given
mechanical system. This is also remarked as the most prominent
difference with respect to other advanced finite element methods
such as the X-FEM, which uses a definition of the enhanced degrees
of freedom directly reflected upon the nodal shape functions, with
the need to resolve these enhanced degrees of freedom along with
the remaining finite element assembly of the entire system. This is
referred to as a global approach by the authors of this work, com-
pared to an exclusively local setting where enhancements are
entirely resolved at a local level. A detailed discussion highlighting
this and other fundamental differences between the X-FEM and the
E-FEM approach studied in this work can be found in the works of
Ibrahimbegovic and Melnyk [33] in a 2D setting, and it is brought
to a 3D environment in the works of Benkemoun et al. [34].

It is recognized by the authors of this study that a global
approach for element enhancements has a broader field coherence
and capacity for the representation of complex multiphasic mate-
rial distributions. It is also observed that many authors working
within the E-FEM framework have opted for a workaround by
implementing global tracking algorithms, strongly linking the
locally defined enhancements [35,36]. However, it has been the
choice of the authors of this work to retain a strictly local approach
for the developments presented for the E-FEM framework. It is
considered worth the effort to keep the simplicity and hermeticity
of these internal mathematical enhancements that leave the global
finite element solution process almost untouched, granting a non-
invasive framework that can be used within any standard finite
element solution platform as a plain internal element routine, only
returning local stiffness and residual contributions. It is the explicit
intent of the authors to show the limits of such a local approach,
discussing on both prediction quality and practicality of the
framework.

A brief analysis on the evolution of the use of the weak discon-
tinuity model on the E-FEM approach will be presented to the
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reader in Section 2. A detailed analysis of the theoretical founda-
tions for the definition of weak discontinuity enhancements for
the modelling of heterogeneous materials will be introduced in
Section 3. This will help to establish a set of basic consistency
requirements for defining these enhancements under the light of
the Hu-Washizu variational framework. In Section 4, two particu-
lar weak discontinuity enhancement functions will be derived
based on this consistency analysis and the amount of requirements
chosen to be satisfied. The first of them is the one typically man-
aged in the reference E-FEM works, and a second one is proposed
to purposefully maximize variational and kinematic consistency.

Finally, numerical simulations are made to assess the perfor-
mance of the weak discontinuity enhancement proposals, showing
the reader overall how far a strictly local E-FEM approach can go in
terms of the correct physical simulation of heterogeneous materi-
als. First, the analytical solution for a simple bi-strip material
model will serve as a reference to assess the basic performance
of the enhancements. Afterwards, simulations involving a more
realistic model having a number of inclusions within an homoge-
neous material matrix domain is performed to study more complex
mesh sensitive phenomena. These last simulations are compared
to a standard FEM model, which has its mesh completely adapted
to the presence of the inclusions. A concluding discussion will fol-
low in Section 6, considering all theoretical and practical aspects of
the developments presented in this work.
2. The role of weak discontinuity enhancements on the E-FEM
framework

The use of weak discontinuity enhancements started actually as
one of the first embedded finite element approaches for the mod-
elling of shear instability bands, with some pioneering studies pav-
ing the way for consolidating the E-FEM approach as a whole by
authors such as Ortiz [37], Belytschko [38] and Sluys [39]. The
main idea was to model a shear band through the use of two par-
allel strain discontinuity lines that would cross a non-adapted
mesh, typically having a uniform geometry. The elements having
sub-domains enclosed by the shear band would have different con-
stitutive properties to represent the local instability happening
inside. It introduces a jump on the strain field, which translates
into a sudden change in slope for its corresponding displacement
field without breaking its continuity (this is thus the reason of call-
ing it a weak discontinuity enhancement). Fig. 1 shows an example
for a constant stress triangle (CST) element. The localisation band
model represents a finite and continuous region of a fracture
process.



Fig. 2. Basic schematic of a weak discontinuity in 3-D for the modelling of material
heterogeneities within a tetrahedral element.
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The weak discontinuity approach for this kind of material fail-
ure modelling got diversified afterwards with the introduction of
regularization processes discussed by Simo, Oliver [40,41] to avoid
scale dependencies, especially concerning the problem of setting
an arbitrary shear band thickness. Eventually, attention was
diverted towards the strong discontinuity enhancement equipped
with a discrete post-localisation law as the method of choice for
the modelling of internal element fracture on the E-FEM frame-
work. It was at this stage that the detailed theoretical and imple-
mentation works of Oliver [21,42], Borja [43], Jirasek [20], Borst,
Wells and Sluys [44] and Alfaiate and Dias da Costa [45] estab-
lished a strong foundation for the E-FEM approach to thrive as an
advanced finite element method. The tendency of this evolution
was practically to drive the shear band model thickness to zero
while maintaining mathematical and physical coherence on the
formulation. This translates the discontinuity to the displacement
field directly (thus the reason of naming it a strong discontinuity).
The strong discontinuity enhancement was indeed proven to be a
more pragmatic and robust way to avoid mesh dependencies as
possible, granting more objectivity to the approach. Nonetheless,
the application of embedded weak discontinuity enhancements
for the modelling of shear bands still gathers some interest in
recent works, such as ductile material failure simulations under
dynamic conditions [46,47].

The interest of an effective and accurate modelling of local frac-
tures through the use of strong discontinuities further continued
by refining the mathematical definition of the embedded enhance-
ments to avoid theoretical faults and increase modelling flexibility.
As an example, the use of non-uniform strong discontinuity jump
functions introduced and comprehensively studied in the works
of Armero and Linder [48], Alfaiate, Simone and Sluys [49] allowed
the introduction of new local fracture rotation modes that
increased the kinematic consistency of the E-FEM formulation
overall in a 2D context.

The use of an E-FEM approach to directly model different mate-
rial phases, however, did not evolve at the same pace since they do
not make use of an embedded strong discontinuity. The authors of
this study consider that the application of weak discontinuity
enhancements to model material heterogeneities really started
with the works on fracture simulations of cementitious materials
on the mesoscale [33,34,50]. These developments began by model-
ing a single weak discontinuity on 1-D beam elements to represent
the presence of two different linear elastic stiffness domains coex-
isting on the same element. The perspective was different to that of
Voronoi cell constructions [6] in the sense that no regular inclusion
recognition had to be made on a material matrix to assign one
beam per interface. A totally random, unstructured 3-D mesh
was built with beam elements and a material heterogeneity distri-
bution in space was just projected directly onto it. Some elements
would fall entirely on the domain of one material phase or other,
while others would be found in a region where there was an inter-
face between materials. It is those elements that were enriched
with a weak discontinuity enhancement function.

The model was also equipped with a strong discontinuity
enhancement at the same location as the weak discontinuity to
represent eventual failure and separation of the domains. In this
sense, the work was also innovating from the perspective of inte-
grating both discontinuity enhancements for entirely different
roles. While this model allowed an explicit use of the weak discon-
tinuity to finally model mesh-independent heterogeneities, no
objective state of stresses was described in the domains as no spa-
tially accurate representation of the continuum is possible by only
making use of 1-D beam elements.

It was only with the work of Roubin [22] that this application of
the weak discontinuity model was devised for 3-D elements,
inspired on the works of Markovic [51,52]. The main idea was to
3

establish a piece-wise displacement field enrichment that, once
being processed through the application of a symmetrical gradient
operator rsym, it would comply with the Maxwell interface strain
compatibility conditions [37]. The model counts with one, two or
three internal variables characterising the strain jump between
materials depending on the dimension of the problem. As his pre-
decessors, Roubin also appended a strong discontinuity enhance-
ment to integrate a fracture model, but only considering a single
fracture kinematic mode: normal separation.

This 3-D development was later taken as a base by Hauseaux,
Vallade, Stamati and Sun [53–56] to perform simulations for
heterogeneous rocks and cementitious materials in a similar fash-
ion. A variety of fracture phenomena was explored, such as plane
sliding, crack reclosure and multi-scale analyses, among other
developments. Further applications of these ideas can be found
in the domain of poromechanics and electromechanics [57,58].
The use of the weak discontinuity on this format acquired yet more
relevance with the recent works of Stamati et al. [59,55], where
image processing techniques and X-ray tomography made possible
to project realistic heterogeneity distributions coming from actual
samples used for experimental campaigns, reaching a new level of
predictability and model validation procedures.

All the aforementioned works concern linear element formula-
tions having a constant stress field, which simplifies the mathe-
matical works required to constitute such frameworks. The
reader can find additional studies on non-constant stress field base
elements in a 2D setting (such as a Q6 element) in the works of Sta-
nic et al. [60,61].

This application of the weak discontinuity model for 3-D
geometries, as seen in the work of Roubin [22], has been taken as
the point of departure for the present study. In the next section,
the theoretical basis behind it will be scrutinised in detail. To help
the reader understand better the theoretical improvements pro-
posed to the weak discontinuity formulation explained in Section 4,
a selected summary of the fundamentals of embedded weak dis-
continuity formulations is provided. The reader can find a set of
detailed explanations in a reference textbook by Ibrahimbegovic
[62].

3. Theoretical foundations

The basic construction of a weak discontinuity for the modelling
of material heterogeneities starts with the assumption that a
heterogeneous displacement field u, referred from now on to as
the physical displacement, can be expressed as the composition
of an average homogenized base field u and a field enhancementeu carrying the mathematical weak discontinuity:



A. Ortega, E. Roubin, Y. Malecot et al. Computers and Structures 273 (2022) 106894
u ¼ uþ eu ð1Þ
Fig. 2 illustrates a typical dual material partition for a 4-node

tetrahedral element in domains Xþ;X� with a boundary @X and
having a plane Cd as an interface. The base work by Roubin
[22,63] considers linear elastic properties for each domain such
as Young moduli Eþ; E� and Poisson ratios mþ; m�. A local coordinate
system (n̂; t̂; m̂) defines the orientation of the material interface,
having n̂ as the unit vector normal to Cd.

The homogeneous base field u is determined entirely by the dis-
placement of the tetrahedral nodes and the natural interpolation
functions of the element. The definition of the field eu is determined
by internal variables keeping in mind that its corresponding strain
function should introduce the strain jump associated with the
change of material domains. The strain fields, as second order ten-
sors, are obtained through a symmetric gradient operator

rs �ð Þ ¼ 1
2 r �ð ÞT þr �ð Þ
h i

:

e ¼ rsu ¼ rsuþrseu ¼ eþ ee ð2aÞ
eþ ¼ eþ eeþ; x 2 Xþ ð2bÞ
e� ¼ eþ ee�; x 2 X� ð2cÞ
where a distinction has been done between the strain fields on the
Xþ and X� domains at each side of Cd. Note that the base field e
remains invariant by the definition of u.

To retain kinematic and variational consistency, the weak dis-
continuity model has to comply with certain requirements through
both displacement and strain fields. The approach in this study will
be to determine the possible functions for the enhanced displace-
ment field by introducing and applying these constraints, also not-
ing the set of constraints effectively considered in the work of
Roubin, Hauseux and Benkemoun [22,53,34] that shapes the most
typical choice for it in those works.

From now on, the analysis will take place on the local reference
frame (n̂; t̂; m̂) unless stated otherwise. Its coordinate variables will
be denoted as n;g; f.

The most basic constraint pertains the physical displacement
field u: it shall not lose continuity through the material interface.
Given that the base field u is already continuous by definition, this
implies that the enhanced displacement eu also has to be
continuous:euþ��

Cd
¼ eu���

Cd
ð3Þ

The next involves an analysis of the strain field and the definition of
the strain discontinuity jump. A strain discontinuity jump Dee is
defined as the difference of strain fields eeþ and ee� at the material
interface Cd, resulting also in a second order tensor:

Dee ¼ eeþ��
Cd

� ee���
Cd

¼
Deenn Deent Deenm
sym Deett Deetm
sym sym Deemm

264
375 ð4Þ

The components of the strain jump Dee are not obliged to respect full
continuity as their parent displacement field, but must still comply
with Maxwell strain compatibility conditions [37] to be coherent
with it. For this, the projection of Dee on the normal direction n̂ will
be free of constraints, while all other unrelated components of the
tensor will be driven down to zero. Recall that in a local coordinate
setting, the projections can be easily obtained by just extracting the
line-column corresponding to a given direction within the tensor.
Thus:

Dee � n̂ ¼ Deenn Deent Deenm� �T
– 0

Deett ¼ Deetm ¼ Deemm ¼ 0
ð5Þ
4

This leaves the strain jump tensor Dee with only three active compo-
nents Deenn;Deent;Deenm. These will be redefined as e½ �n; e½ �t and e½ �m,
respectively. These are indeed the internal variables that define
the weak discontinuity model. With this, a new enhancement
requirement is defined:

Dee ¼ eeþ��
Cd

� ee���
Cd

¼
e½ �n e½ �t e½ �m
e½ �t 0 0
e½ �m 0 0

264
375 ð6Þ

The requirements to follow need considerations coming from the
variational analysis. As in [64,22,53] and in most of other works
on the E-FEM framework, the Hu-Washizu variational principle is
chosen due to its flexibility to handle element field enhancements
through the independence of displacement, strain and stress fields.
In a Voigt format, it can be expressed as:

X@dutr dV � Xdutf b dV � @Xdutt dA ¼ 0 ð7aÞ
Xedr

t @u� eð ÞdV ¼ 0 ð7bÞ
Xede

t r eð Þ � rð ÞdV ¼ 0 ð7cÞ
where the real fields have been denoted as (u; e;r) and the field
variations (or virtual fields) as (du; de; dr), having a boundary trac-
tion vector t and body forces f b. It is important to note that the real
stress field r, in general, is different from the stress coming from
constitutive law calculations r eð Þ. The same can be said from the
real strain field e and @u, where @ is the Voigt notation equivalent
of the symmetric gradient operator rs.

All fields are independent from each other, in the sense that
they do not have to necessarily follow direct gradient relations
such as in Eq. 2a. The Hu-Washizu variational principle allows
for flexible field discretization strategies. However, the fields
should retain enough physical meaningfulness to be able to cor-
rectly model the phenomenon in question. Authors working on this
framework generally choose a discretisation strategy as to render
the model as manageable and efficient as possible sacrificing the
minimal amount of mechanical representation quality. This choice
also considers the ease of an integration process with other models
that might have a similar field discretisation approach (such as a
strong discontinuity model).

The displacement and displacement variation fields u; du are
commonly discretized taking only the standard displacement field
u:

u ¼ u ¼ Nd ð8aÞ
du ¼ Ndd ð8bÞ
with N as a standard interpolation matrix and d the standard nodal
displacement vector. dd is the corresponding variation. This strategy
means that only the field u is used for describing node positions and
imposing boundary conditions. In such case, it should be clear that,
in order to ensure that d retains the correct nodal information, the
field u should have the same value as u at the boundaries @X of all
the element (i.e. the nodes on it):

uj@X ¼ u j@X ð9Þ
Given that we already have a definition as stated in Eq. 1, this
implies:

uj@X ¼ u j@X þ eu ��
@X

) eu ��
@X

¼ 0 ð10Þ
This analysis defines the next constraint for the weak discontinuity
model:

eu ��
x¼xi

¼ 0; i ¼ 1;2; . . . ;Ne ð11Þ

where xi are nodal positions and N is the number of nodes of the
element. This requirement stands as the most overlooked in the
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current literature of this family of formulations applied to the mod-
elling of material heterogeneities. It is also the one that will make a
significant difference in the enhancement function shape with
respect to the one used in typical heterogeneous E-FEM studies.
Going forward with the discretisation strategy, the domain depen-
dent strain field e and its variation de conserve all kinematics
description terms as stated in Eqs. 2a,2b. Their enhanced sections
(ee and dee, respectively), which depend on the internal variables
e½ �n; e½ �t; e½ �m, are stated through the definition of a weak discontinuity

vector ej j½ � ¼ e½ �n e½ �t e½ �m½ �T and its variation d ej j½ �. This discretisa-
tion strategy also allows to use different interpolation matrices
G�

w;G
��
w for the real and variation enhancements, respectively:

e ¼ Bdþ Gþ
w ej j½ � x 2 Xþ

Bdþ G�
w ej j½ � x 2 X�

(
ð12aÞ

de ¼ Bddþ G�þ
w d ej j½ � x 2 Xþ

Bddþ G��
w d ej j½ � x 2 X�

(
ð12bÞ

Note that, until now, no specific form for G�
w;G

��
w has been assigned

yet. In the original work of Roubin [22], it is actually assumed that
G�

w ¼ G��
w . The reason for this choice will be explained in Section 4.1.

The matrix B remains a standard strain interpolation matrix involv-
ing the partial derivatives of the base element shape functions.

The stress field r and its variation dr are interpolated using sin-
gle independent stress vectors sand ds through the use of interpo-
lation matrices S and S�, respectively:

r ¼ Ss ð13aÞ
dr ¼ S�ds; ð13bÞ
The definition for the stress field coming from the constitutive law
r eð Þ is based on the assumption that each of the material domains
possesses its own linear elastic constitutive law considering sepa-
rate second order linear elastic constitutive tensors Cþ and C�.
These linear operators act upon different regions of the real strain
field e. The definition for this stress field is thus devised as:

r eð Þ ¼ Cþ Bdþ Gþ
w ej j½ �� �

x 2 Xþ

C� Bdþ G�
w ej j½ �� �

x 2 X�

(
ð14Þ

It should be emphasized that while the constitutive stress r eð Þ is by
default a domain-dependent definition, the real stress field r is not
necessarily obliged to follow the same characteristics.

Having set a discretisation strategy, the variational analysis
takes place by using all previous equations to develop the Hu-
Washizus system through Eqs. (7a)–(7c). The detailed process of
this variational analysis is lengthy and judged too technical by
the authors of this work to be included in this manuscript. How-
ever, the reader can refer to the works done by Ortega Laborin
et al. [65] to follow a step-by-step description and the assumptions
made during this process, where the framework is being applied
for the analysis of a strong discontinuity.

The requirement of passing a constant stress patch test [51,44]
yields another requirement for the weak discontinuity model
enhancements:Z
Xþ

G�þT
w dV þ

Z
X�

G��T
w dV ¼ 0 ð15Þ

The works in [22,63] take the simplest approach for a tetrahedron
element, which is to assume a constant real stress field. This allows
the possibility to make constant matrix definitions for G��

w , yielding:

VþG�þ
w þ V�G��

w ¼ 0 ð16Þ
A final relation for calculating the weak discontinuity internal vari-
ables e½ �n; e½ �t; e½ �m as a function of a displacement input d can be
5

obtained from further working the Hu-Washizu system (Eqs.
(7a)–(7c)) if a definite shape for all weak discontinuity enhance-
ment matrix operators G�

w and G��
w has been established at this

point:

Kwbdþ Kww ej j½ � ¼ 0 ð17aÞ
Kwb ¼

Z
Xþ

G�þT
w CþBdV þ

Z
X�

G��T
w C�BdV ð17bÞ

Kww ¼
Z
Xþ

G�þT
w CþGþ

wdV þ
Z
X�

G��T
w C�G�

wdV ð17cÞ

ej j½ � ¼ K�1
wwKwbd; ð17dÞ

where specific enhancement stiffness matrices Kwb;Kww have been
defined.

4. Weak discontinuity enhancement proposals

Now that all relevant constraints for defining weak enhance-
ment functions have been introduced, a particularisation of the
model will take place, deriving two different enhancement field
functions considering slightly different ways of achieving the satis-
faction of consistency requirements. For the sake of simplicity and
coherence with the background literature, a linear tetrahedron will
be set as the base element from now on. For now, it will be
assumed that a constant stress field r is sought.

4.1. Typical enhancement analysis

Authors managing the modelling approach in [22,63] decided to
make the weak discontinuity enhancement completely symmetri-
cal by letting G�

w ¼ G��
w . This automatically renders the weak dis-

continuity model variationally symmetric at the expense of
removing the flexibility of having a virtual enhancement with dif-
ferent characteristics. At the same time, only requirements 1, 2 and
4 (Eqs. 3, 6, 15) are explicitly imposed to this unique enhancement
function. Instead of requirement 3 (Eq. 11), a general zero refer-
ence for the enhancement is set at the interface plane Cd. This last
imposition is absolutely unrelated to any considerations on varia-
tional consistency. This line of approach also chooses the simplest
definition for the model: a linear field eu and therefore constant
operators G�

w.
Considering these restrictions, it will be demonstrated that the

possible function space for eu reduces to a unique expression. Let
the following linear definitions for the piece-wise enhanced dis-
placement field be:

euþ ¼ aþ þ bþnþ cþgþ dþf ð18aÞeu� ¼ a� þ b�nþ c�gþ d�f ð18bÞ
where each vector has components contributing to each local direc-

tion n̂; t̂; m̂
� �

, e.g., euþ ¼ euþ
n euþ

t euþ
m

� �T . The goal is to particularize

the vectors a� ,b�
; c�;d� as a function of basic element data and the

weak discontinuity variables ej j½ �n; ej j½ �t and ej j½ �m. In local coordi-
nates, it is not hard to see that the interface plane Cd is simply
described by the equation n ¼ 0. This eases the application of
requirement 1:

euþ��
n¼0 ¼ eu���

n¼0 ð19aÞ
aþ þ cþgþ dþf ¼ a� þ c�gþ d�f ð19bÞ
) aþ ¼ a� ¼ a; cþ ¼ c� ¼ c; dþ ¼ d� ¼ d ð19cÞ
where the � will be omitted from now on in all coefficients a; c;d.

The strain jump requirement (Eq. 6) requires the calculation of
the symmetric gradients on each part of the enhanced displace-
ment field:
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eeþ � ee� ¼
e½ �n e½ �t e½ �m
e½ �t 0 0
e½ �m 0 0

264
375 ð20aÞ

ee� ¼
b�
n

1
2 cn þ b�

t

� �
1
2 dn þ b�

m

� �
sym ct 1

2 dt þ cmð Þ
sym sym dm

2664
3775 ð20bÞ

eeþ � ee� ¼
bþ
n � b�

n
1
2 bþ

t � b�
t

� �
1
2 bþ

m � b�
m

� �
1
2 bþ

t � b�
t

� �
0 0

1
2 bþ

m � b�
m

� �
0 0

2664
3775 ð20cÞ

) ej j½ � ¼
je½ �n
je½ �t
je½ �m

264
375 ¼

bþ
n � b�

n
1
2 bþ

t � b�
t

� �
1
2 bþ

m � b�
m

� �
264

375 ð20dÞ

Here, the results of Eq. 19c have been used. Note that for this rea-
son, the zeros required in the strain jump matrix are produced
naturally.

The application of the patch test (Eq. 15) becomes easier if both
sides of Eq. 16 are multiplied (contracted) by the weak discontinu-
ity variable vector ej j½ � to recover enhanced strain fields, but in vec-
tor format:

VþGþ
w ej j½ �|fflfflffl{zfflfflffl}eeþ þ V�G�

w ej j½ �|fflfflffl{zfflfflffl}ee� ¼ 0 ej j½ � ¼ 0 ð21aÞ

Vþ

bþ
n

ct
dm

1
2 cn þ bþ

t

� �
1
2 dt þ cmð Þ
1
2 dn þ bþ

m

� �

26666666664

37777777775
¼ �V�

b�
n

ct
dm

1
2 cn þ b�

t

� �
1
2 dt þ cmð Þ
1
2 dn þ b�

m

� �

2666666664

3777777775
ð21bÞ

) ct ¼ dm ¼ 0 ð21cÞ
Afterwards, the original idea for this formulation coming from Mar-
kovic [51] involves the imposition of a requirement that is not
mandatory for variational consistency. The enhanced displacementeu is prescribed with a value of zero through all the interface plane
(n ¼ 0). While Markovic did never reveal any particular reasons for
this decision in his research, it is later found in this work through
further mathematical analysis (Sections 4.3, 4.4, 4.5) that this con-
straint provides some operational benefits to the framework.
Indeed, the imposition of a zero enhanced displacement reference
at Cd is an aggressive constraint that will simplify the enhancement
function to a great extent:

uþjn¼0 ¼ u�jn¼0 ¼ 0 ð22aÞ
an
at
am

264
375þ

cn
0
cm

264
375gþ

dn

dt

0

264
375f ¼ 0

0
0

264
375 ð22bÞ

)
an
at
am

264
375 ¼

0
0
0

264
375; cn

0
cm

264
375 ¼

0
0
0

264
375; dn

dt

0

264
375 ¼

0
0
0

264
375 ð22cÞ

It should not be forgotten that this condition is not a replacement of
requirement 3 (Eq. 11). With these results and the expressions com-
ing from the application of the patch test requirement (Eq. 21b), one
can calculate the b coefficients directly as a function of weak dis-
continuity internal variables:

bþ
n ¼ V�

V
e½ �n; bþ

t ¼ 2
V�

V
e½ �t; bþ

m ¼ 2
V�

V
e½ �m ð23aÞ

b�
n ¼ �Vþ

V
e½ �n; b�

t ¼ �2
Vþ

V
e½ �t; b�

m ¼ �2
Vþ

V
e½ �m ð23bÞ
6

In the end, the enhancement function reduces to just a set of b coef-
ficients multiplying the coordinate n, which is the normal distance
from the interface plane Cd:

eu�
neu�
teu�
m

264
375 ¼

b�
n

b�
t

b�
m

264
375n ¼ �V�

V

e½ �n
2 e½ �t
2 e½ �m

264
375n ð24aÞ

) eu� ¼ �V�

V
n e½ �nn̂þ 2 e½ �t t̂ þ 2 e½ �mm̂
� � ð24bÞ

If this expression is reverted to global coordinates, the original weak
discontinuity enhancement version as used in Roubin [22] is
recovered:

eu ¼ Hn̂ � x� xCd

� �
e½ �nn̂þ 2 e½ �t t̂ þ 2 e½ �mm̂

� � ð25Þ

H ¼ Hþ ¼ V�
V x 2 Xþ

H� ¼ � Vþ
V x 2 X�

(
ð26Þ

Here, the coordinate n has been expressed as a projection of a dis-
tance with respect to the Cd plane and a domain-dependent scalar
H containing the volume ratios has been defined. It is important
to note that the intent of this work to derive this already-known
enhancement field shape is to demonstrate that, instead of starting
with a seemingly arbitrary definition [51,22], its final form comes
rather from the application of a definite set of constraints. This
sheds light on the theoretical basis on which this family of enhance-
ments is built upon.

From Eq. 25, general expressions for the G�
w operators can be

found on the global reference frame by applying the symmetrical
gradient operator in global coordinates. Einstein index notation is
useful to reach the following typical strain field tensor expression
in terms of symmetric tensor products:

ee ¼ H e½ �n n̂	 n̂ð Þs þ 2 e½ �m n̂	 m̂ð Þs þ 2 e½ �t n̂	 t̂
� �sh i

; ð27Þ

This expression is converted into a Voigt format to finally obtain:

ee ¼ G�
w ej j½ � ¼ HHw ej j½ �

Hw ¼

n2
x nxmx nxtx

n2
y nymy nyty

n2
z nzmz nztz

nxny þ nynx nxmy þ nymx nxty þ nytx
nzny þ nynz nzmy þ nymz nzty þ nytz
nznx þ nxnz nzmx þ nxmz nztx þ nxtz

26666666664

37777777775
ð28Þ

Note that the domain-dependent term in all these definitions
stands as a single scalarH taking the form of domain volume ratios.

4.2. Consistent enhancement analysis

For the case of a more variationally consistent enhancement
field considering requirement 3 (Eq. 11), it is more practical to start
the analysis by expressing the enhancement as a piece-wise defini-
tion of two linear fields using classical linear interpolation
functions:euþ ¼ euþ

1/1 þ euþ
2/2 þ euþ

3/3 þ euþ
4/4 ð29aÞeu� ¼ eu�

1/1 þ eu�
2/2 þ eu�

3/3 þ eu�
4/4 ð29bÞ

where the interpolation functions / associated each node i of a base
linear tetrahedron have been defined as /i ¼ ai þ binþ cigþ dif,
where all coefficients ai; bi; ci;di are known. This time, the goal of
the model particularisation is to find the value of all the nodal
enhanced displacements eu�

i as a function of nodal coordinate infor-
mation and weak discontinuity internal variables.
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An auxiliary variable pi is defined as a position indicator
between the Xþ and the X� domains as follows:

pi ¼
1 xi 2 Xþ

0 xi 2 X�

(
i ¼ 1;2;3;4f g ð30Þ

Using this variable, a general mixed velocity variable eui is defined:eui ¼ 1� pið Þeuþ
i þ pieu�

i ; i ¼ 1;2;3;4f g ð31Þ
Having all that, we can start by the application of requirement 3
(Eq. 11) in a very straight-forward fashion by just nullifying some
nodal enhanced displacements in their corresponding domains. This
leads to:

euþ ¼
XN
i

1� pið Þeuþ
i /i ð32aÞ

eu� ¼
XN
i

pieu�
i /i ð32bÞ

This also implies that the mixed variable eui actually captures the set
of all non-zero eu�

i variables to be solved for in this process.
Next, displacement continuity (requirement 1) is applied:euþ��
n¼0 ¼ eu���

n¼0 ð33aÞ

XN
i

1� pið Þeuþ
i ai þ cigþ difð Þ ¼

XN
i

pieu�
i ai þ cigþ difð Þ

ð33bÞ

where the mixed variable eui can be used to reach the following:XN
i

1� 2pið Þaieui ¼ 0
XN
i

1� 2pið Þcieui ¼ 0

XN
i

1� 2pið Þdieui ¼ 0

ð34Þ

The strain jump requirement 2 follows exactly the same process fol-
lowed previously in Eqs. 20a–20d to find expressions relating enhanced
nodal displacements to weak discontinuity internal variables:XN

i

bieuin ¼ e½ �n
XN
i

bieuit ¼ 2 e½ �t
XN
i

bieuim ¼ 2 e½ �m
ð35Þ

where euin; euit; euim are the three components of each non-zero eui on
the local directions associated to each node i.

At this point, it’s worth stopping to make a variable summary
on the linear system being currently built for all non-zero
enhanced nodal displacements eui. All non-zero variables corre-
sponding to each direction n̂; t̂; m̂ can be grouped in single vectorseun; eut ; eum as follows:

eun ¼

eu1neu2neu3neu4n

26664
37775; eut ¼

eu1teu2teu3teu4t

26664
37775; eum ¼

eu1meu2meu3meu4m

26664
37775 ð36Þ

The system can then be summarized using block matrix definitions:

Ce 04 04

04 Ce 04

04 04 Ce

264
375 euneuteum

264
375 ¼

e½ �n;e
e½ �m;e

e½ �t;e

264
375; ð37Þ
7

where:

Ce ¼

1� 2p1ð Þa1 1� 2p2ð Þa2 1� 2p3ð Þa3 1� 2p4ð Þa4
1� 2p1ð Þb1 1� 2p2ð Þb2 1� 2p3ð Þb3 1� 2p4ð Þb4

1� 2p1ð Þc1 1� 2p2ð Þc2 1� 2p3ð Þc3 1� 2p4ð Þc4
1� 2p1ð Þd1 1� 2p2ð Þd2 1� 2p3ð Þd3 1� 2p4ð Þd4

26664
37775 ð38aÞ

04 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

26664
37775 ð38bÞ

e½ �n;e ¼

0
e½ �n
0
0

26664
37775; e½ �t;e ¼ 2

0
e½ �t
0
0

26664
37775; e½ �m;e ¼ 2

0
e½ �m
0
0

26664
37775 ð38cÞ

The system already counts with 12 enhanced nodal displacement
variables and 12 equations, which render it closed with a unique
solution if the coefficient matrix in Eq. 37 is not singular. Further
application of requirement 4 (the patch test) does not add any
new variables to the system. Therefore, it can be stated that for a
linear definition of the enhanced field eu, it is not possible to make
a variationally symmetric definition for the Gw matrix operators
having a unique base enhanced displacement field. To be fully con-
sistent while keeping linear definitions, the framework requires to
make Gw – G�

w, taking requirement 4 (Eq. 15) as the guidance to
define G�

w and the other requirements to define Gw in a separate
way. The typical weak discontinuity enhanced field (Eq. 25.) thus
cannot be, by definition, variationally consistent.

The analysis on this section will continue to particularize the
enhanced field with the system proposed in Eq. 37. As the system
is block-diagonal, a compact-closed solution is found:

eun ¼

C�1
1;2

C�1
2;2

C�1
3;2

C�1
4;2

2666664

3777775 e½ �n; eut ¼ 2

C�1
1;2

C�1
2;2

C�1
3;2

C�1
4;2

2666664

3777775 e½ �t; eum ¼ 2

C�1
1;2

C�1
2;2

C�1
3;2

C�1
4;2

2666664

3777775 e½ �m ð39Þ

where the C�1
i;2 coefficients come from the second column of the

inverse of the Ce matrix. The particularized enhanced field can then
be expressed as:

euþ ¼
XNe

i

1� pið ÞC�1
i;2 /i

e½ �n
2 e½ �t
2 e½ �m

264
375

eu� ¼
XNe

i

piC
�1
i;2 /i

e½ �n
2 e½ �t
2 e½ �m

264
375

ð40Þ

Finally, the consistent weak enhancement field can still be written
in the familiar format:

eu ¼ H e½ �nn̂þ 2 e½ �tm̂þ 2 e½ �m t̂
� � ð41Þ

H ¼
Hþ ¼

XNe

i

1� pið ÞC�1
i;2 /i x 2 Xþ

H� ¼
XNe

i

piC
�1
i;2/i x 2 X�

8>>>><>>>>: ð42Þ

It’s important to note that, whileH stays as a constant in the typical
enhancement model, it becomes a variable parameter on the consis-
tent model depending on nodal coordinates embedded in the inter-
polation functions /i.

The G�
w operators can be devised again by making use of the

symmetric gradient operator. Taking, for instance, the enhanced
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strain field on the Xþ domain one can reach an analogous tensor
expression to that of the typical model:eeþ ¼XNe

i

1� pið ÞC�1
i;2 e½ �n ei 	 n̂ð Þs þ 2 e½ �t ei 	 m̂ð Þs þ 2 e½ �t ei 	 t̂

� �sh i ð43aÞ

ei ¼ bi ci di½ �T ð43bÞ
Here, the vector ei coming from local interpolation function coeffi-
cients, has to be transformed (rotated) to global coordinates as
needed. Again, expressing in a Voigt vector field format:

eeþ ¼ Gþ
w ej j½ � ¼

XNe

i

1� pið ÞC�1
i;2HW;i ej j½ � ð44aÞ

HW;i ¼

binx bimx bitx
ciny cimy city
dinz dimz ditz

biny þ cinx bimy þ cimx bity þ citx
diny þ cinz dimy þ cimz dity þ citz
dinx þ binz dimx þ bimz ditx þ bitz

2666666664

3777777775
ð44bÞ

where the coefficients bi; ci;di are already taken from a rotated ei
vector in this global definition. G�

w follows in a similar way:ee� ¼ G�
w ej j½ � ¼ piC

�1
i;2HW;i ej j½ � ð45Þ

The virtual operators G��
w only have the goal of complying with the

patch test (requirement 4). If the simplest, constant definition for
them is adopted, satisfaction of Eq. 16 allows an infinite amount of
choices. G��

w can, for instance, take the form of the typical enhance-
ment (Eq. 28), which has been already built to satisfy Eq. 16.

4.3. Discussion on enhancement stability properties

The stability of the weak discontinuity model can be assessed by
observing that in Eq. 17d, the calculation of the weak discontinuity
variables e½ �t ; e½ �t ; e½ �m as a function of nodal standard displacements
d depends on the inverse of a Kww stiffness matrix. The behavior of
Kww, depending on the form of the enhancement operators, will
determine if the formulation becomes unstable under certain condi-
tions. No other mathematical stability sources are identified.

For a more direct analysis, it is convenient to work in the local
frame (n̂; t̂; m̂). It will be assumed that the consistent enhancement
will use the same operators G��

w as the typical enhancement, while
retaining the real operators G�

w as devised in Section 4.2. If this is
the case, both formulations will share the sameHw operator for vir-
tual fields, which in local coordinates reduces to:

HT
w ¼

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

264
375 ð46Þ

For a typical weak discontinuity enhancement, Eq. 17c can be devel-
oped to get to the following:

Kww ¼ VþV�

V2 HT
w CþV� þ C�Vþ� �

Hw; ð47Þ

where linear elastic constitutive matrices in three dimensions can
be assumed for the corresponding materials on Xþ and X� as:

C� ¼

c�1 c�2 c�2 0 0 0
c�2 c�1 c�2 0 0 0
c�2 c�2 c�1 0 0 0
0 0 0 c�s 0 0
0 0 0 0 c�s 0
0 0 0 0 0 c�s

2666666664

3777777775
ð48Þ
8

for some real, positive constants c�1 ; c
�
2 ; c

�
s . Taking these definitions,

the Kww matrix associated to the typical enhancement can be calcu-
lated in a diagonal, compact expression:

Kww ¼
Vþcþ1 þ V�c�1 0 0

0 Vþcþs þ V�c�s 0
0 0 Vþcþs þ V�c�s

264
375 ð49Þ

As the constants c�1 ; c
�
s stay real and positive as well as the subvol-

umes Vþ;V�, Eq. 49 reveals that the typical weak discontinuity
enhancement turns out to be unconditionally stable, no matter
what the orientation of the interface, the subvolume partition and
the material elasticity characteristics are. By unconditional stability,
the authors of this work mean that the solution for the weak discon-
tinuity internal variable vector ej j½ � given by Eq. 17d does always
exist given that the matrix Kww remains invertible. This is the main
reason why, despite not being variationally consistent by definition,
authors in [22,53,55] have been keen to keep it on their heterogene-
ity modelling approaches, as it eases the implementation process
and the numerical solution control.

Working with the consistent enhancement, Eq. 17c returns the
following expression:

Kww ¼ VþV�

V
HT

w

XNe

i

C�1
i;2 1� pið ÞCþ � piC

�� �
Hw;i ð50Þ

where the node-dependant matrix Hwi can be reduced to:

HT
wi ¼

bi 0 0 ci 0 di

0 ci 0 bi di 0
0 0 di 0 ci bi

264
375 ð51Þ

Taking the same constitutive matrix definitions in Eq. 48, the Kww

for this case can be devised as:

Kww ¼ VþV�

V

XNe

i

C�1
i;2

bik1i cik2i dik2i
ciksi biksi 0
diksi 0 biksi

264
375 ð52Þ

where the kji parameters are defined using the pi variable used
before:

k1i ¼ 1� 2pið Þc 1�2pið Þ
1 ð53aÞ

k1i ¼ 1� 2pið Þc 1�2pið Þ
2 ð53bÞ

k1i ¼ 1� 2pið Þc 1�2pið Þ
s ð53cÞ

The structure of Eq. 52 is considerably more complex than that of
Eq. 49, where in the former we can appreciate a more extensive par-
ticipation of elemental parameters such as interpolation function
coefficients and functions that are domain dependent (interface
location/orientation dependent) within nodal summations. No
unconditional stability can be readily assured in Eq. 52.

While the specific subspace of parameters that drive Kww unsta-
ble for the consistent enhancement will not be calculated in a rig-
orous fashion in this work, it is not hard to see that there is a
condition that will intuitively introduce mathematical ambiguity
problems: when the interface plane crosses exactly or very close
to one or more element nodes, where it makes a sudden change
of behaviour. If a given finite element model manages a non-
structured mesh with random orientations while also having ran-
dom material interfaces, instability or near-instability conditions
will be certain to happen in some elements with a sufficiently large
mesh. Implementation efforts have to consider this fact.

4.4. Stiffness matrices and impact to the global solution process

One of the most attractive features of the E-FEM framework is
its ability to limit the work with field enhancements and all their
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associated variables within internal element calculation routines.
All stiffness calculations derived from the special internal calcula-
tions associated to the discontinuities can be condensed and inte-
grated to the standard elemental stiffness matrix. This way, no
formal degrees of freedom are added to the finite element global
solution process, so that the methods, routines and the solution
platform shall remain untouched. However, the classical stiffness
matrix properties normally identified in standard finite elements
may change depending on the structure of the embedded
enhancement.

For the weak discontinuity enhancements presented in this
work, the numerical solution process and the construction of an
equivalent stiffness matrix can be started by taking Eq. 7a (elemen-
tal force balance) and Eq. 17a (main relation between nodal dis-
placements and weak discontinuity variables) to build the
following linear system:

Kbbdþ Kbw ej j½ � ¼ f eext ð54aÞ
Kwbdþ Kww ej j½ � ¼ 0 ð54bÞ

Here, Eq. 7a has been integrated using the previously defined oper-
ators depending on the enhancement version to define stiffness
matrices Kbb and Kbw.

Condensation of the system then takes place by reducing ej j½ �
from Eq. 54b and substituting on Eq. 54a, giving rise to a definition
of an equivalent elemental stiffness matrix Ksc multiplying the
standard normal displacements vector d:

Kscd ¼ f eext ð55aÞ
Ksc ¼ Kbb � KbwK

�1
wwKwb ð55bÞ

With this, a global stiffness matrix assembly process may then be
performed by taking the corresponding matrices Ksc associated to
each element on a given model.

For the case of a typical weak discontinuity enhancement, it is
not hard to see that:

Kbw ¼ VþV�
V BT Cþ � C�� �

Hw ¼
VþV�

V HT
w Cþ � C�� �

B
n oT

¼ KT
wb

ð56Þ

so that:

KbwK
�1
wwKwb

� �T
¼

KT
wb K�1

ww

� �T
KT

bw ¼ KbwK
�1
wwKwb

ð57Þ

Given that Kbb is already symmetric, it can be concluded that the
condensation process will always return a symmetric Ksc . On the
other hand, with the consistent enhancement, this is not the case:

BT
XNe

i

C�1
i;2 1� pið ÞVþ þ piV

�� �
CHw;i

( )T

–

VþV�
V HT

w Cþ � C�� �
B

ð58aÞ

Kbw – KT
wb ð58bÞ

Indeed, the consistent enhancement will, in general, return an
asymmetrical stiffness matrix. This will introduce the need to use
asymmetric solvers during a global numerical solution, with all
computational and implementation implications that come along.

4.5. Variational consistency errors in the typical enhancement

Now that it is known that the typical enhancement in general
will not comply with basic requirement 3 (Eq. 11), it is relevant
to discuss the conditions under which the formulation might pro-
9

duce large variational errors and the ones in which these errors
will be kept within a reasonable range.

For a case of a 1-D element, like in the applications done by
Benkemoun [34] or Melnyk [33], there can be only one node on
each side of the material interface, and its orientation will always
be normal to the line defining the body of the element. Under these
conditions, it can be shown that the only difference between a typ-
ical and a consistent enhancement is only a constant offset Deu on
the displacement function (refer to Fig. 3). Given that the slopes
coincide and the operators of the formulation are based on field
derivatives, it can be concluded that the typical formulation effec-
tively complies with requirement 3 and thus also remains fully
variationally consistent.

For 2D and 3D elements in general, this is not the case. The
slope of the typical enhancement will always be aligned to the ori-
entation of the interface Cd. If more than one node is present on
one of the domains, the enhancement will not be able to return
the same field value on all nodes simultaneously, no matter what
offset is given to the field. The only condition in which this might
happen is when the nodes within a domain are all located on the
same n coordinate, which would mean having element geometry
aligned to the material interface. As the respective nodal n coordi-
nates start to divert, the typical field will miss to nullify the values
at the boundaries. Fig. 4 illustrates this for a 2D constant stress tri-
angle (CST). The offset Deu can be arranged to minimize this varia-
tional error by making the field to roughly pass through zero at an
average n position of all nodes on a given domain.

Based on this rationale, the typical enhancement can be per-
ceived as an average estimation of a fully consistent enhancement
that will be closer to it under certain mesh geometry conditions.
It can be expected that for an unstructured mesh with good aspect
ratios, this estimation will grant reasonable results compared to a
fully consistent approach. For a heavily distorted mesh having a
very large disparity on n coordinates within a domain, the varia-
tional errors induced will certainly get larger.
5. Numerical simulations

In this section, a couple numerical simulation setups are pre-
sented to the reader to discuss on the performance of the different
E-FEM enhancements with respect to an analytical solution refer-
ence as well as to a standard FEM model featuring an adapted
mesh. First, a simple heterogeneous physical problem having an
analytical solution is approached with a numerical model having
a small number of elements. This will allow the reader to appreci-
ate the behavior of the E-FEM formulations from a basic perspec-
tive, discussing on their ability to reproduce highly controlled
and predictable mechanical fields as well as the sensitivity of the
formulations’ performance on mesh quality. Then, more complex
numerical simulations will portray a more realistic heterogeneous
sample by modelling a cubical matrix material domain having
numerous regular inclusions of different sizes. A comparison will
be made to a standard FEM setup having an adapted mesh to dis-
cuss on the overall comparative performance of the E-FEM
enhancements depending on mesh sensitivity.

The reader can find another example of heterogeneous struc-
ture comparison simulations to test embedded weak discontinuity
formulations in the works of Karavelic et al. [66] and Ibrahimbe-
govic et al. [67].
5.1. Bi-material layered model

The first set of simulations have been done on a simple cube
model made up of two material layers separated by a planar inter-
face. The interface is parallel to two of the cube faces. If interface



Fig. 3. Graphical analysis on 1D typical weak discontinuity enhancements. (a) Original enhanced field. (b) Enhanced field with an offset Deu. Nullification of the field at
element nodes can be achieved by adding an offset Deu.

Fig. 4. Graphical analysis on 2D typical weak discontinuity enhancements taking a constant stress triangle (CST) as the base element, compared to a consistent enhancement.
For the typical enhancement, it is assumed that an offset Deun has been given to the field to minimize the error when trying to nullify field values on the CST nodes. (a) Typical
enhanced field over a CST. (b) Consistent enhanced field over a CST.
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concentrations are neglected, the total axial reaction associated to
a normal displacement on one of the faces can be calculated by
means of the classical theory of mechanics of materials, represent-
ing the system as two springs in series accounting for the axial
stiffness of each layer. Linear elastic behavior is assumed for both
materials, characterized by Young Moduli Eþ; E� and Poisson ratios
mþ; m�. Fig. 5 illustrates this simple mechanical system.

The idea of the present study is to compare how each of the
weak discontinuity enhancements can model this ideal bi-
material layout by comparing them to the classical analytical solu-
tion. The interface plane location h will be varied taking regular
Fig. 5. Basic description of a bi-material layered prismatic body with total height L
and cross section A, treated as a two-spring mechanical system in series having
constants kþ and k� . The stiffness partition depends of the position h of the interface
plane.
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steps from having a zero position at one of the cube faces until
reaching the opposite side of the cube. This will represent situa-
tions in which the cube starts completely homogeneous with one
of the material phases and gradually becomes entirely filled with
the other material phase.

5.1.1. Numerical model
The cube will feature an unstructured mesh, totally indepen-

dent from the planar interface. The interface will cross a certain
amount of elements on random edges and positions, and these ele-
ments will be enhanced with one of the weak discontinuity field
functions studied in previous sections. Special care has been taken
with the mesh density in this study: the size of the elements
should be small enough to generate enough enhanced elements,
but these special elements should cover a significant amount of
the cube volume in order to have a significant contribution to
the global response of the model. This way, the influence of the
E-FEM enhancements will be clearly perceived. If the elements
are too small, we might get a large number of enhanced elements
near the interface, but also a much larger amount of normal ele-
ments having only one material phase or the other, and thus the
global stiffness response of the numerical sample will be domi-
nated by the standard finite elements instead, which are not the
object of this study. The mesh finally selected for this study is
shown in Fig. 6, also highlighting the number of enhanced ele-
ments resulting from having the planar interface at 30% height
from the designed bottom position. It is pertinent to mention that
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the quality of the mesh has been kept rather high, with no aspect
ratios going beyond 3.

The cube has dimensions of 10mm
 10mm
 10mm. The
material properties chosen for these simulations have been those
normally associated to a simplified concrete mixture: a material
phase of mortar (Young modulus E� ¼ 14000MPa, Poisson ratio
m� ¼ 0:2) and an aggregate material (Eþ ¼ 70000MPa; mþ ¼ 0:2).
No other material properties are needed since all simulations have
been made in static conditions. Boundary conditions have been set
as to retain an ideal axial prism problem as much as possible with-
out significant effects of near-interface field concentrations. The
load has been imposed as a uniform displacement of 0:015mm
on the free upper face. Fig. 7 illustrates the details of the model.

FEAP (Finite Element Analysis Program) [68] has been used as
the finite element numerical solution platform to implement both
enhancements described in previous sections and for simulating
the problem mentioned beforehand. 21 static-implicit simulations
have been performed considering each weak discontinuity
enhancement approach having 21 uniformly separated positions
for the interface plane, going from the lower z face of the cube
(h ¼ 0) all the way to the opposite face (h ¼ 10mm) taking steps
of 0.5 mm. The solution is strictly linear elastic, where the only
solver-specific difference between each enhancement case has
been the use of symmetric and asymmetric stiffness matrix han-
dling routines, which are used only one time at the beginning of
each analysis. Direct linear equation system solvers are used in
either case.

Two different kinds of results have been considered for the cur-
rent discussion in this work. One is the total vertical force reaction
associated to the imposed displacement load for each case of inter-
face plane position. The analytical calculation can be easily done
attending to the representation in Fig. 5 and finding the total ver-
tical reaction through an equivalent stiffness keq:
Fig. 6. General mesh description and view of all enriched elements crossed by the
material interface plane. (a) General view of entire model mesh. Interface in white
outline. (b) Mesh view isolating all enriched elements. Interface in white outline. (c)
The discontinuity surfaces Cd for each element cut by the material interface. 92
elements and 43 nodes are used for the entire model. Enriched elements make up
approximately for 50% of total volume.
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Fz ¼ uzkeq ð59aÞ

keq ¼ kþk�

kþ þ k�
ð59bÞ

k� ¼ SE�

L�
ð59cÞ

The other output of interest is the average strain field value on each
side of the interface. Analytically, these values are easily obtainable
by just making:

e� ¼ r�

E� ¼ Fz

SE� ð60Þ
5.1.2. Vertical reaction analysis
Numerical simulation results coming from both enhancement

types for the vertical force reaction can be appreciated in Fig. 8.
This information is also shown as a relative error in Fig. 9. The first
and last points in this plot represent the cases in which homoge-
neous material distributions are given for one or the other material
phases (stiffer case and more compliant case, respectively), in
which all numerical and analytical models naturally coincide. In
the first part of the curves where the stiffer material is predomi-
nant, both weak discontinuity enhancements coincide for a while
having a consistent error with respect to the analytical curve. At
some point after having at least 20% volume fraction of the (�)
material region, the consistent enhancement error drops almost
entirely, closely sticking to the analytical curve until the end of
the graph. The typical enhancement maintains a smooth behavior
with a consistent error, which also fades at the end when the (�)
material dominates completely. A maximum error of approxi-
mately 19% is observed with the typical enhancement. The sudden
variations on the consistent enhancement can be explained by its
natural stability conditions depending on node positions relative
to the cutting plane interface, already discussed in Section 4.3.

As mentioned in the previous theoretical analysis section, it is
also the interest of the authors to address the importance of the
effect of mesh quality on the difference of performance between
the typical and the consistent enhancements. For this, mesh pre-
sented in Fig. 6a has been deliberately distorted by pushing the
nodes above the material interface plane position up and the
remaining nodes down. This way, the same enhanced elements
remain crossed by the interface as in the base scenario, and any
change in results is directly attributable to the change in shape
quality of these elements. The average aspect ratio of the affected
elements has been set as the main sensitivity metric for this study.
For the tetrahedral elements managed in all these simulations, the
aspect ratio mesh metric is defined as follows:

Q ¼ hmax

2
ffiffiffi
6

p
r

ð61Þ

where hmax is the maximum edge length of the tetrahedron and r is
the radius of the inscribed sphere within it. Q can take values from
1.0 for a perfectly regular tetrahedron and grow up indefinitely for
distorted shapes. Fig. 10 shows the case where the distortion
method proposed produces a mesh with an average aspect ratio
of 1.92 and other with 3.55. This metric has been varied from
1.82 to 5.05 taking ten different values. The position of the interface
has been fixed at h = 3 mm as this has been identified as a data
point that shows a prominent performance sensitivity between
the typical and the consistent enhancements. The idea is to show
the evolution of the prediction errors for the global vertical reaction
as the average aspect ratio increases, in order to study how each of
the formulations is able to remain robust to mesh quality variations.

Fig. 11 shows the overall results of the evolution of the predic-
tion error with respect to an increase in average aspect ratios.



Fig. 7. Description of model details, as simulated in the FEAP program.

Fig. 8. Vertical reaction on the entire lower face of the cube model for both enhancement types and the analytical solution.

A. Ortega, E. Roubin, Y. Malecot et al. Computers and Structures 273 (2022) 106894
Regardless of the fact that the typical enhancement already started
with a higher prediction error than the consistent E-FEM enhance-
ment, results suggest that the typical enhancement consistently
increases its prediction error as the elements get more distorted,
starting from 19% and reaching up to a 27% error. The consistent
enhancement seems to follow the same trend momentarily, only
to fall once again back to its beginning error level of 4% and stea-
dily remains there. Even if the distortion method proposed does
not allow to get to very high aspect ratios in this study, the results
support the hypothesis introduced in Section 4.5, favoring once
again, the asymmetrical robustness of the fully consistent E-FEM
enhancement.

Finally, simulations were done to assess the sensitivity of the
formulations to the difference in material properties between the
two phases. The ratio of Young moduli Eþ=E�� �

was considered
as the metric in this case. The same position for the interface place
as with the previous mesh quality study was fixed, and the ratio
between elastic moduli was varied from 5 (original case) up to
50. The evolution of the vertical reaction prediction error is plotted
for both formulations in Fig. 12. This is considered by the authors
of this work as the most sensitive parameter so far concerning for-
mulation performance, driving the error of the typical E-FEM
enhancement as high as 80%, while the consistent formulation
remains within the 10% threshold.
12
5.1.3. Strain field analysis
The displacement load imposed to this simple model will ide-

ally produce a piece-wise, constant strain field. The numerical
approaches should be able to produce these constant strain regions
taking the contribution of all elements on each side of the inter-
face, aiming to have the least dispersion as possible. For this, the
average strain field and its dispersion (standard deviation) have
been calculated on each side of the cube model interface for both
enhancement approaches, and results have been compared to the
analytical model. The analytical results, of course, do not show
any kind of field dispersion as they only exhibit a unique strain
value. Fig. 13 shows this comparison for the case of the (+) material
side. Again, at homogeneous conditions all models coincide. Both
enhancements start diverging at the beginning and the consistent
enhancement quickly catches up the analytical behavior with a
mild error. The typical enhancement, once again, has a smoother
curve keeping a sustained error. The last data point at h ¼ 10
mm is not shown since the (+) region ceases to exist. The strain dis-
persion, represented as a translucent cloud around each enhance-
ment curve, seems definitely more controlled for the consistent
enhancement, albeit with apparently more erratic fluctuations
coming from the stability nature of this formulation.

Fig. 14 shows the analysis on the remaining material region. In
this case, it is the first point at zero that is missing since there is no



Fig. 9. Vertical reaction comparison between the typical and full consistent weak discontinuity formulations in a relative error format.

Fig. 10. Two of the distorted mesh configurations taken for assessing mesh quality
sensitivity: (a) Base mesh with a distortion yielding an average aspect ratio of 1.92
(b) Base mesh with a distortion yielding an average aspect ratio of 3.55.
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(�) material. The average strain again favours the consistent
enhancement that keeps a lower error through all conditions.
The dispersion of the consistent model is also remarkably low, with
the exception of one point at 30% volume for the (�) material,
where an outlier data point occurs. After model inspections, it is
indeed found that at this height many nodes lie very close to the
interface with separations as low as 0.03 mm, which seemingly
compromise the stability of this enhancement as discussed in Sec-
tion 4.3. The impact of this outlier is not noticeable for the case of
the analysis on the (+) domain, since at h ¼ 3 mm there are consid-
erably more homogeneous elements made up of the (+) material,
which help to smooth these statistics.

5.2. Heterogeneous model with regular inclusions

The last set of simulations feature a more realistic representa-
tion of a heterogeneous material sample. It consists of a cubical
homogeneous material matrix (10mm
 10mm
 10mm), having
spherical inclusions of different sizes, varying from 0.5 mm to
2.0 mm. This morphology was obtained using a random spherical
inclusion generator included on the SPAM Python library [69].
Fig. 15 shows a translucent image of it revealing the distribution
of the inclusions, as well as a cross section corresponding to the
center vertical plane (YZ).
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Two different meshing methods were used for building the
models of the current study: adapted and non-adapted. The
adapted mesh is meant to be used by a standard FEM approach.
A target characteristic size is set by using the Gmsh library [70],
and the mesh is forced to respect absolutely all boundaries
between the matrix and the inclusions. With such conditions, the
meshing engine will not be able to always respect the size target
value, specially at the inclusion interfaces, but will try to keep up
with the requested size whenever possible. No local refinement
techniques are used for this morphology. The mesh in this adapted
model is refined by the mere action of reducing the target charac-
teristic mesh size. Fig. 16 shows the central cross section (YZ) for a
characteristic size target of 1.0 mm and 0.35 mm.

The non-adapted mesh is used for the two E-FEM formulations
already described in this work. A completely unstructured and reg-
ular tetrahedral mesh is built for a given mesh characteristic size,
with no regard with respect to the morphology of the inclusions.
The morphology distribution is then projected onto the mesh using
the particular E-FEM inputs discussed earlier for each element fall-
ing within an interface. This procedure is also performed by the
SPAM library. For a given size, the same mesh is used for both typ-
ical and consistent E-FEM formulations.

For both adapted and non-adapted mesh types, different mesh
setups were produced going from a characteristic size of 1.5 mm
down to 0.1 mm, yielding element counts from the order of
2
 103 to 3
 106 elements, respectively. For the case of the fully
consistent E-FEM enhancement, simulations were done until
reaching the characteristic size of 0.35 mm (roughly 100 k ele-
ments) due to the asymmetrical tangent matrix solution limita-
tions using the FEAP solver engine and the given computational
resources used for these simulations. After analysing the results,
the authors of this work have deemed this still sufficient enough
to draw meaningful conclusions on the fully consistent E-FEM
formulation.

As a loading scheme, the same vertical tensile displacement has
been exerted all simulation setups as already seen in the previous
section. All simulations remain on the linear elastic regime, and the
same material properties used for the previous simulation were



Fig. 11. Vertical reaction error dependency on mesh quality through the average aspect ratio of elements involved in the material interface. The interface has been fixed at
30% of the cube height in these simulations.

Fig. 12. Vertical reaction error dependency on the Young moduli ratio Eþ=E� between both material domains. The interface has been fixed at 30% of the cube height in these
simulations.
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used. This way, the model is nowmore representative of a concrete
sample.
5.2.1. Response sensitivity analysis
A first mesh sensitivity study is done on the adapted mesh

model with the standard FEM taking two global mechanical out-
puts: the vertical reaction and a metric describing the stored elas-
tic energy Eint on all the surfaces of all the inclusions in the model.
The latter has been defined as an integrated scalar field through all
14
the tetrahedron faces falling directly on the inclusion interface
locations:

Eint ¼
XNinc

i

Z
r : edA �

XNinc

i

XNe

j

rj : ej Aj ð62Þ

where Ninc is the number of inclusions, Ne the number of element
faces associated to each interface, Aj the area of each of such faces
and rj; ej are estimated interface strain and interface stress tensors,
calculated as:



Fig. 13. Average strain and corresponding dispersion for both weak discontinuity enhancements compared to analytical calculations on the (+) (stiffer material) domain.

Fig. 14. Average strain and corresponding dispersion for both weak discontinuity enhancements compared to analytical calculations on the (�) (more compliant) domain.
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rj ¼
Vþ

j r
þ
j þ V�

j r
�
j

Vþ
j þ V�

j

; ej ¼
Vþ

j e
þ
j þ V�

j e
�
j

Vþ
j þ V�

j

ð63Þ

where the weighting volumes Vþ
j ;V

�
j are those associated to the ele-

ments on each side of the triangular face on the interface. The dou-
ble dot product rj : ej yields an energy density per volume, and thus
the integrals of Eq. 62 yield a normalized energy by thickness. This
metric is meant to provide with a global mechanical output that is
able to summarize a general state of all material interfaces of the
inclusions at once, which is one of the main interests when per-
forming simulations of heterogeneous material samples.

Both reaction and interface energy global outputs are extracted
from successive simulations with the adapted mesh model having
15
the mesh characteristic size decreased down to a point where both
metrics stabilise. These final values are taken as the global output
reference to which the E-FEM simulation results will be compared.
For the case of this specific model, the vertical reaction stabilises at
approximately 930.5 N, while the interface energy metric stabilises
at 2.1 J/m. By taking these references, the authors of this work are
making the assumption that a sufficiently refined adapted mesh
model using the standard FEM approach will return a physically
accurate mechanical response.

For the non-adapted meshes, the E-FEM routines naturally cal-
culate rj : ej by taking the subvolumes of each of the segmented
elements as the weighting factors, which remains consistent with



Fig. 15. Display of the heterogeneous morphology with a uniform matrix and
multiple regular inclusions: (a) Transparent matrix material (b) Mid-plane slice
view with interfaces highlighted. These images have been extracted from a distance
field output produced by the SPAM library.

Fig. 16. Mid-plane slice views of the adapted mesh built for the heterogeneous
morphology: (a) having a characteristic goal size of 1.0 mm (b) having a
characteristic goal size of 0.35 mm.
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Eq. 63. The area Aj in this case is calculated taking the surface of the
local interface within the element in this case.

Figs. 18 and 17 show the comparative results of the standard
FEM results with respect to both typical and fully consistent E-
Fig. 17. Normalized vertical reaction behavior with respect to the amount of 3D element
mesh sensitivity analysis with the standard FEM model having an adapted mesh.

16
FEM models. These results are normalized with respect to each
of the global output references, so that a value of 1.0 denotes the
stable goal value aimed by all models. For the case of the vertical
reaction, it is observed that both E-FEM models are able to
approach very close to the goal stable value. The remarkable trait
of this analysis is that the fully consistent E-FEM enhancement is
able to deliver a response practically on the reference goal with
an element count as low as 30 k elements. The adapted model
requires an overall refined model with at least 2 million elements
to reach this same level of stable response. The typical E-FEM
model has a slightly inferior performance, always keeping in mind
that its response remains still very accurate overall (1% error). The
analysis on the energy metric seems to magnify this tendency. All
models begin with a poor prediction of the stable value for then
reaching a relatively stable bound, which does not reach the stable
reference for the case of both E-FEM models. Again, the fully con-
sistent E-FEM formulation seems to achieve the highest fidelity
with respect to the reference goal, and it does so with a very
reduced number of elements (20 k). The adapted model requires,
once again, a considerable level of refinement in order to make
up for the lack of multiphasic representation power with at least
one million elements overall.

6. Conclusions

A detailed analysis has been made on the use of weak disconti-
nuity approaches within the E-FEM framework to model material
heterogeneities. Kinematic and variational theoretical bases have
been stated to identify a set of consistency requirements for the
general construction of weak discontinuity displacement enhance-
ment fields. Based on the consideration of these requirements, two
field proposals have been derived: one which has been already
used in the works of Roubin, Hauseux and Stamati [22,63,55],
and other which is fully consistent with all variational
requirements.

Simulations have been made on a simple bi-material system
subjected to an axial load to assess the performance of the
enhancements with a basic model where the enhanced elements
represent a large amount of the sample space to amplify the effects
s in the model. A value of 1 corresponds to the stable reference fixed after a previous



Fig. 18. Normalized energy metric behavior with respect to the amount of 3D elements in the model. A value of 1 corresponds to the stable reference fixed after a previous
mesh sensitivity analysis with the standard FEM model having an adapted mesh.
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of the enhancements on the global response. It has been seen that,
in general, the consistent enhancement has a better performance
than the typical enhancement at capturing an analytical global ver-
tical reaction, but is more prone to uncontrolled fluctuations. The
analysis was also done considering different mesh quality scenar-
ios, where the average aspect ratio of the enhanced elements
was varied. It has been observed that the typical enhancement con-
sistently loses accuracy on its prediction with larger aspect ratios,
while the fully consistent enhancement manages to retain its cor-
relation level. This was already expected when comparing the
characteristics of both enhancements in Section 4.5. A sensitivity
analysis on material difference properties between the phases evi-
dences what is considered by the authors the weakest point of the
typical enhancement, where its prediction errors increased up to
80% as the ratio between elastic moduli went up to 50. This error
is not acceptable and should carefully reconsider the use of the
typical E-FEM enhancement to attempt any simulations of hetero-
geneous materials where there is a strong difference between elas-
tic properties between material phases.

Further simulations in a more complex system depicting a
heterogeneous concrete sample with a number of inclusions were
done in order to assess the overall mesh sensitivity and to further
compare the E-FEM-based models to a standard FEM setup having
a completely adapted mesh respecting all the inclusion boundaries
in a more realistic model setup. The reference of two different glo-
bal output metrics were set based on a first sensitivity analysis
done on the adapted mesh model until reaching their convergence.
These were defined as the global vertical reaction and an inte-
grated interface energy metric, where the latter attempts to cap-
ture a general mechanical state of all the inclusions in the
domain. After comparing with the results coming from the E-
FEM models, it was observed that both E-FEM models are able to
reach the reference goal up to a certain threshold, having the best
results with the fully consistent E-FEM formulation with less than
5% error in the case of the energy metric and less than 1% for the
global reaction. It has been also found that, for this formulation,
such levels of prediction are reached with a remarkably less num-
17
ber of elements than with the standard adapted mesh model, hav-
ing a ratio of 20 k to 1 million elements to reach the same
prediction level, respectively. These comparisons have taken the
number of elements as the base model size unit since the E-FEM
models are less sensitive to global DOF counts (the condensation
approach is strictly local). The adapted mesh model could have
benefited from a localised mesh refinement technique to be more
efficient in terms of morphology representation, but the authors
of this work also think that the E-FEMmodels can also benefit from
such techniques in a similar way.

The benefits of developing a fully consistent E-FEM weak dis-
continuity formulation have been shown through these results.
However, given its numerically asymmetrical nature, its use may
find a better niche on problems where high accuracy is required
for field shape calculations and where the use of an asymmetric
solver poses no problem for a given FEM numerical solution plat-
form. An scenario where the heterogeneous domain involves mate-
rials with a drastic difference in material properties will also drive
a prominent need for a fully consistent E-FEM formulation. In any
case, under high quality mesh conditions and a moderate differ-
ence between the elastic properties of material phases, the typical
enhancement will have a reasonable behavior that will allow for
sound estimations at local and global level mechanical outputs.
The formulation by itself naturally presents unconditional stability
and retains the symmetry of global stiffness matrices. The internal
calculations required to particularise the function parameters are
also considerably simpler than in the case of the consistent
enhancement version. For these reasons, the authors of this study
recommend its use whenever possible, especially when dealing
with large and complex numerical models where solution times
and stability are crucial for the success of the numerical analysis
project.

In either case, the authors of this work finish by stating that the
use of weak discontinuity enhancements for the representation of
material heterogeneities remains a reliable and efficient numerical
method for approaching the problem of multiple material phases
representation featuring non-adapted meshes.
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