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ABSTRACT 14 

A succession of military invasions and terrorist attacks requires the development of 15 

probabilistic models for predicting the effect of various local hard missile impacts effects on 16 

reinforced concrete (RC) protective panels. Because of the severity and irreversible 17 

repercussions of such events, the current work enhanced previously developed finite element 18 

calculations with the addition of experimental data from the literature. The improved model 19 

predicts the probabilistic models more accurately than the previous one and minimises 20 

statistical uncertainty owing to the incorporation of fresh data. The parameters investigated in 21 

the study are the penetration depth of the missile, perforation limit of the target, missile ballistic 22 

limit, and residual velocity of the missile. Among the components are residential slabs, 23 

bunkers, containments, aircraft shelters, and storage tanks. These models are built using 24 

probabilistic approaches and the Bayesian method. All aleatoric and epistemic uncertainties 25 

involved in missile impact contact with the target, geometrical configurations, material 26 

qualities, and measurement mistakes are all accounted for by the updated formulae. These 27 

models also take into consideration the strain rate effect, the multi-modal response of the 28 

structure, and numerous failure mode transitions, among other things. An assessment with 29 

experimental findings is carried out to establish the dependability and credibility of the updated 30 
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equations, and the acquired results demonstrate the trustworthiness of anticipated formulae. 31 

This study accommodates natural disasters and accidental events missile such as wind-borne 32 

missiles, and impacts due to pressure pipes debris, iron rods, etc. 33 

Keywords: Missile Impact, Probabilistic Models, Bayesian Approach, Protective Structures, 34 

Uncertainties, HyperMesh, LS DYNA. 35 

INTRODUCTION 36 

The upcoming need for reinforced concrete (RC) structures designed against impulsive and 37 

extreme loads due to natural hazards (wind-borne missiles), industrial accidents (pipe break 38 

generated missiles such as turbine blades) or terrorist attacks (aircraft impact) remains an 39 

important issue. Military and nuclear groups have been working on impact loads due to 40 

tornadoes [Standohar et al., 2015; Cui et al., 2018], rock falls, steel pipes, and so on since the 41 

17th century. However, most engineering constructions such as residential houses, bunkers, 42 

silos, and nuclear containments are being constructed with concrete because to its resilience, 43 

cost-effectiveness, and availability [Li et al., 2005]. Impacts cover a wide range of loadings; 44 

two limiting cases – hard and soft impacts – are generally considered depending on the 45 

impactor stiffness. If the impactor deforms relative to the target structure, the missile impact is 46 

soft or semi-hard [Giraldo and Pujol, 2019]. The impact of an aeroplane fuselage is a famous 47 

example [Sugano et al., 1993]. The hard missile hit is the inverse case. For example, a plane's 48 

engine, steel rod ejections owing to pressure leaking, large hardwood logs due to hurricanes, 49 

cruise missiles, and so on [Distler et al., 2021].  50 

Impact loading produces a high strain rate ranging from 10-4 to 102 per second [Bischoff 51 

and Perry, 1991]. A hard missile causes localised damage, but a heavy soft missile often 52 

provokes damage in the whole structure. Local effects of rigid missile impacts are calculated 53 

using procedures such as empirical equations, experimental studies, and numerical methods 54 

[Fang and Wu, 2017]. Figure 1 is captured as a part of the validation study discussed in 55 
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validation section. The configuration of the slab is 1200mm X 1200mm and its depth is 120mm 56 

subjected to a missile mass of 2kg and velocity of 215m/s. The following are the damage 57 

consequences evaluated for design considerations in the event of a hard missile impact (Figure 58 

1),  59 

 Penetration Depth (x): maximum depth at which missile pierces into the target  60 

 Perforation Limit (hp): necessary depth of the target to terminate the residual velocity of 61 

the missile  62 

 Residual Velocity (Vr): rear side missile velocity after perforating into the target  63 

 Ballistic Limit (Vbl): maximal velocity of the missile to avoid perforation of the target  64 

Many empirical equations are based on actual data, with a few drawn largely from 65 

theoretical and analytical techniques such as the theory of energy absorption [Laczak and 66 

Karolyi, 2017]. In establishing the formulae, a proper curve-fitting analysis is well used. In 67 

[Corbett et al., 1996], the authors describe a few well-explained formulations of hard missile 68 

local impacts. Various organizations established significant formulas in the early nineteenth 69 

century. Because of age-old estimation, the range of variables for empirical formulations is 70 

limited to lower instances of impact loadings, such as a smaller mass of a missile with a smaller 71 

diameter. Extrapolation of such statistical data may have undesirable effects. The well-known 72 

Modified Petry formula by the United States (US) is solved analytically for penetration depth 73 

using equations of motion. However, a standard penetrability factor is advised for all concrete 74 

classes, which is a disadvantage. The Army Corps of Engineers (ACE) formula was statistically 75 

fit based on testing data below 48MPa and a missile diameter of 155mm. The present missile 76 

designs and concrete compressive strength are far advanced in their ranges, which is the 77 

limitation of these formulae. The modified National Defense Research Committee (NDRC) 78 

formula is based on penetration theory, and a good approximation is determined by 79 
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experimental data. Because this formulation is based on the principle of penetration, 80 

extrapolation may provide realistic findings. However, [Ranjan et al., 2014] demonstrate a 81 

significant mistake in forecasting penetration depth. The Ammann and Whitney formula 82 

proposed in 1976 is comparable to the ACE and NDRC equations for forecasting high-velocity 83 

fragments (greater than 300m/s), which are generally focused on nuclear facility defence. The 84 

Whiffen formula was devised in 1943 by the British Road Research Laboratory based on the 85 

creation of fragments utilizing wartime bomb data available in the United Kingdom on RC 86 

structures. Similarly, various formulas have been presented in the past and the present century 87 

for determining missile penetration depth, each with its own set of pros and disadvantages. The 88 

theory of empirical formulation is well explained in [Kennedy, 1976]. The inclusion of fibres 89 

in the panels reduces the penetration depth of the target and residual velocity of the missile due 90 

to higher resistance [Tran et al., 2022; Daneshvar et al., 2020]. Many perforation limit 91 

equations are based on the penetration depth principle [Li et al., 2005]. Popular perforation 92 

limit formulations recommend doubling the missile's penetration depth, which may result in 93 

uneconomical provisioning. However, the missile's ballistic limit and residual velocity are few 94 

[Boyce et al., 2001; Grisaro and Dancygier, 2014] and do not offer adequate experimental data. 95 

It was discovered that if the missile did not collide with the rebar mesh, the comparatively low 96 

reinforcement ratio (less than 4%) had almost no effect on the projectile's ballistic limit [Fang 97 

and Wu, 2017]. Theoretically, [Ben-Dor et al., 2009] discovered that (i) the ballistic limit of a 98 

multilayered concrete shield did not depend on the order of the slabs in the shield; (ii) the 99 

monolithic shield was superior to any layered shield of the same thickness; and (iii) the largest 100 

decrease in ballistic limit velocity occurred when a shield was divided into several slabs of the 101 

same thickness. In 1946 (NDRC, 1946), a formulation of the ballistic limit of various nose 102 

missile forms was developed; nevertheless, the chosen range of values is lower. It was 103 

discovered that the rear strengthened CFRP fabric may enhance the ballistic limit by 104 
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approximately 18% [Fang and Wu, 2017]. [Barr, 1990] proposed a method to predict the 105 

ballistic limit of the projectile perforating the RC/steel composite target, assuming the back 106 

steel liner is extra reinforcement to the target. (Grisaro and Dancygier, 2014) advocated 107 

converting the back steel liner to an extra certain depth of concrete slabs with the same ballistic 108 

limit to test the perforation resistance of the RC/steel composite target affected by non-109 

deforming projectiles. The formulations are difficult to understand and are interconnected with 110 

several extra equations, which is a drawback of these investigations. Finally, the results of now 111 

well-accepted empirical formulations include (i) not matching with existing ranges, (ii) 112 

surrendering to mistakes in comparison with testing, (iii) uneconomical design guides, and (iv) 113 

difficulties in application. 114 

Experimentation is an alternative method for investigating local missile impacts, although 115 

it is time consuming and expensive [Said and Mouwainea, 2022]. Although the experimental 116 

test technique yields valid data, numerical solutions are favored owing to their low cost and 117 

shorter time length [Thai and Kim, 2017]. By doing a numerical parametric assessment using 118 

empirical equations and experimental results [Ranjan et al., 2014; Kojima, 1991], FE outcomes 119 

are better suited to studies than empirical outcomes [Thai et al., 2021; Wang et al., 2022]. 120 

[Terranova et al., 2018] calculated the impactor's mass and the tensile strength of concrete. The 121 

velocity of the missile has a significant impact on the perforation resistance of the concrete 122 

target. 123 

According to [Pham and Hao, 2016] the energy absorption and pattern of damage for a 124 

missile of low velocity with a larger mass and smaller mass with higher velocity have distinct 125 

outcomes while having the same kinetic energy. This is a distinct disadvantage of empirical 126 

and experimental investigations. However, because of sophisticated FE tools, the worst-case 127 

scenario, i.e., more mass at a higher velocity, may be done using virtual FE codes. The current 128 

study aims to evaluate the effect of local damage characteristics such as penetration depth, 129 
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perforation limit, missile ballistic limit, and residual velocity on the performance of RC panels. 130 

These unique probabilistic models have been constructed with better accuracy based on 131 

experimental [Berriaud et al., 1978] and numerical results [Gangolu et al., 2022]. Significant 132 

data is required for the development of probabilistic equations. Even though innovative 133 

formulations for these quantities of interest have been proposed [Gangolu et al., 2022], the 134 

current study is intended to combine experimental results with finite element (FE) simulations 135 

to have substantial data in reducing the error involved in the predictions. This research 136 

improves the design standards for hard missile impact on RC slabs for house residential 137 

buildings, storage tanks, aircraft shelters, and defensive structures. These formulations were 138 

created using dimensionless functions that alter the missile impact scenario. The generated 139 

probabilistic models were calculated using the Bayesian method as detailed in [Kapteyn et al., 140 

2021]. The Bayesian statistical framework is a general, rational, and powerful model update 141 

tool that can handle a variety of challenges, including measurement mistakes, incomplete 142 

experimental data, nonunique solutions, and modelling errors caused by any model 143 

approximating the real system [Goller et al., 2012]. The suggested equations follow the 144 

conventional technique by [Gardoni et al., 2022]. These unique formulations take into 145 

consideration the strain-rate influence, as well as any aleatoric and epistemic errors in material 146 

and geometrical features. Furthermore, the present models consider failure mode transitions 147 

and interaction, as well as the structure's multi-modal response. A rigorous numerical 148 

validation of previously developed probabilistic models is required to determine the 149 

dependability of presented equations, as stated in the next section. 150 

FINITE ELEMENT VALIDATION 151 

Experiment results on the influence of critical parameters such as penetration depth, 152 

displacement, ballistic limit, residual velocity, impact force, and so on necessitate the use of 153 

advanced test setup and equipment. However, FE simulations result in the flexible capture of 154 
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predicted parameters, resulting in cost-effectiveness and reduced time. In this study, 155 

HyperMesh is used for modelling reinforced concrete slabs, and missiles [Altair, 2003]. 156 

However, The HyperMesh file is exported to the commercial FE application LS-DYNA, which 157 

incorporates material properties, boundary constraints, contact cards, element forms, 158 

termination time, and other post-processing information [LSTC, 2006]. The number of interests 159 

chosen for validation of the current study is hard missile penetration depth, missile impact 160 

force, and panel damage pattern. Numerous probabilistic experiments involving missile impact 161 

produced satisfactory results based on this FE approach. The numerical analysis was studied 162 

by [Gangolu et al., 2022; Gangolu et al., 2022 a] and explained as follows.  163 

Material Models and Structural Configuration 164 

The primary challenge is determining an adequate concrete material model. For determining 165 

the exact stochastic fracture-mechanical properties of concrete, relevant concrete models and 166 

probability distribution functions are employed. These chosen models and functions aid in 167 

exact performance, resulting in the construction of accurate probabilistic models for RC panels. 168 

The explicit integration strategy is based on the second-order central difference integration 169 

scheme, which is being applied in the current study. Because dynamic analysis is prevalent in 170 

impact loading, all the material models considered are strain rate sensitive. The Winfrith 171 

concrete model is more suited to missile impact loads than the Continuous Surface Cap Model 172 

(CSCM). With 10% erosion, maximum and least primary strain are guaranteed (Add Erosion). 173 

Although the number of inputs is lower than in other concrete models, this model matches 174 

experimental results well. Using the Winfrith concrete model [Thai et al., 2021] studied the 175 

residual velocity of the missile and scabbing area of the RC slab subjected to hard missile 176 

[Vepsä et al., 2011]. However, the obtained difference between these chosen quantities of 177 

interest is 4.0% and 3.6%. Similarly [Chung et al., 2015] verified three concrete models, the 178 

CSCM model (MAT_159), Concrete Damage Rel. 3 (MAT_072R3) and Winfrith Concrete 179 
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model (MAT_084-085) subjected to hard missile impact upon the slab. With an accuracy close 180 

to 95%, the Winfrith concrete model's displacement response pattern is following the measured 181 

result in the punching case (hard missile). Plasticity with Mohr-coulomb response via third 182 

stress invariant to address triaxial extension in compression and tension and strain-softening 183 

behaviour in tension to make material regular via fracture energy, crack width, and aggregate 184 

size is provided by this model. Compressive and tensile strength inputs can be supplied as two 185 

independent variables. The present model's auto-generation capabilities are limited. The 186 

referred code supplies the corresponding inputs for the Winfrith concrete model. This paradigm 187 

is explored in further depth in [Wu et al., 2012]. Nonetheless, Winfrith model can include 188 

smeared reinforcement, providing another material model for reinforcement bars. The Plastic 189 

Kinematic model uses elastoplastic reinforcement bars with a failure strain of 20%. The 190 

hardness of the missile is ensured with a Rigid material model. To replicate the field set-up, 191 

six degrees of freedom are released for the missile. This Rigid material certifies with high 192 

failure strain eventually leading to no erosion. A Rigid material model ensures the missile's 193 

toughness. Six degrees of freedom are granted to the rocket to imitate the field setup. This 194 

Rigid material is certified with a high failure strain, resulting in no erosion. Under missile 195 

impact, a solid model with three-dimensional square panels is constructed. The default element 196 

for modelling concrete panels and missiles is the constant stress solid element. A one-197 

dimensional steel reinforcement with a default element form formulation, i.e., Hughes-Liu with 198 

cross-section integration, is utilised. During impact, this model displays both bending and axial 199 

stiffness. It is difficult to find a well-accepted Lagrangian coupling method to fix the contact 200 

between concrete and rebars, especially in complicated geometries like containments and 201 

composite constructions. Flanagan-Belytschko rigidity shape ensures hourglass energy, and 202 

mesh fineness is guaranteed. The term 'Velocity Generation' is used to launch a missile with a 203 

high starting velocity. The contact between the missile and the concrete is ensured by eroding 204 
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surface-to-surface and eroding nodes-to-surface for the missile and rebars. In both exchanges, 205 

Missile is always seen as the master. All degrees of freedom were restricted by all square slabs. 206 

Table 1 abstracts the keywords used for FE analysis, and a similar method utilised for the 207 

remaining FE simulations. Before developing probabilistic models, FE model validation with 208 

test results is crucial, as discussed below. 209 

Validation 210 

In this numerical analysis, one trial is chosen from the literature for FE validation, subjected to 211 

hard missile impact [Kojima, 1991]. Initially, numerous nose forms were intended for the 212 

numerical analysis; however, because of computing restrictions, the study was limited to the 213 

flat-nose missile design. The reason for selecting [Kojima, 1991] is that it displays 214 

configurations, reinforcement patterns, boundary limits, missile dimensions, mass, and 215 

velocity. Furthermore, the results are clearly illustrated in terms of penetration depth, damage 216 

pattern, reinforcement bar failure, impact force, and scabbing/spalling area. This vivid 217 

projection of the features aided the current study in accurately matching the numerical analysis 218 

results with test results. For FE validation, the approach of keywords is shown in Table 1. One 219 

hemispherical hard missile with a velocity of 215m/s was tested, and a specific missile mass 220 

of 2kg was struck on a 1.2m X 1.2m X 0.12m RC panel. Concrete has an unconfined 221 

compressive strength of 27MPa and a reinforcing ratio of 0.6%. The resulting conclusions were 222 

compared to the experimental research, as indicated in the figures, demonstrating the reliability 223 

of FE validation. The panel is completely perforated as seen in Figure 2. Three reinforcement 224 

bars were broken as validated numerically (Figure 3(a)). The obtained from the experiment is 225 

101kN as well matched with a simulation which is obtained as 127kN (Figure 3(b)). Due to the 226 

perforation of the panel, an opening of 80mmX100mm is generated from the experiment, which 227 

is identical to the FE validation opening of 80mmX80mm (Figure 4 (a, b)). The rear side 228 
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damage pattern of experimentation and validation is similar as shown in Figure 4. Additionally, 229 

as seen in Figure 2 and Figure 4 a, the panel is entirely perforated. 230 

[Gangolu et al., 2022] used a similar numerical process and validated a similar panel 231 

with two other velocities of 164m/s and 95m/s. The experimental penetration of a missile at a 232 

velocity of 164 m/s is 108 mm, which is comparable to the validation value of 100 mm (Figure 233 

5 a, b). Similarly, the experimental penetration for 95 m/s is 44 mm, which is like the validation 234 

of 45 mm. Furthermore, the damage pattern of an RC slab at 164 m/s missile velocity is 235 

compared to experimental damage, which reveals the same pattern (Figure 5 c). After several 236 

trials, the mesh size converged at 10 mm. [Ranjan et al., 2014] did a similar study (Kojima, 237 

1991) using the CSCM model and concluded that FE models produced satisfactory results. For 238 

two tests, the mean line data in Figure 6 (a) reveals that FE results are more accurate than 239 

empirical ones. A substantial match with impact force was found in both cases, with 144.47kN 240 

(test) and 145kN (FE) for 95m/s and 117.57kN (test) and 112kN (FE) for 164m/s (Figure 6 b). 241 

The FE models based on these similar agreements with experiments are reliable. The three 242 

validations imply the trustworthiness of the numerical approach followed. However, changes 243 

in the geometry of the missile nose do not affect the computational approach or procedure used 244 

to create the probabilistic models, the current validation can be trusted even for flat nose missile 245 

shape.  246 

The current study, as previously stated, is based on FE simulations generated in 247 

[Gangolu et al., 2022; Gangolu et al., 2022a, b] and experimental research done by [Berriaud 248 

et al., 1978]. The following are the various reasons for considering experiment studies from 249 

[Berriaud et al., 1978],  250 

 The primary basis for selecting [Berriaud et al., 1978] is that it provides considerable 251 

experimental data. The experimental investigation included seventy-nine tests, of which 252 
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fifty-five are taken into account. However, with so many test findings, the literature is 253 

deficient in the requirement of the current study. 254 

 The current study is concerned with rigid and flat-nosed missiles, and the majority of the 255 

tests conducted by [Berriaud et al., 1978] are rigid missiles with flat noses.  256 

 While doing tests, [Berriaud et al., 1978] considered longer length and depth of 5m and 257 

0.6m; higher mass, velocity, and dia of 343kg, 445m/s, and 305mm. No experiments have 258 

been undertaken to date with such heavy designs and stronger missile impact. These 259 

target/missile material and geometric properties can accommodate various types of 260 

containments or protective shelters and natural disasters or accidental missiles. 261 

The next section discusses the experimental design of both numerical and experimental 262 

investigations. 263 

EXPERIMENTAL DESIGN 264 

Introduction 265 

Actual representative data encompassing the entire range of variables is required to create 266 

accurate models. With enough data, statistical uncertainty may be reduced [Yuen et al., 2006]. 267 

To generate more probability information, a substantial amount of genuine experimental data 268 

is necessary. Due to the scarcity of accessible experimental data, the current study is validated 269 

with experiments of [Berriaud et al., 1978] and the FE analysis of [Gangolu et al., 2022; 270 

Gangolu et al., 2022a]. Significant data, as is well-known in probability theory, can 271 

substantially reduce statistical uncertainty. For example, probabilistic studies such as [Stochino 272 

et al., 2022 and Zhao et al., 2022] stressed the significance of large amounts of data in 273 

minimising uncertainty and developing ideal formulae. [Berriaud et al., 1978] conducted a 274 

series of field experiments in 1976, different ranges of compressive strength, panel thickness 275 

and configuration; missile diameter, mass, and velocity were analysed. The characteristics 276 
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acquired from the 79 findings include missile penetration depth, ballistic limit, and residual 277 

velocity, of which fifty-five are chosen for the current investigation. [Gangolu et al., 2022] also 278 

include 73 FE models to achieve an efficient design approach. 279 

Selection of Range of Variables 280 

The current study addresses the depth and compressive strength of RC slabs from a standard 281 

building to heavy constructions such as bunkers, aircraft shelters, nuclear containments, and so 282 

on, using existing literature and genuine case studies. Table 2 shows the variables that were 283 

used in this investigation. For numerical analysis. the chosen range of material and geometrical 284 

variables of RC panels are from [Balomenos and Pandey 2017], reinforcement grade and 285 

reinforcement ratio [Choi et al., 2017], missile mass and velocity [Wen and Xian, 2015]. The 286 

accepted values consider not only the current ones but also future panels. The impact of concern 287 

categories like wind-borne missiles [Suaris and Khan, 1995; Ramseyer et al., 2016], accidental 288 

missiles, and pressure released pipes are covered. Based on the realistic variables provided in 289 

Table 2, a variety of derived variables such as reinforcement spacing, and rebar diameter have 290 

been constructed (Table 2). A total of 128 combinations of tests and FE simulations were 291 

investigated in this investigation under various missile loads, striking at the centre of the panel. 292 

The instances for FE analysis are chosen using the technique described below. The D-optimal 293 

point selection strategy is used to find the optimum set of combinations by design standards 294 

[Myers and Montgomery, 1995]. Using this technique with irregular boundary conditions, any 295 

number of design instances may be chosen. Polynomial response surfaces are also suggested 296 

by this technique [LSTC, 2006b]. Lower and higher limit values are required for each 297 

parameter when creating a database. These inputs are fed into scheme-generated software, such 298 

as LS-OPT [LSTC, 2006b]. So, seventy-three combinations are generated for performing 299 

numerical analysis. A typical LS-DYNA schematic view of the RC slab with the missile is 300 



13 
 

shown in Figure 7. Figure 7 depicts the configuration used, the reinforcement arrangement, the 301 

shape of the missile's nose, and other details. 302 

D-optimal designs are straightforward optimizations based on the model to be fitted 303 

and an optimality criterion of choice. Maximizing |X'X|, the determinant of the information 304 

matrix X'X, serves as the optimality criterion for creating D-optimal designs (Aguiar et al., 305 

1995). To estimate the parameters with the same precision as an ideal design, a non-optimal 306 

design needs more experimental run. D-optimal experiments can lower the costs of 307 

experimentation”.  308 

Pros of D-Optimal Point Selection 309 

 For a pre-specified model, this optimality criterion leads to the generalised variance of 310 

the parameter estimations being minimised. Consequently, a particular D-optimal 311 

design's "optimality" depends on the model. In other words, before a computer can 312 

produce the precise treatment combinations, the researcher must describe a model for 313 

the design. 314 

 The computer method selects the best set of design runs from a candidate set of potential 315 

design treatment runs given the total number of treatments runs for the experiment or 316 

simulation and the supplied model.  317 

 Typically, this candidate set of treatment runs includes all feasible pairings of the 318 

different factor levels that one desires to use in the experiment or simulation.  319 

Cons of D-Optimal Point Selection 320 

Some precisely developed treatment combinations from D-optimal point selection are 321 

occasionally invalid according to the design principles recommended by codes.  322 
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 Consider a scenario where a panel configuration of 3m X 3m X 0.5m with a 323 

compressive strength of 55MPa and reinforcement ratio of 3% is subjected to 10kg 324 

mass and 10m/s velocity because of various combinations of D-optimal point selection. 325 

It is obvious that because of the structural target's higher resistance and smaller missile 326 

demand, there won't be any damage based on chosen quantity of interests like 327 

penetration or perforation. The generated cases in these situations are useless for 328 

simulating and developing probabilistic models.  329 

 Similarly, it is generally recognised according to design techniques that the structural 330 

configuration should be compatible with the reinforcement ratio i.e., higher geometry 331 

with a lower reinforcement ratio or vice versa. A realistic structure with these design 332 

concepts does not imply odd combinations, but there is a chance that they could arise 333 

from a D-optimal selection scheme and these cases are useless for evaluating 334 

probabilistic models. However, this problem can be resolved by differentiating the 335 

chosen variables into basic and derived variables. 336 

PROBABILISTIC MODELS OF LOCAL DAMAGE EFFECTS OF HARD MISSILE 337 

IMPACT 338 

The present formulas for hard missile local damage effects are deterministic, based on 339 

experimental data and simplified mechanical principles. As a result, the inherent uncertainties 340 

in the deterministic model are not accounted for, resulting in a biased estimate. The reason for 341 

the biased estimate of deterministic models is their mismatch with the experimental results. 342 

Stochino et al., 2022 studied probabilistic models of industrial tanks under blast loads. The 343 

investigation demonstrates the significant difference between 27 models of UFC 3-340-02 code 344 

(deterministic) and experimental results from [Ameijeiras and Godoy, 2016, Chen et al., 2016, 345 

Jiang et al., 2020, Duong et al., 2012 a, b]. In this study, the correction terms are introduced in 346 

the probabilistic model to correct the bias. Likewise, studies like [Sharma et al., 2014, Zhao et 347 

al., 2022 and Gardoni et al., 2002] demonstrate the biasedness of deterministic models. Even 348 
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if contemporary structural engineering practice has developed safe design, for the sake of 349 

impeccable provisions, the design must be unbiased and account for the inherent uncertainties. 350 

The current study is based on a Bayesian framework for evaluating multivariate probabilistic 351 

models for structural members that account for all the major uncertainties such as measurement 352 

errors, statistical uncertainty, and bias of the model due to an inaccurate model [Gardoni et al., 353 

2002]. Due to a considerable difference between test findings and empirical studies for 354 

penetration depth, perforation limit, and ballistic and residual velocity of the missile, this 355 

research builds innovative probabilistic models rather than changing current models. The 356 

current work considers the overall methodology described in [Gardoni et al., 2002] in 357 

producing new formulations. This technique catches and comprehends all the underlying 358 

physical phenomena, resulting in an enhanced model. The probabilistic models were created 359 

by including necessary correction terms in deterministic models [Gardoni et al., 2002]. 360 

Numerous research that used the same method produced precise probabilistic models. 361 

However, because of the novelistic approach, the current research cannot be evaluated using 362 

deterministic models. The FE simulations have no mistake or uncertainty in measurement 363 

errors, while experimental research may. Measurement errors in laboratory and field tests are 364 

well-known to occur. Due to unknowable imperfections in geometrical and material qualities, 365 

design codes always recommend a certain level of safety. The assumption is that FE 366 

simulations are more accurate than testing scenarios in terms of measurement errors. These 367 

test-related measurement flaws can eventually be removed from FE simulations [Sharma et al., 368 

2014]. In this way, measurement errors eliminate some of the epistemic uncertainties of the 369 

model. So, a certain deviation in the error of the probabilistic models can be eliminated through 370 

FE models. To eliminate significant errors the sample data is combined with FE results 371 

[Gangolu et al., 2022] as well as experimental ones [Berriaud et al., 1978]. A large amount of 372 

data is required to correctly execute the risk-based design paradigm [Haldar and Mahadevan, 373 
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2000]. Statistical experts have always recommended that a larger sample size be used to lower 374 

the model's uncertainty [Riley et al., 2021]. However, Stochino et al., 2022 investigated 375 

probabilistic models of industrial tanks subjected to blast loads using 27 models drawn from 376 

diverse studies for a single parameter, maximum deflection [Ameijeiras and Godoy, 2016, 377 

Chen et al., 2016, Jiang et al., 2020, Duong et al., 2012 a, b]. Kishore et al., 2022 used 43 beams 378 

and 48 columns to test probabilistic models subjected to blast loads at three different deflection 379 

performance levels [Kishore et al., 2022]. They investigated 14 scenarios for creating 380 

probabilistic equations at performance level 2. In the current study, a total of 128 samples, 381 

including experimental and numerical investigations, are considered, with 59 models utilised 382 

to analyse missile penetration depth, perforation limit, and ballistic limit of the missile. And 383 

rest are utilised for assessing the residual velocity of the missile. The generic technique for 384 

probabilistic models provided by [Gardoni et al., 2002] is written as, 385 

     ln , ln ,
i i i i ii P i P P P PP x p x x e         

    (1) 386 

where 𝑃𝑖 = Probabilistic Model for penetration depth, perforation limit of the concrete, ballistic 387 

limit and residual velocity of missile and; 𝑝𝑖 = Deterministic model for penetration depth, 388 

perforation limit of the concrete, ballistic limit and residual velocity of the missile; but this 389 

term will be nullified due to novel formulations development; 𝛾𝑃𝑖
(𝑥, 𝜃𝑃𝑖

) = correction term for 390 

bias inherent in the model defined as, 391 

   
, ,1

,
i i i j i j

n

P P P Pj
x h x  


       (2) 392 

where ℎ𝑃𝑖,𝑗
(𝑥), j = 1,…,n = explanatory function (or regressors) defined as functions of x, and 393 

x is defined as a set of measurable variables such as member configurations, material property 394 

constants, executed boundary constraints, 𝜃𝑃𝑖,𝑗, j = 1, …,n are parameters associated with 395 

explanatory functions, 𝜎𝑃𝑖
𝑒𝑃𝑖

= model error (additivity assumption), 𝜎𝑃𝑖
 =standard deviation of 396 

the model error, which is assumed to be independent of x (homoscedasticity assumption). 𝑒𝑃𝑖
= 397 
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random variable with zero mean and unit variance. The natural logarithm is used in Eq. (1) to 398 

stabilize the model variance to satisfy the additivity assumption, homoscedasticity assumption 399 

(i.e., σPi is independent of x) and the normality assumptions (i.e., ePi follows a normal 400 

distribution). In the transformed logarithmic space, the homoskedasticity assumption should 401 

hold, at least to an extent. In the original space, however, the model error can vary with x (i.e., 402 

can be heteroskedastic.). The assumption of homoskedasticity is useful for model calibration 403 

but is not strictly necessary. However, adding additional parameters to model the model error's 404 

dependence on x would increase the uncertainty in model predictions and computational costs. 405 

As a result, when a suitable transformation is found, it is advantageous to transform the model 406 

and data to a new space where the homoskedasticity assumption is satisfied at least to an extent 407 

(Tabandeh et al., 2020). Out of various assumptions in the Bayesian linear regression model, 408 

homoscedasticity i.e., a constant standard deviation of the chosen cases is one of the 409 

assumptions. The study (Stochino et al., 2022) claims the validity of their experimental data's 410 

homoscedasticity assumption, as does the current study.  411 

 In general, the current study deals with aleatory and epistemic uncertainty while 412 

examining any model for estimating purposes. In the present study, current models account for 413 

either inherent errors that cannot be observed by a spectator or modes of observation (aleatory). 414 

In the above-detailed formulations, this kind of uncertainty is accounted for by variables x and 415 

partially by error terms 𝑒𝑃𝑖
. The obtained errors may ascend due to deficiency of knowledge, 416 

simplified assumptions, measurement errors and limited availability of data. As discussed, 417 

prior this error is present in the model parameters 𝛩𝑃𝑖
 and partially in error terms 𝑒𝑃𝑖

. However, 418 

as stated in [Sharma, 2012], the aleatory uncertainties cannot be reducible but epistemic errors 419 

are by better-quality models, appropriate measurements, and data from additional samples. The 420 

uncertainties that arise from the deterministic model (𝑝𝑖) will be eliminated because of not 421 

taking them into account. The missing variables and remaining error owing to inexact model 422 

https://www.sciencedirect.com/topics/engineering/natural-logarithm
https://www.sciencedirect.com/science/article/pii/S0141029614003046#e0005
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form are represented by the model error term (𝜎𝑃𝑖
𝑒𝑃𝑖

) in equation 1. Because missing variables 423 

are inherently random, the component of (𝑒𝑃𝑖
) that indicates their influence has aleatory 424 

uncertainty, but the component representing the inexact model form (𝛾𝑃𝑖
(𝑥, 𝜃𝑃𝑖

)) has 425 

epistemic uncertainty. Distinguishing between the two uncertainty components of (𝑒𝑃𝑖
) is 426 

challenging (Gardoni et al., 2002). The uncertainties caused by measurement errors and 427 

observation sample size (n) are epistemic. Nevertheless, by using FE simulations measurement 428 

errors and collecting many samples, these uncertainties are greatly reduced. Regardless of how 429 

much the study strives to minimise all uncertainties, there will be some inaccuracy in the 430 

models, but the purpose of this research is to reduce most of the uncertainty. 431 

The proposed approach employs Bayesian linear regression, which can quantify the model's 432 

epistemic uncertainty. The Bayesian approach's role in a model is to forecast unknown 433 

parameters (Guo et al., 2022). In Bayesian model updating, uncertainties are represented by a 434 

prior distribution over the model inputs and then updated to a posterior distribution using the 435 

likelihood function that quantifies the discrepancy between the model predictions and 436 

observations (Cheung and Beck, 2009). This study presents a probabilistic model based on a 437 

mix of data from existing tested specimens and numerical models. The variables and model 438 

form are defined, and the suggested model is assessed using the collected samples. Bayesian 439 

linear regression determines model uncertainties using random variables; in fact, the 440 

parameters of the probability distribution function are regarded as random variables in this 441 

approach and have a probability distribution function. The update of the model based on fresh 442 

data is another distinguishing aspect of the Bayesian approach. New data cause the probability 443 

distributions of these explanatory variables to be updated. This distinguishing trait enables the 444 

model's cognitive uncertainty to be reduced through more additional data [Hassanzadeh et al., 445 

2022]. Furthermore, using this strategy gives a better knowledge of the most influential 446 
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parameters. However, the concept of symbolic regression and Bayesian linear regression 447 

process is same. The basic goal of this method is to reduce the large formula to a small one 448 

without affecting the accuracy of the model. In the current study, a similar technique is used, 449 

and the derived formula is reduced to a simple and easy equation by monitoring the model’s 450 

COV. This analysis is described in further detail in [Box and Tiao, 2011; Asem and Gardoni, 451 

2021; Hassanzadeh et al., 2022; Taheri and Mohammadi, 2022] and the resulting regression 452 

models account for most of the uncertainties, bias, and high correlation with experimental 453 

studies.  454 

Dataset Used in the Original Probabilistic Model  455 

The dataset used to evaluate the original model in [Gangolu et al., 2022; Gangolu et al., 2022a] 456 

consists of 55 different combinations of panel material and geometrical features, missile 457 

configuration, and velocity. These combinations were created with LS-OPT by specifying the 458 

geometrical parameters of certain variables and the number of combinations needed. The 459 

preliminary issue in running a greater number of numerical cases is lower computational 460 

configuration. Depending on the system configuration, each simulation took between 2hr – 461 

10hr or maybe more than 24hr in some cases. Eventually, the ability to run many simulations 462 

is lacking. Various levels of numerical impact scenarios are captured. The sample size of the 463 

dataset used in model evaluation affects the precision of parameter estimations in probabilistic 464 

models (Sharma et al., 2014). A smaller sample or data size implies higher uncertainty in the 465 

model parameter estimation (Gardoni and Murphy, 2013). The prior models (Gangolu et al., 466 

2022; Gangolu et al., 2022a) did not account for the influence of reinforcement ratio and 467 

moment-bearing capacity for the formulation of penetration depth. In high-strain loadings, the 468 

reinforcement opposes with a greater strain rate eventually the influence is evident. In the 469 

present research, the depth and length of the panels are enlarged (Gangolu et al., 2022; Gangolu 470 

et al., 2022a) due to the inclusion of experimental studies (Berriaud et al., 1978). However, the 471 
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current analysis considers 128 different experimental (Berriaud et al., 1978) and numerical 472 

combinations (Gangolu et al., 2022; Gangolu et al., 2022a). Statisticians believe that 128 473 

combinations as a good sample size for constructing a probabilistic strategy. Including more 474 

data for the model, evaluation helps to overcome the various limitations resulting (Gangolu et 475 

al., 2022; Gangolu et al., 2022a). Statisticians believe that more than 100 combinations are a 476 

good sample size for constructing a probabilistic strategy (Riley et al., 2021). The newly 477 

collected data widen the ranges of the data, and statistical uncertainty, which is epistemic, can 478 

be minimised by utilising more data for parameter estimates (Gardoni et al., 2002). 479 

Model Correction 480 

Explanatory terms that are prominent are selected above those that could be able to capture the 481 

reasonable phenomena of experimental and FE models. These parametric functions are based 482 

on existing equations and intuitions about fundamental panel properties. Table 3 lists the 483 

functions that were chosen. These explanatory terms are dimensionless, and the specifics of 484 

variables are as follows: the first explanatory function is chosen to allow for constant potential 485 

bias. The second function represents the effect of missile kinetic energy on concrete internal 486 

resistance. The third explanatory function considers the reinforcement ratio. The fourth 487 

function helps to increase the system's moment-carrying capability. The fifth function 488 

considers the panel's length-to-depth ratio. The missile slenderness ratio is captured by the sixth 489 

function. The seventh explanatory function considers the outcome of the desired natural 490 

frequency.  491 

Model Assessment  492 

A non-informative prior has been selected [Box and Tiao, 2011]. A progressive deletion 493 

process for lowering the number of terms in 𝛾𝑃𝑖
(𝑥, 𝜃𝑃𝑖

) is given to strike a balance between 494 

model simplicity (few corrective terms) and model correctness (small σ). In summary, the study 495 

deletes each term when the COV 
,i jP is greater than σ. Because the logarithmic adjustment in 496 
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Eq. 1, is almost equivalent to the predicted model's COV. In general, adding a term with a COV 497 

substantially bigger than σ is not likely to increase the model's accuracy. The progressive term 498 

deletion approach for the selected parameters is summarised in Figure 8 (a, b, c). The figure 499 

depicts the posterior COV of the model parameters (red solid dots) and the posterior mean of 500 

the model standard deviation for each step (black squares). The cross mark on the red solid 501 

dots signifies the deletion of the explanatory function with the highest COV.  502 

In general, sensitivity analysis is used to determine the system's most sensitive material and 503 

geometric properties (Choe et al., 2007). However, the current study has not performed a 504 

sensitivity analysis of all the parameters. But the COV of the probabilistic model is measured 505 

after each explanatory function elimination. The probabilistic model is fixed based on the COV 506 

and the simplicity of the equations. Furthermore, as a structural engineer, most of the 507 

parameters and explanatory functions chosen are appropriate based on literature, experience, 508 

and intuitions. However, as it is well known, global sensitivity analysis aids in the retention of 509 

the most sensitive parameters. For example, (Choe et al., 2007) evaluated the seismic 510 

sensitivity of bridge columns. The diameter of the transverse reinforcement ratio is the most 511 

important characteristic of Deformation and Shear Failure Modes. Nonetheless, concrete 512 

compressive strength, missile mass, velocity, and diameter may be the most sensitive 513 

parameters for the current investigation (postulation).  514 

Sensitivity analyses are also used to identify the critical inputs that influence output 515 

variability (Allaire et al., 2014). The quantification of system sensitivity provides insight into 516 

which factors contribute to the uncertainty in the outcome of specific scenario analysis. 517 

Sensitivity analysis, for example, identifies which modelling assumptions, uncertain model 518 

inputs, and/or uncertain scenario parameters are most essential. Sensitivity analysis is crucial 519 

for guiding future research efforts aimed at lowering output variability, in addition to assisting 520 

with better decision-making through knowledge of uncertainties. This is especially critical 521 
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when the unpredictability is so great that model outputs are meaningless for decision-making. 522 

When the difference between the outcomes of two policy alternatives is not statistically 523 

significant due to large uncertainty then the concept of sensitivity analysis is more suitable 524 

(Allaire and Willcox, 2014). However, the uncertainty in the current study is not considerable 525 

due to the large number of samples used, and this study did not use sensitivity analysis to 526 

evaluate the uncertainty of the outcome. The study, however, suggests that the posterior mean 527 

(σ) and COV of each 
,i jP stepwise deletion is sufficient to eliminate superfluous functions. 528 

Parameter Estimation of Updated Models 529 

The present part generates probabilistic models for penetration depth (x), perforation limit (hp), 530 

the ballistic limit of the missile (Vbl), and residual velocity of the missile utilising the results of 531 

FE simulations [Gangolu et al., 2022; Gangolu et al., 2022a] and experimental test data 532 

[Berriaud et al., 1978]. (Vr). These specifications are designed for RC panels that will be 533 

subjected to a hard missile strike at the centre. Most of the points are in the interval of 534 

confidence bounds as seen in Figure 9. The dashed lines in the figures signify the ±𝜎𝑃𝑖
 of the 535 

model and is represented logarithmically. However, the assumption of homoscedasticity is 536 

valid by looking into the probabilistic plots for four parameters (Figure 9 a, b, c, d). Most of 537 

the points are almost near to mean line and the case of significant variation of the data points 538 

suggests that the model is not in the category of homoscedasticity. The homoscedasticity 539 

assumption is valid for majority of the data points for both experimental and numerical models.  540 

Probabilistic Model for Penetration Depth (x) 541 

The proposed formulation to evaluate the probabilistic model of penetration depth (x) for an 542 

RC panel subjected to hard missile impact is,  543 

2 2

0 0 0

3 '
exp 1.34 0.108 0.22 0.011 0.79m

c c c

MV MV L MVx

d d f M d TLHf

 
      

 
    (3) 544 
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The influential functions are J2, J4, J6, and J7 and the points are near to mean line Figure 545 

9 a. The attained COV of the probabilistic model is 0.48. And the posterior statistics of the 546 

penetration depth of the missile are presented in Table 4. 547 

Probabilistic Model for Perforation Limit (hp) 548 

The proposed formulation to evaluate the probabilistic model for the perforation limit of 549 

concrete target i.e., the minimum required thickness of the panel to avoid complete penetration 550 

after missile impact is,  551 

0.05
3.41 10.03

ph x

d d

   
     

  
   (4) 552 

Where the COV of the probabilistic model is 0.28 and the points are near to mean line 553 

Figure 9 b. And the posterior statistics of the perforation limit of the target are presented in 554 

Table 5. A factor of safety is considered with an excess thickness of 50mm for estimating this 555 

formulation. In the case of double wall containment structures and protective structures, this 556 

model helps arrest missiles on the surface. However, the designer could frame guidelines based 557 

on penetration depth or place a steel liner to avoid complete passage. This solution could be 558 

useful for economical codal provisions for construction purposes. 559 

Probabilistic Model for Ballistic Limit of Missile (Vbl) 560 

In designing containment or protective structures subject to missile impact, it is mandatory to 561 

ensure minimal velocity required to avoid complete penetration of the missile to the rear side 562 

of the target. Contemporary research is very less focused on the formulation for a ballistic limit 563 

of the missile. The current analysis developed a reliable and economic probabilistic equation 564 

(standard normal distribution) to estimate the ballistic limit of the missile with an RC panel is, 565 

2 2

3 '
exp 4.68 0.07 0.23 0.24o o m

bl
cc

MV MV L
V

M dd f

 
     

 
         (5) 566 
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The influential functions for this model are J2, J4, and J6 and the obtained COV of the 567 

probabilistic model is 0.32. The obtained points are nearby as shown in Figure 9 c. And the 568 

posterior statistics of the penetration depth of the missile are presented in Table 6.  569 

Probabilistic Model for Residual Velocity of Missile (Vr) 570 

Most of the containments and bunkers are constructed double layered to have additional safety 571 

from external hazards like missile loadings. In such cases, the current parameter does have a 572 

momentous role in design criteria. The developed probabilistic equation (standard normal 573 

distribution) to estimate the residual velocity of the missile (Vr) after impacting the target is, 574 

2 2

0 0

2

0

exp 0.94 0.0261 0.07 0.0036 mr

c c

MV MV LV

V Hd f M d

 
     

 
     (6) 575 

The influential functions for this model are J2, J4, and J6 and the obtained COV of the 576 

probabilistic model is 0.63. The obtained points are near to mean line as seen in Figure 9 d. 577 

And the posterior statistics of the penetration depth of the missile are presented in Table 7. 578 

Since the influence of panel depth is significant the current study modified the J2 function with 579 

the depth parameter. Where, x – penetration depth of the missile into the concrete target, d – 580 

diameter of the missile (m), M – Mass of the missile (kg), V0 – Velocity of the missile (m/s), 581 

𝑓𝑐
′ – Compressive strength of concrete (N/m2), As – Area of Steel, b – width of the panel, H – 582 

depth of the panel, 1/T – frequency of the panel, Mc – Moment carrying capacity of the target, 583 

hp – perforation limit of the concrete target (m), Lm – Length of the missile (m), Vbl – Ballistic 584 

limit of the missile (m/s), Vr – Residual Velocity of Missile.  585 

Figure 9 appears to show that the homoskedasticity assumption has divergence with 586 

higher values of the respective parameters. However, for developed models, the homoscedastic 587 

assumption is satisfied to a large extent. One possible reason for not fully meeting this 588 

assumption is a lack of data from the higher range of variables. Only a few numerical models 589 
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are carried out with higher structural configurations and higher missile demand, and no 590 

experimental tests have been performed. Based on these plots (Figure 9) the current study is 591 

more suitable to lesser range of hard missiles such as wind-borne missiles, and impacts due to 592 

pressure pipes debris, iron rods, hard logs and so on. In the future, significant data with higher 593 

structural and missile configurations can be considered for developing local missile impact 594 

scenarios, which are desperately needed considering the global disasters.  595 

CREDIBILITY OF PROPOSED FORMULAE 596 

The current study has compared the proposed formulae with existing experimental results. The 597 

chosen material and geometrical properties of the RC slab are shown in Figure 10. From this 598 

study, it is very evident that the obtained probabilistic models are like test results from Table 8 599 

and Figure 10 (a, b, c). 600 

CONCLUSION 601 

The current research is concerned with four innovative probabilistic models created for local 602 

hard missile impacts. The criteria of the investigation are missile penetration depth, target 603 

perforation limit, missile ballistic limit, and missile residual velocity. These formulations are 604 

created using 128 models by combining experimental and finite element (FE) analysis data. 605 

The previously created probabilistic models comprise 55 FE models; however, due to 606 

continued severe threats, these formulations are expected to be upgraded for improved 607 

performance of missile-protected structures. A large dataset reduces uncertainty and makes 608 

equations more efficient. The probabilistic equations developed are based on Gardoni's 609 

probabilistic approach and Bayesian inference. The influence of missile’s kinetic energy, 610 

panel’s internal energy, moment carrying capacity, missile dimensions, and panel’s frequency 611 

are noteworthy for the chosen four parameters. The previous developed models did not take 612 

moment carrying capacity, missile dimensions, and panel’s frequency into consideration, while 613 
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the new penetration depth formulation does. COV for these models is within acceptable limits, 614 

demonstrating the dependability of produced models. The posterior statistics and standard 615 

deviation for each model is also presented in the current study. The credibility of the current 616 

study was assessed using test results, which revealed an excellent match. Material modelling, 617 

dimensional inaccuracies, statistical uncertainty, strain rate effect, boundary condition, and 618 

other aleatoric and epistemic uncertainties are all considered in these probabilistic models. 619 

Analysing these complicated setups with current programmes and experimental testing may 620 

have constraints of their own. However, the current formulas are readily available for usage. 621 

However, for future versions of the work, the range of variables can be updated with more 622 

statistical data, and a greater number of simulations with a higher range of missile velocity and 623 

configuration can be undertaken. The current study accommodates wind-borne missiles, and 624 

impacts due to pressure pipes debris, iron rods, hard logs and so on. This procedure may be 625 

extended to include blast loadings, different nose shapes, impact, and so on.  626 
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Table 1 Keywords used for FE Validation 828 

 829 

 830 

Material Keyword 

Missile Rigid Material, MAT_20 

Concrete Winfrith Concrete MAT_084 with erosion of 10% 

Rebar’s Plastic Kinematic, MAT_003 failure strain of 20% 

Contact of Missile and 

Concrete 

Eroding Surface to Surface  

Missile – Master & Concrete – Slave 

Contact of Missile and 

Beam elements 

Eroding Nodes to Surface  

Missile – Master & Beam elements – Slave 
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Table 2 Range of Basic and Derived Variables for RC Panels 831 

 Variable Symbol Range of Panels 

Range of 

Basic 

Variables 

Length of Panel (m) Ls 1.46 – 5 

Thickness of Concrete Panel (m) tc 0.2 – 0.6 

Longitudinal Reinforcement Ratio (%) 𝜌𝑙 1 – 3 

Transverse Reinforcement Ratio (%) 𝜌𝑡 1 – 3 

Compressive strength of concrete 

(MPa) 
𝑓𝑐

′ 25 - 55 

Yield strength of reinforcement (MPa) fy 250 – 550 

The boundary condition of the panel Bc Fixed Constraint 

Missile Mass(kg) M 10 – 2500 

Missile Velocity (m/s) V0 10 - 1000 

Range of 

Derived 

Variables 

Dia of Longitudinal bar (mm)  dl 8, 10, 12, 14, 16, 18, 20, 

25 

Dia of Transverse bar (mm) dt 8, 10, 12, 14, 16, 18, 20, 

25 

Spacing of Longitudinal bars  𝑠𝑙 (
𝜋

4
. 𝑑𝑙

2) . 1000

/ (
ρl. 𝐵. 𝐷

100
) 

Spacing of Transverse bars  𝑠𝑡 (
𝜋

4
. 𝑑𝑡

2) . 1000

/ (
ρs. 𝐵. 𝐷

100
) 

832 
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Table 3 List of Explanatory Functions for RC Probabilistic Models 833 

Variable Expression Representation of Explanatory Function 

𝐽1(𝑥) 1 Constant Bias 

𝐽2(𝑥) 
(

𝑀𝑉0
2

𝑑3𝑓𝑐
′
) 

Missile Energy to Target Resistance 

𝐽3(𝑥) 
(

𝐴𝑠

𝑏. 𝐻
) 

Reinforcement Ratio 

𝐽4(𝑥) 
(

𝑀𝑉0
2

𝑀𝑐
) 

Moment Carrying Capacity 

𝐽5(𝑥) 
(

𝑏

𝐻
) 

Length to Depth Ratio of Panel 

𝐽6(𝑥) 
(

𝐿𝑚

𝑑
) 

Slenderness Ratio of Missile 

𝐽7(𝑥) 
(

𝑀𝑉0

𝑇𝐿𝐻𝑓𝑐
′
) 

Frequency Ratio  

 834 



40 
 

Table 4 Posterior Statistics of Parameters in Selected Penetration Depth of Missile Model 835 

Parameter Mean Standard 

Deviation 

Correlation Coefficient 

Θ1 Θ2 Θ4 Θ6 Θ7 

Θ1 -1.3407 0.02 1.000     

Θ2 0.108 0.0022 0.1342 1.000    

Θ4 0.2206 0.0169 -0.4979 -0.2045 1.000   

Θ6 0.0112 0.0079 -0.7214 -0.6319 0.3568 1.000  

Θ7 -0.7968 0.1801 0.0121 0.0489 -0.7308 -0.0204 1.000 

836 
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Table 5 Posterior Statistics of Parameters in Selected Perforation Limit of Target Model 837 

Parameter Mean Standard 

Deviation 

Correlation 

Coefficient 

Θ1 Θ2 

Θ1 -3.4114 0.0519 1.000  

Θ2 10.0356 0.0441 -0.7443 1.000 

838 
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Table 6 Posterior Statistics of Parameters in Selected Ballistic Limit of Missile Model 839 

Parameter Mean 
Standard  

Deviation 

Correlation Coefficient 

Θ1 Θ2 Θ4 Θ6 

Θ1 4.6832 12.6378 1.0000    

Θ2 0.0707 1.3663 0.1338 1.0000   

Θ4 0.2352 7.3094 -0.7166 -0.2475 1.0000  

Θ6 -0.2423 4.9679 -0.7213 -0.6318 0.5011 1.0000 

840 



43 
 

Table 7 Posterior Statistics of Parameters in Selected Residual Velocity of the Missile Model 841 

Parameter Mean 
Standard  

Deviation 

Correlation Coefficient 

Θ1 Θ2 Θ4 Θ6 

Θ1 -0.03178 12.2751 1.0000    

Θ2 0.1407 3.7651 -0.0197 1.0000   

Θ4 6.6115 290.8881 -0.0731 -0.9704 1.0000  

Θ6 -0.0068 0.4083 -0.4059 -0.1531 0.1623 1.0000 

842 
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Table 8 Credibility of Proposed Models with Experimentation 843 

 844 

 845 

Parameters Dimension of Panel Compressive 

Strength, MPa 

Mass of 

Missile, kg 

Velocity of 

Missile, m/s 

Dia of 

Missile (m) 

Experiment Predicted 

Formula  

Penetration 

Depth 

5m X 5m X 0.4m 33.5 160 133 0.305 0.15m 0.13m 

5m X 5m X 0.4m 36 240  72 0.2 0.09m 0.1m 

1.46m X 1.46m X 0.26m 40.5 35 220 0.3 0.15m 0.15m 

Ballistic Limit 

of Missile 

5m X 5m X 0.4m 40 160 108 0.305 108m/s 107.1m/s 

5m X 5m X 0.4m 33.5 192 110 0.305 110m/s 113.6m/s 

1.46m X 1.46m X 0.416m 50 103 187 0.3 187m/s 180m/s 

Residual 

Velocity of the 

Missile 

1.46m X 1.46m X 0.26m 45 51 114 0.2 42m/s 42.6m/s 

1.46m X 1.46m X 0.26m 40.5 295 29.7 0.1 12.9m/s 10.05m/s 

5m X 5m X 0.4m 36 300 89 0.305 37m/s 34.6m/s 



 1 

Figure 1 Local Missile Impact Effects upon RC Panel 2 

 3 

 4 

Figure 2 Various Stages of Missile Impacting the Panel with a Velocity of 215m/s 5 
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 6 

Figure 3 (a) Elimination of Three Reinforcement Bars, Numerically, (b) Reaction force of the 7 
Panel due to Missile Impact 8 

 9 

Figure 4 Panel after Impact Scenario (a) Experiment (b) Numerical 10 

 11 

Figure 5 FE Validation outcomes for two chosen cases [Gangolu et al., 2022] 12 
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 13 

Figure 6 (a) Comparison of experiments with empirical & FE model, (b) Reaction force of FE 14 
models [Gangolu et al., 2022] 15 

 16 

Figure 7 Typical Finite Element Modelling of RC panel with a missile (LS-DYNA) 17 



 18 

Figure 8 Stepwise Deletion Process of (a) Penetration Depth, (b) Ballistic Limit of the 19 
Missile and (c) Residual Velocity of the Missile 20 
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22 
Figure 9 Probabilistic Models (a) Penetration Depth, (b) Perforation Limit, (c) Ballistic Limit 23 

of Missile and (d) Residual Velocity of Missile 24 

(a) (b) 

(c) (d) 



 25 

Figure 10 Credibility of Test results (a) Penetration Depth (b) Ballistic Limit of Missile (c) Residual Velocity of Missile26 

(b) (c) (a) 



 


