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ABSTRACT 

 

 A 3D model using the Discrete Element Method (DEM) is proposed to study reinforced concrete 

structures submitted to dynamic loading. The model has been previously validated for plain concrete through 

quasi-static loadings, and through SHPB dynamic compression and tension tests. This paper aims at 

validating the introduction of steel reinforcement in the model, prior to simulations of real reinforced concrete 

structures submitted to dynamic loading. Lines of discrete elements represent reinforcement amidst concrete 

discrete elements, and the model takes into account the behaviour of concrete, of the reinforcement, and of 

their interface. Results of simulation of a four point beam bending test show the capabilities and limitations of 

the preliminary model. 

 

 

1. INTRODUCTION 

 

 The design of concrete safety structures is a big challenge for engineers; for example some structures 

present in mountainous areas are dedicated to protection against natural hazards such as avalanches, rock 

falls, etc... and thus may be submitted to impact loads and high deformation. Despite their geometry which is 

usually massive, with an extremely high fraction of reinforcement, and of course a design satisfying usual 

building standards, some are found to be totally damaged. This inconsistency demands the use of a model 

with high predicting abilities. 

 

In particular, it is of utter importance that the model should be able to reproduce the strain rate dependency of 

concrete, well understood for low strain rates (ε ≤ 101 s-1), but not beyond. Most of the numerical 

investigations were carried out with FE codes, which are easy to use. Nevertheless, The increasing complexity 

of these models, associated with the difficulties of dynamic problems, make their computational use 

somewhat awkward : in particular, the occurrence of cracking often has to be identified, and effects like 
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internal friction after crack opening, or structural effects like inertia of micro-cracking have to be explicitly 

accounted for. 

 

 An alternative to FEM computations is the use of Discrete Element Method (Cundall [1], Cundall et al 

[2]). This method does not rely upon any assumption about where and how a crack or several cracks occur 

and propagate, as the medium is naturally discontinuous and is very well adapted to dynamic problems. 

Although numerous authors like Potyondy et al [3] and Meguro and Hakuno [4] have used similar two-

dimensional approaches to model cohesive geomaterials, few have thus modelled concrete (Camborde et al 

[5]), and even fewer have modeled complete 3D concrete structures, which is now made feasible thanks to 

ever-increasing computing power. 

 

 Keeping in mind that the final goal is to represent 3D reinforced concrete structures, this work aims at 

extending the validation of a three-dimensional Distinct Element (DE) model through the simulation of a four 

point bending test on a reinforced concrete beam. The DE model has been fully described and validated in 

quasi-static problems as well as in dynamic compression and tension in Hentz et al [6]. Firstly, the model will 

be briefly reminded, and then the reinforcement will be introduced and the first results of four point bending 

test will be presented.  

 

 

2. DISCRETE ELEMENT MODEL 

 

 The present numerical method uses discrete spherical elements of individual radius and mass. These 

elements represent a polydisperse assembly with a size distribution obtained by using a particular growing 

technique (Donzé [7]). Once the assembly has been set, pairs of initially interacting discrete elements are 

identified. These interactions have been chosen to represent as best as possible and in a simple way, the 

elastic and cohesive nature of a certain class of geomaterials such as concrete. To do this, elastic forces with a 

local rupture criterion are applied between two interacting elements.  

 

 

Interaction range 

 The macroscopic behaviour of a material can be reproduced by means of this model by associating a 

simple constitutive equation to each interaction. An interaction between elements a and b of radius Ra and Rb 

respectively, is defined within an interaction range γ and does not necessarily imply that two elements are in 

contact. Then, these elements will interact if,   

 
b a,b( +R ) D  aRγ ≥   (1) 
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where Da,b is the distance between the centroids of elements a and b and γ ≥ 1. This is an important 

difference from classical discrete element methods which use spherical elements (Cundall et al [2]) where 

only contact interactions are considered γ ≥ 1. This choice was made so that the method could simulate 

materials other than simple granular materials in particular those which involve a matrix as found in 

concretes.  

 

 

Interaction forces 

 The interaction force vector F which represents the action of element a on element b may be decomposed 

into a normal and a shear vector Fn and Fs respectively, so that,  

 
n sF F F= +  (2) 

 

Where 

 
, ,( )n n a b a b

eqF K D D n= −
 (3) 

 

(

,a b

eqD
 is the equilibrium distance between the two elements a and b which was set when the interaction was 

created)  

 

 The shear vector force Fs is computed incrementally and was given by other authors (Hart [8]). The 

incremental force is given by  

 
s s sF K U∆ = − ∆  (4) 

 

where 
sU∆ is the shear displacement vector increment between the locations of the interacting points of the 

two elements over a timestep ∆t.  

 

 

Elastic properties 

 

 The strain energy stored in a given interaction cannot be assumed to be independent of the size of the 

interacting elements. Therefore interaction stiffnesses are not identical over the sample, but follow a certain 

distribution, which is another important particularity of the SDEC model. The macroscopic elastic properties, 

here Poisson's ratio ν and Young's modulus E, are thus considered to be the input parameters of the model.  
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“Macro-micro” relations are then needed to deduce the local stiffnesses from the macroscopic elastic 

properties and from the size of the interacting elements. Compression tests have been run with one given 

sample and values linking Poisson's ratio ν , and Young's modulus E to the dimensionless values of 

s

n

K

K
 

were obtained. To fit these values, relations based on the best-fit model (Liao [8]) are used.  

 

 

Strength properties 

 

 A modified Mohr-Coulomb rupture criterion is used (see figure 1, where Aint is the interaction surface : 

( )
2

int .min ,a bA R Rπ= ). When the shear criterion is reached, the shear force is limited to this value ; 

when the tensile criterion is reached, the interaction undergo a softening behaviour (see figure 2, where β is 

the softening factor).  

 

 This model has been developed to take into account the fact that damage of concrete is mainly due to 

micro-cracks opening in mode I. Moreover, heterogeneity of concrete is reproduced through the use of Aint 

which induces a strength properties distribution over the sample.  

 

 The model is enriched with a local strain rate dependence ( )T f ε= &  based on the CEB formulation. Of 

course this dependence is of no importance in the case of quasi-static simulations. 

 

 A detailed description of the model can be found in (Hentz et al [6]). 

 

 

 

Figure 1 : Rupture criterion for a cohesive interaction 

(above), and a contact interaction (below) 

 

Figure 2 : Softening behaviour of the normal force 
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Parameters calibration 

 

 Calibration of the model parameters is necessary to adjust the properties of the material represented by the 

assembly of discrete elements to the real geomaterial properties, a particular type of concrete. For this 

purpose, a quasi-static uniaxial compression/traction procedure has been established. This procedure allows 

the user to determine for a single assembly the values of the local parameters T, c, Φi, β and γ to obtain the 

macroscopic behaviour characterized by the Young's modulus, the Poisson's ratio, the tensile and compressive 

strengths, as well as the fracture energy. As far as the macroscopic elastic properties are concerned, it 

appeared that the “macro-micro” relationships discussed in section “Elastic Properties” give only a good 

approximation of the macroscopic elastic properties, because of the random aspect of the generation of the 

assembly. To solve this problem, the procedure is the following :  

 

 1. A compact, polydisperse discrete element assembly is generated.  

 2. An elastic compression test is run with elastic local parameters given by the “macro-micro” relations. 

 3. A correction is applied according to an energy-based criterion. Compressive and tensile rupture axial 

tests are simulated to deduce the remaining local parameters. 

 

 An important point is that element rotations have to be inhibited to allow the ratio compressive over 

tensile strengths to be equal to 10. Nevertheless, this inhibition has proved relevant when dealing with 

traction /compression loadings, which mobilize a very low level of rotations (Hentz et al [6]), whereas in the 

case of long structures submitted to bending, this results in extremely high forces, at non-physical level. Then 

in the following simulations, rotations are freed. 

 

3. FOUR POINT BENDING TEST OF A REINFORCED CONCRETE BEAM 

 

The experimental data set 

 

 Four point bending tests were carried out by students of Grenoble University I, using rectangular cross-

section beams; height 12cm, width 6cm and length 1.6m. (see figure 3). Reinforcement is constituted of 2 

longitudinal steel bars (diameter 6mm) in the lower part of the beam (see figure 4), and of transversal bars 

(diameter 6mm) in the A and C zones. Concrete has the following properties:  Young's modulus E=30GPa, 

density ρ = 2500kg.m-3, compressive strength σc = 30MPa and tensile strength σt= 3MPa. Steel has the 

following properties: Young's modulus E=210GPa, density ρ = 7800kg.m-3, yield strength σy = 500Mpa. The 

tests were displacement-controlled; figure 5 shows the data, in terms of total force versus jack displacement. 

Three phases can be distinguished: firstly, an elastic part, ending with the micro-cracking of concrete, 

secondly a less rigid behaviour, due to the development of cracks in concrete, and to the carrying of the load 
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by the bars, and finally a phase (not always very clear on the experimental results) where the steel bars 

undergo plastic flow.  

 

 

 

 

Figure 3: Four point bending test setup 

 

Figure 4 : Beam cross-section 

 

 

 

 

Figure 5 : Experimental data 
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The numerical setup 

 

 

Figure 6: Four point bending test setup ; beam section 

 

 Reinforcement bars were modeled using lines of spheres, of diameter equal to 6mm (Figure 6 shows a 

section of the beam parallel to a reinforcement bar). The transversal bars are not modeled. Three classes of 

interactions may be defined: concrete interactions follow the previously defined behaviour, and their 

parameters were calibrated using the already discussed procedure. Steel interaction parameters are calibrated 

so the exhibited behaviour is elastic-perfectly plastic. Concrete/steel interactions parameters are identical to 

steel ones, which is consistent with pull-out tests observations. Table 1 shows local parameters. Roughly 9000 

elements were used. Cylinders were used to apply the boundary conditions. 

 

 

Parameter 

E 

(Gpa) 

ν γ Φi (°) C (Mpa) T (Mpa) β 

Concrete 30 0.2 1.4 20 3 1 120 

Steel 210 0.25 1.05 0 250 500 10000 

 

Table 1 : Model parameters 
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Figure 7 : Comparison between numerical and experimental results. 

 

 

Results 

 

 Figure 7 shows the total force versus the jack displacement, and the comparison between numerical and 

experimental results. The three phases already described can be clearly distinguished : the elastic phase is 

very well fitted. On the other hand, the second phase begins slightly too late, and its stiffness is too high. This 

is due to the fact that a high value of local softening had to be used to counterbalance the free rotations : as 

soon as concrete has fully cracked (which occurs much too early when low softening is used), the bars alone 

are supposed to carry the load, which they do not when rotations are free. When high softening is used, 

cracking of concrete occurs late enough so yielding of steel bar appears as a third phase. This said, these 

results may be explained as well by observed experimental inaccuracies. 

 

 

 

Figure 8 : Damage state of the beam after rupture (the darker, the higher the damage) 
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 Figure 8 shows the damage field in the beam after rupture. Cracking starts on the lower face of the beam, 

right below one loading point, and propagates towards the inner side of the beam, which is very consistent 

with experimental results. 

 

 

4. CONCLUSION 

 

 A 3D discrete element model has been proposed to ultimately simulate impacts on reinforced concrete 

structures. Previously validated for plain concrete in quasi-static and in dynamic loadings. 

 

 A reinforcement model has been introduced, and validated through the simulation of four point bending 

tests. The comparison with experimental results is relatively good ; The fact that rotations are free make the 

model overestimate somewhat the beam strength : the model should be improved in this matter. Nevertheless, 

the different test phases are well distinguished, and the beam behaviour is quite well reproduced, which 

validates the reinforcement model. Moreover,  the DE model allows us to investigate the inner damage of the 

material. 

 

 Now the model has been validated through a wide range of tests, impacts on real reinforced concrete 

structures will be carried out. 
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