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Abstract The discrete element model proposed in this pa-
per addresses the macroscopic behavior of concrete taking
into account the presence of free water in pores, thanks to
a new interaction law between spherical discrete elements
(DE). When concrete structures are subjected to a severe
loading, e.g. an impact, material exhibits high triaxial com-
pressive stresses which are highly influenced by the satura-
tion ratio. In this new constitutive model, cracking and com-
paction are modeled at the interaction level between DEs
and free water effects are taken into account by introduc-
ing a dependency between the water saturation ratio and the
inelastic deformation due to the pore closure. The present
numerical model has been implemented within the YADE
(Yet Another Dynamic Engine) code in order to deal with
extreme loading situations leading to stress states character-
ized by a high mean stress level.

Keywords DEM · Discrete element model · Concrete ·
Saturation ratio · Confined compression

1 Introduction

When a concrete structure is subjected to an intense load-
ing, e.g. an impact, the material in the vicinity of the loading
zone undergoes high levels of stress leading to irreversible
compaction, whereas farther from this location, compres-
sion with a moderate triaxial stress level occurs [13], [7],
[34].

The quasi-static constitutive behavior of an ordinary con-
crete was extensively studied at 3SR laboratory thanks to
triaxial compression tests performed with a large capacity
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press named Giga [37]. Under high confinement (some hun-
dreds MPa), the water saturation of concrete plays a major
role [38]. On the one hand, the hydrostatic behavior of wet
or saturated concrete clearly becomes stiffer than that of dry
concrete. On the other hand, the shear strength of wet or sat-
urated concrete seems limited to a maximum value indepen-
dent on the confining pressure, while the shear strength of
dry concrete increases almost linearly with confining pres-
sure. The limit shear strength value is directly correlated
with the water saturation ratio of concrete [38]. It is also
worth noting that all these tests are performed under quasi-
static undrained conditions similarly to impact condition; as
the water has not enough time to migrate during impact.

Because protective concrete structures are generally mas-
sive, they may have a core partially or fully water saturated
whereas the skin is dry. Accounting the effect of water satu-
ration ratio is then particularly relevant for massive concrete
structures submitted to very high stress level.

The PRM coupled model [25], [40] is a finite element
(FE) model that uses the effective stress concept developed
by Mariotti et al. [20] for wet geomaterials under high stress
level. Thus, such a model takes into account the saturation
ratio, but finite element models are not well adapted for large
discontinuity and perforation simulations. The discrete ele-
ment method (DEM) has several advantages. It can easily
represent discontinuities caused by cracking or fragmenta-
tion and reproduce the macroscopic behavior of concrete.
Several DE models were developed to reproduce the behav-
ior of granular and cohesive materials [4], [5], [6], [9], [14],
[24], [31], [33], [35], but none of them accounts for the ef-
fects of saturation ratio.

This paper presents a new local constitutive behavior
for discrete element modelling of concrete structures that
attempts to take into account the influence of free water
into the porous concrete material under very high quasi-
static stress level. The proposed model is based on the use
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of spherical DEs, it was developed for concrete that is a co-
hesive material. Thus, contrarily to models developed for
granular materials [4], cohesive interactions are considered
between elements that are not in contact. As long as the ma-
terial is cohesive, the proposed approach is similar to lat-
tice models [30], [17], [44]. Once fracture and fragmenta-
tion occurs, contact interactions may be created and easily
handled with spherical DEs. The DE model is implanted is
the open source code YADE [15] with the aim of modelling
the behavior of concrete at the macroscopic scale to deal
with impact problems on structures [43], [42]. Thus the in-
ternal structure of concrete (aggregates, cement paste, pores)
is not described like in [16], [21] and [35]. In this study, the
three dimensional DEM constitutive model implemented in
YADE will be described. The model calibration and valida-
tion is based on triaxial compression tests performed with
the large capacity press Giga of 3SR laboratory at the uni-
versity Grenoble Alpes. Numerical simulations of tests per-
formed on ordinary concrete samples at different saturation
ratios including triaxial and oedometric tests will be dis-
cussed.

2 Discrete element background

The DEs are rigid spheres of different radii. Each of them
has a mass and a rotational inertia. Note that DEs do not rep-
resent aggregates, interaction laws between DEs are chosen
to represent the macroscopic behavior of concrete as well
as discontinuities (cracks) that may appear in the medium.
Cohesive interactions are spring-like connections in exten-
sion, shear and rotation. The interaction force F represents
the action between two elements a and b is given in eq.(1).
The interaction stiffness K and displacement U are decom-
posed to Kn, Ks and Un, Us acting in the normal and shear
direction respectively.

F = KU (1)

Using the constitutive model of each interaction, the nu-
merical model solves the equation of motion of the spheres
assembly. The new displacement, velocity and acceleration
for each discrete element are calculated by solving the dy-
namic equilibrium equations based on an explicit time in-
tegration scheme conditionally stable. The condition of sta-
bility applied for motion equations is inspired from [4] and
[27].

3 Constitutive model description

At macroscopic scale, the concrete can be considered as a
homogeneous isotropic material. Under confined compres-
sion and increasing mean stress levels, concrete first follows
a linear behavior, and then its tangent stiffness decreases due

to the damage of cement matrix, which leads to porosity clo-
sure. During the porosity closure, the stiffness of the mate-
rial increases and tends to the elastic stiffness of the fully
consolidated material [19]. This behavior at the macroscopic
scale can be reproduced through simple interaction laws be-
tween the discrete elements. Shiu et al. [32] developed an
interaction law featuring an elastic quasi-brittle behavior in
tension, and a three linear behavior in compression, but this
model does not take into account the effect of the concrete
saturation ratio. In this new model, the effect of free water
is taken into account by introducing a dependency between
water saturation ratio and inelastic deformations due to pore
closure. The porosity closure is defined as a local variable
at the interaction level using the decrease of the distance
between DEs. A maximum shear stress criterion is also in-
troduced to take into account the correlation between limit
shear strength and saturation ratio. The proposed model is
calibrated by means of test results performed on a reference
ordinary concrete named R30A7. Gabet et al. [12], Vu et al.
[39] and Piotrowska et al. [22], studied the triaxial behav-
ior of dry, wet or fully saturated R30A7 concrete under a
confinement stress up to 600 MPa. Experimental results ob-
tained previously emphasized on the fact that the presence of
free water in pores has an effect only when the free poros-
ity (not occupied with water) is closed. According to our
assumptions, if the boundary allows the water outflow, then
the effect of water vanishes and the constitutive behavior of
concrete will be that of dry concrete. Note that differed phe-
nomena due to water migration are not taken into account
in the model since, due to the low loading time, no water
migration is assumed.

3.1 Interaction laws

In this model, interactions between DE neighbors that are
not in contact are allowed by introducing an interaction ra-
dius coefficient (Ir ≥ 1). Two types of interactions are de-
fined: initial links and residual contacts. The value of Ir,which
concerns only initial links, influences directly the number of
interactions per sphere at the beginning of the calculation
(eq.(2)). Rousseau et al. [28] showed that in order to achieve
a realistic isotropic elastic behavior of concrete, this num-
ber should be around 12. The interaction radius coefficient
Ir will be adjusted accordingly. As calculation is proceeded
and due to external loading, changes in DEs arrangement oc-
cur and new contact interactions may be created while others
vanish.

3.1.1 Cohesive interactions

Cohesive interactions are created between DEs within the
same range at the beginning of the simulation. For instance,
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a link is created between elements a, and b of radius Ra and
Rb respectively if:

Ir(Ra +Rb)≥ D0
ab (2)

Where D0
ab is the initial distance between the centroids

of elements a and b. D0
ab is also the reference distance used

later to convert displacement to dimensionless strain. If C0
a

and C0
b are initial centroids position of elements a and b

respectively, then:

D0
ab = |C0

a−C0
b| (3)

Tensile stress appears when the current distance between
elements a and b: Dab = |Ca−Cb| is larger than the initial
distance D0

ab because the interaction is cohesive.

3.1.2 Contact interaction

Contact interactions can be created between DEs after the
beginning of the simulation, either when a cohesive Link in-
teraction is broken or when two DEs that were not in inter-
action are in contact (Ra +Rb)≥ D0

ab.

3.2 Elastic interaction law

Interaction force F can be decomposed in a normal force Fn
and a shear force Fs :

Fn = KnUn (4)

Fs = KsUs (5)

Un and Us are respectively normal and shear displace-
ments. Kn and Ks are respectively normal and shear stiff-
nesses, both expressed using E an equivalent Young modu-
lus and G an equivalent shear modulus for the link:

Kn =
EAeq

D0
ab

(6)

Ks =
GAeq

D0
ab

(7)

The macroscopic elastic properties, here Young modulus
E (GPa) and shear modulus G (GPa), are thus considered to
be an input parameters. Aeq is the interaction cross-section,
and is defined as follows:

Aeq = π×min(Ra,Rb)
2 (8)

Thus, the forces could be defined from equivalent stresses
as follows:

Fn = σnAeq (9)

Fs = σsAeq (10)

with,

σn = Eεn (11)

σs = Gεs (12)

where εn and εs are the equivalent normal and shear strain
respectively

ε =

[
εn
εs

]
(13)

A fictitious interaction point Pc is defined at a mid-distance
from the two elements and a vector n which is the normal to
the contact plane that passes through Pc (always perpendic-
ular to the contact plane). Un is aligned with n. The shear
displacement Us must be expressed in the global coordi-
nates while satisfying the condition Us ⊥ n. This is due to
the lack of an interaction-local coordinate system. Indeed,
each spherical contact only defines the contact normal and
the contact plane (Figure 1).

Fig. 1 Interaction between two elements. Force and displacement
components

As large strains are expected, logarithmic strains, also
equivalent to the sum of incremental strains are used (eq.
(14)). The strain tends to −∞ if two centers of spheres ap-
proach from one another, which avoid them to penetrate
through each other.

ε =

[
εn
εs

]
=

[
log(Un

D0 )

∑
δUs
D0

]
(14)

For torque computation, the following equations are used:

Mb = ∑δθbKb (15)

Mt = ∑δθtKt (16)

δθb and δθt are the incremental bending and twisting
rotation angle respectively. Kb and Kt bending and twist-
ing stiffnesses that are estimated by considering that a cir-
cular beam, with a section Aeq, connects the two centroids
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of spheres a and b (eq. (8)). To limit the torque, two dimen-
sionless parameters αb,αt ∈ [0,1] are used such that:

Kb = αb Ks Aeq (17)

Kt = αt Ks Aeq (18)

3.3 Nonlinear interaction behavior

As shown in equations (eq. (11) and eq. (12)), σn and σs
are related to εn and εs respectively. This relation between
stress and strain at the link scale characterizes the interaction
behavior in both tension and compression.

3.3.1 Tension

Beyond the elastic limit ε0, a damage behavior in tension is
applied. Normal stress σn is formulated as follows:

σn = [1−ω(κ)H(κ− ε0)]Eεn (19)

κ is the maximum normal strain (κ = max(εn)), ω(κ) is
the damage evolution function, and H is a Heaviside func-
tion that deactivates damage effect if κ < ε0. The damage
evolution function ω is described as follows:

ω(κ) =
1− ε0

κ

1− ε0
ε f

if ε0 ≤ κ ≤ ε f (20)

ε f is the maximum strain corresponding to the maximum
damage (ω = 1 when εn = ε f ). Beyond this point, the link
between the spheres is deleted and a new contact interaction
is created only if these two spheres touch again. Figure 2
shows the evolution of the damage and the tensile stress in
the normal direction.

3.3.2 Compression

The interaction model between DEs is a beam-like model
whose constitutive behavior is phenomenological. It means
that the local constitutive behavior is inspired from obser-
vations at the macro scale, including compaction (pore clo-
sure). Thus, under normal compression the stiffness varies
between the initial elastic stiffness Kn (directly linked to the
Young modulus) and the consolidated material stiffness kh x
kn (kh ¿1 is an non-dimensional parameter). kp and kh val-
ues are calibrated by means of simulation of confined com-
pression tests. Thus, in compression the behavior phases are
defined as follow (see Fig.3):

Phase [A B]: linear zone of the link, characterized by the
initial elastic stiffness of the material. εel is the elastic limit
strain in compression.

σn = Eεn for εn < εel (21)

(a)

(b)

Fig. 2 a Damage evolution ω vs. normal strain εn in a cohesive inter-
action. b Corresponding tensile stress σn vs. εn

Phase [B C]: compaction zone, the elastic stiffness of the
link varies linearly between the initial elastic stiffness and
the consolidated material stiffness. Let us note that at this
point porosity is inherently defined at the link scale since
εpl is the maximum deformation corresponding to a com-
plete porosity closure. kp is the strain hardening modulus
introduced as:

σn =
E
kp

(εn− εel)+σelmax for εel < εn < εpl (22)

Phase [C D]: consolidated material zone. Beyond this
point, the link is fully compacted and the response is incre-
mentally elastic again as described in (eq. 23). Figure 3 also
shows the cyclic behavior of a link in the normal direction
(interaction level).

σn = Ekh(εn− εpl)+σplmax for εpl < εn (23)

3.3.3 Shear

As explained in (sec. 3.2) the elastic shear stress σs can be
defined as shown in (eq. (12)). The shear response is then
limited by the maximum shear stress surface (Figure 4). The
shear stress criterion σsmax (see eq. (24)) is characterized by



Discrete element modelling of concrete under high-stress level: influence of saturation ratio 5

(a)

(b)

Fig. 3 Cyclic loading of a single cohesive link. a In the normal direc-
tion. b Zoom of A region

the initial shear cohesion of the link C0, the friction angle
Φ , and a maximum shear stress (1+λ )C0 allowing sliding
(plastic slip) between spheres.

σsmax = (1−ω)C0 +
λC0σntan(Φ)

σntan(Φ)+(λ +1−ω)Ft
(24)

ω is the damage function, Ft the undamaged tensile strength
(Ft=Eε0) and λ a dimensionless parameter that allows con-
trolling the maximum shear stress asymptote.

3.4 Effect of saturation ratio (Sr) on the compressive
behavior

The effect of free water on concrete mechanical behavior has
been widely studied under high or moderate strain rates [29],
[45], [41], [36]. Due to a lack of experimental data, there is
no available discrete element model dealing with free wa-
ter influence on the mechanical behaviour of concrete under
high stress level. The proposed model is the first attempt
aiming at filling this gap.

Fig. 4 Maximum shear stress surface versus uniaxial stress at the link
scale

Saturation ratio is introduced as a local variable at the in-
teraction level between spheres and its evolution is related to
the porosity closure during the compaction phase described
by (eq. (22)). In this paper, an initial homogeneous, satura-
tion ratio distribution is assumed in the sample however the
structural heterogeneity, or a heterogeneity based on the DE
size or position, could easily be taken into account. Note
that, the effect of saturation ratio is taken into account for
compressive stress only. As it was explained in (sec. 3.3.2),
for a dry link (Sr = 0%), the consolidation point is defined
accordingly to normal strain, and it corresponds to a com-
plete porosity closure (εn = εpl). Then, the general idea of
the model is to assure that a smaller deformation is needed
to close a partially saturated porosity as a fraction of it is
already occupied by water. The higher the saturation ratio
is, the earlier the consolidation point will be reached and the
effect of water will begin to appear on the mechanical be-
havior. Thus, the new consolidation point εn,plC is defined
as a linear function of Sr which is the saturation ratio of the
link:

εn,plC = εel +(εpl− εel)(1−Sr) (25)

From equation (eq. (25)), it is clear that if the link is dry
(Sr = 0), εn,plC is equal to εpl while if the link is completely
saturated (Sr = 1) and then εn,plC is equal to εel . A kind of ef-
fective stress concept is then introduced to take into account
the water contribution in the total stress at the link scale us-
ing Biot coefficient assumed to be, at the first order, equal to
the porosity ϕ . The variation of the porosity is defined ac-
cordingly to the volumetric strain εv which is defined from
the normal strain of the unidimensional link as εv = 3εn and
to ϕi which is the initial porosity of the sample. Thus:

σntotal = σn +3ϕσnwater (26)

One can remark from (eq. (26)) that the water contribu-
tion will increase with the porosity and with the saturation
ratio. Note that a Mie−Gruneisen like equation of state is
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used to take into account water compressibility and to com-
pute the water contribution in the total stress [8] (eq. (27)):

σwater =
ρ0C2

w0(εv− εv,ps)

(1− s(εv− εv,ps))2 [1−
Γ0(εv− εv,ps)

2
] (27)

Where εv,ps is the volumetric strain at the consolidation
point (εv,ps = 3εn,plc), Cw0 is the sound-wave velocity, ρ0 is
the mass density, s and Γ0 are two Mie-Gruneisen coeffi-
cients. The interstitial water pore pressure was recently in-
vestigated and measured experimentally by [1] showing that
it might reach several hundreds of megapascal under high
confinement pressure. Figure 5 shows the normal compres-
sive behavior of a dry link compared to that of a wet link
(Sr = 44%) and the corresponding water pressure. The con-
solidation point (CP) is reached earlier in the wet link hence
the water contribution is added. In the dry link, reaching the
consolidation point does not add any water contribution.

Fig. 5 Effect of the water contribution on the normal compressive
stress-strain law at the link scale for Sr = 44% compare to Sr = 0%

3.5 Effect of saturation ratio on the maximum shear stress

In order to control the plastic sliding threshold of interac-
tions, a coefficient λ was introduced in eq. (24). This coeffi-
cient control the maximal limit shear strength of a link (λC0)
once the material is fully consolidated as observed experi-
mentally by [38]. Two parameters λ0 and λ100, are calibrated
for a dry and saturated links respectively and introduced to
express λ as a linear function of the saturation ratio:

λ = (λ0−λ100)(1−Sr)+λ100 (28)

Thus, when λ = λ0 then εn,plC = εpl and when λ = λ100
then εn,plC = εel . Figure 6 shows the dependency of the cri-
terion on the saturation ratio. We can observe that the higher
the saturation ratio is, the lower is the shear stress limit.

Fig. 6 Maximum shear stress surface for different saturation ratios
(Sr = 0%, Sr = 44%, Sr = 78% and Sr = 100%) at the link scale

4 Model calibration and validation

4.1 Numerical tests preparation and monitoring

The calibration is done by running simulations on sufficiently
large numerical specimens to give continuum-like behavior.
Samples, made of spheres, have to be isotropic to ensure a
homogeneous interaction distribution in the sample and to
prevent the forces from being in privileged directions [28],
[10]. The isotropy of the numerical medium is verified by
plotting the cumulative orientation distribution of interac-
tions (Figure 7).

The histogram of the size distribution obtained for a spec-
imen is shown in Figure 8(a). The size distribution goes from
2 to 4 mm and is homogeneously distributed between these
extremum. The numerical compacity of the sample is about
0.6 and the interaction radius Ir is chosen in order to have an
average of 12 interactions per element (Ir = 1.5). Figure 8(b)
shows the numerical sample. It is a cuboid-shaped packing
(70mm×70mm×140mm) of approximately 4000 spheres. It
was checked that the shape of the numerical specimen does
not affect the results since the stress state is homogeneous
across the specimen.

Fig. 7 Initial distribution of the interaction links’ orientations in the
numerical sample

Uniaxial and triaxial tests are then simulated in order to
calibrate the model parameters. The calibration process, de-
scribed in the next section, aims at identifying the model
parameters values that allow reproducing the macroscopic
behavior obtained in the tests performed on the R30A7 refer-
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(a) (b)

Fig. 8 Size distribution of the sphere diameters in the numerical sam-
ple. a Histogram. b Numerical sample

ence concrete (unconfined compressive strength of 34 MPa,
7 cm slump, w/c = 0.64, 12% porosity accessible to water,
see [11] for more details).

4.2 Model calibration and comparison with experiments

4.2.1 Uniaxial compression and tensile tests

Uniaxial tension or compression tests allow determining elas-
tic parameters E, ν , initial cohesion C0, limit elastic strain in
tension ε0 and the limit failure strain ε f . The displacement
is applied on boundary particles symmetrically on both ends
of the specimen while restraining their other degrees of free-
dom. Average axial stress is obtained by averaging forces
on both boundary particles divided by the specimen cross-
section (assumed constant during the test). Figure 9 shows
the numerical stress-strain curve in uniaxial compression, it
is compared with a cyclic test result [23]. The stress-strain
curve in tension is not available, only the tensile strength
(3.2 MPa) could be obtained experimentally. Figure 10 shows
a comparison between numerical and experimental failure
patterns in the sample for uniaxial tension and compres-
sion tests respectively. In tension, a single crack appears; the
stress state is homogeneous far from the ends of the speci-
men so its location depends on the statistical distribution of
spheres into the sample. In compression, the ends are fixed
then a typical cone failure pattern can be observed in the
central part of the specimen. Benniou [2] has shown in his
PhD that there is no mesh dependency for a moderate vari-
ation of DE sizes; this result was also shown in [26]. Note
that Benniou [2] has also verified that uniaxial compresssion
and tensile test results do not depend on the initial saturation
ratio of concrete samples.

4.2.2 Triaxial compression tests at high level of
confinement (600 MPa)

Tests at 600 MPa of confinement are used to calibrate pa-
rameters given in Table 2. It has been checked experimen-
tally that the stress state during confined compression tests

Fig. 9 Numerical stress-strain curve in uniaxial compression and com-
parison with experimental curve of a cyclic test [23]

(a) (b) (c) (d)

Fig. 10 Comparison between numerical and experimental damage af-
ter uniaxial test: blue elements links are undamaged, red elements links
are completely damaged. a,b Tension [11]; c,b Compression test [23]

Table 1 Model parameters calibration values from uniaxial tests

Parameters Physical meaning Values

E (GPa) Young modulus 30
ν Poisson ratio 0.2
ε0 limit elastic strain in tension 1e−4

ε f limit failure strain 20ε0
Φc (radians) contact friction angle 0.8
C0 (MPa) shear cohesion 4

is homogeneous in the circular section specimens [37]. In a
sake of simplicity, the DE specimen has a parallelepipedic
shape with 6 contacts surfaces. This choice allows prescrib-
ing simple boundary conditions by means of six rigid walls;
it has no influence since the obtained stress state is homoge-
neous. Triaxial calibration tests are run on dry (Sr = 0%) and
completely saturated (Sr = 100%) numerical sample. These
tests are conducted in two steps. The first phase is the hydro-
static compression, for which all the wall displacements are
the same with a controlled velocity until the target confine-
ment pressure Pc is reached σx = σy = σz = σm =−Pc. This
step allows the calibration of non-linear parameters kp, kh,
εel and εpl , (see Table 2, left part). The second phase is the
deviatoric compression, for which the axial displacement is
controlled on the top and bottom wall whereas all four other



8 Hicham Benniou1 et al.

walls are monitored by their normal stress so that constant
σy = σz = −Pc. This step allows the calibration of the two
last parameters λ100 and λ0, (see Table 2).

Table 2 Model parameters calibration values from triaxial compres-
sion tests at 600 MPa

Parameters Physical meaning Values

kp strain hardening modulus 2
kh consolidated material parameter 1
εel limit elastic strain in compression 20ε0
εpl maximum compaction strain 200ε0
λ100 saturated sliding threshold coefficient 1
λ0 dry sliding threshold coefficient 5

Figures 11 and 12 display the results of experimental
tests carried out by [18] and of numerical simulations ob-
tained for an hydrostatic and deviatoric compression phase
respectively for (Sr = 0%) and (Sr = 100%). Numerical sim-
ulations show a good agreement with experimental tests and
the capability of the model to reproduce results at the macro-
scopic scale. The effect of saturation ratio is pronounced for
hydrostatic phase as shown in Figure 11, a relative differ-
ence of about 25% between the volumetric strains of dry and
saturated samples at a mean stress of 600 MPa is observed.
For deviatoric phase, the saturation ratio notably affects the
shear limit as shown in Figure 12. At 600 MPa of confine-
ment pressure, the shear resistance drops from 800 MPa for
a dry sample to 250 MP for a saturated sample which is only
due to the presence of free water in the saturated sample.
Note on Figure 12 that the comparison between the experi-
mental and numerical results is not perfect for dry concrete
and an axial strain greater than 8%; it is a minor drawback
of the DE model that the authors did not try to fix because
the maximum deviatoric stress varies slightly for different
tests performed on dry concrete [12].

Fig. 11 Hydrostatic compression test; mean stress vs. volumetric
strain: comparison between experiment and modelling for Sr = 0% and
Sr = 100%

Fig. 12 Deviatoric phase of triaxial test at Pc=600 MPa, deviatoric
stress vs. axial strain: comparison between experiment and modelling
for Sr = 0% and Sr = 100%

4.3 Model validation

4.3.1 Hydrostatic tests at different saturation ratio (600
MPa)

Figure 13 presents simulation results for hydrostatic com-
pression tests at different saturation ratios. This figure shows
that beyond the consolidation point, the mean stress increases
and the volumetric strain decreases for higher saturation ra-
tios.

Fig. 13 Simulation of hydrostatic compression test; mean stress vs.
volumetric strain for different saturation ratios (Sr = 0%, Sr = 44%,
Sr = 78%, Sr = 93% and Sr = 100%)

4.3.2 Triaxial tests at moderate confining pressure (at 100
and 200 MPa)

Figure 14 shows simulation results of the deviatoric phase
of triaxial tests at 100 MPa and 200 MPa compared to ex-
perimental results obtained by [18] for different saturation
ratios. Triaxial tests at moderate confining pressures are dif-
ficult to simulate because these mean stress levels corre-
spond to the transition from brittle to ductile behavior, which
means, to have in the same time a significant effect of both
damage and plasticity. However, Figure 14 shows that the
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simulation results are in good agreement with the experi-
mental ones.

From the one hand, Fig. 12 and 14 indicate that the de-
viatoric behavior of dry concrete is highly influenced by the
confining pressure since as the confining pressure increases
from 100 to 600 MPa the deviatoric stress increases from
250 to 800 MPa. From the other hand, for a given confine-
ment pressure and for intermediate saturation ratios (Fig.
14(a) and 14(b)), the peak deviatoric stress lies between the
dried and saturated limit cases and seems to be associated di-
rectly to the saturation ratio. Thus the limit stress decreases
when the saturation ratio increases. Fig. 14(b)) shows non-
satisfying agreements for the 200 MPa confinement triaxial
tests with initial saturation ratio Sr equal to 78% and 100%;
all other results are very good. The authors explain these
results by a possible overestimation of Sr [38], the two sam-
ples might have slightly dried just before the tests.

(a)

(b)

Fig. 14 Deviatoric phase of triaxial tests, deviatoric stress vs. axial
strain for different saturation ratios (Sr = 0%, Sr = 44%, Sr = 78% and
Sr = 100%): comparison between experiment and modelling. a 100
MPa confinement. b 200 MPa of confinement

4.3.3 Oedometric tests

The static quasi oedometric compression (QOC) test allows
testing the mechanical response of the material under a quasi-
uniaxial strain loading path while applying a passive con-
finement. The difference between hydrostatic and quasi oe-

dometric tests lies mainly in the volumetric strains reached
for the same mean stress. During this test, a cylindrical spec-
imen, tightly enclosed in a confinement vessel, is axially
compressed by means of high strength compression plugs as
stated by [3]. To simulate the quasi oedometric test, the sam-
ple is placed between six rigid walls. The axial displacement
of both top and bottom walls are controlled while blocking
all four other walls to simulate a uniaxial confined compres-
sion test under uniaxial strain. Figure 15 shows predictive
mean stress evolution obtained for different saturation ra-
tios. An experimental result obtained on a dry sample is also
shown. The behavior of the numerical sample for Sr = 0%
is very close to the experimental behavior. The effect of free
water is also shown by means of numerical simulations. As
expected, the results reveal that when the sample saturation
increases, its oedometric stiffness also increases.

Fig. 15 Simulation of oedometric compression tests: mean stress vs.
volumetric strain for different saturation ratios (Experiment Sr=0%;
Numerical simulation Sr = 0%, Sr = 44%, Sr = 78% and Sr = 100%)

5 Conclusion

The DE model presented in this paper is dedicated to the
modelling of concrete behavior at very high stress level. To
take into account the influence of free water during porosity
closure that is observed in experiments, a new behavior law
was developed at the scale of links between DEs. This con-
stitutive behavior is based on a dependency of inelastic de-
formations of concrete and maximum shear stress criterion
with the saturation ratio. The results show that the model
is able to well reproduce the behavior of concrete samples
on a wide range of stress levels (triaxial compression with
a confining pressure up to 600 MPa) and on a wide range
of saturation ratios (Sr = 0 to 100%). The identification of
parameters is carried out thanks to tests performed on dry
samples. The simulation results obtained for various load-
ing paths and saturation ratios demonstrate the efficiency of
the approach to take into account the influence of free water
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at very high stress level. As a perspective, simulations at a
larger scale on concrete structures are feasible and will al-
low the evaluation of saturation ratio effects at a structural
scale. The effect of saturation ratio on the behavior of con-
crete structures submitted to penetration or perforation tests
will be evaluated thanks to this model.
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