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Abstract That paper ®rst presents a simpli®ed Damage
Mechanics (DM) model for the simulation of fracture in
wood. All damage phenomena are assumed to occur on a
surface (or a line in a 2D problem). Then test results of
mode I fracture in spruce and ®r are given. The size effect
is investigated. Linear Elastic Fracture Mechanics (LEFM)
and DM are compared for a simulation of three point
bending tests, classically used for the determination of the
fracture energy (Gf) in tension perpendicular to grain. The
study of the observed size effect gives the range of appli-
cability of LEFM. The critical energy release rate (Gc) and
the fracture energy (Yf) that are energy parameters of
LEFM and DM respectively, are identi®ed for small spec-
imens and compared with the experimentally dissipated
energy to fracture the specimen (Gf). Load-displacement
curves are correctly predicted with both methods. Gf can
be considered as a material parameter and it is veri®ed
that a non-linear approach is necessary for the simulation
of fracture of small specimens.

Bruchverhalten von Fichtenholz: Experimente
und numerische Analyse mittels linearer
und nicht-linearer Bruchmechanik

Die Arbeit stellt zunaÈchst ein vereinfachtes Modell der
Schadensmechanik (DM) zur Simulation des Bruchver-
haltens vor. FuÈr alle SchaÈdigungen wird angenommen, daû
sie an der Ober¯aÈche statt®nden (bzw. in einer Linie bei
einem 2D-Problem). Danach werden Testergebnisse des
Bruchverhaltens in Mode I fuÈr Fichten- und Tannenholz
beschrieben. Der Ein¯uû der ProbengroÈûe wird dabei
untersucht. Lineare elastische Bruchmechanik (LEFM) und
DM werden verglichen fuÈr den Fall einer Drei-Punkt-Bie-
gepruÈfung, die uÈblicherweise zur Bestimmung der Bruch-
energie (Gf) senkrecht zur Faser herangezogen wird. Der
Ein¯uû der ProbengroÈûe bestimmt den Bereich der An-
wendbarkeit der LEFM. Die kritische freigesetzte Energie
(Gc) und die Bruchenergie (Yf), beides Parameter der
LEFM, werden fuÈr jede Probe bestimmt und mit der

experimentell freigesetzten Energie beim Bruch (Gf) ver-
glichen. Die Verformung unter Belastung wird mit beiden
Methoden korrekt beschrieben. Gf kann als Materialkon-
stante angesehen werden. Es wird gezeigt, daû zum
Beschreiben des Bruchverhaltens kleiner Proben ein
nichtlinearer Ansatz notwendig ist.

1
Introduction
Normally, timber structures are designed with the intent of
avoiding failure modes associated with crack growth par-
allel to the grain. Therefore, the study of cracking, which
may be responsible for structural timber failure in a large
number of cases, is necessary to evaluate the load-bearing
capacity of a structure or of a sub-structure (e.g. notched
beams or mechanical joints).

In classical Linear Elastic Fracture Mechanics (LEFM)
(Grif®th, 1920), a theory which is commonly used for the
fracture analysis of metals or brittle materials such as
ceramics, all damage phenomena are assumed to be con-
centrated at the crack tip. Non Linear Fracture Mechanics
(NLFM) introduces the notion of a planar process zone
where cohesive stresses are assumed to occur (Hillerborg
et al., 1976; Bazant and Kazemi, 1990; Jenq and Shah, 1985;
Nallathambi and Karihaloo, 1986) for concrete and
(Gustafsson, 1988; BostroÈm, 1988) for wood.

A simpli®ed approach based upon Damage Mechanics
(DM) for the analysis of cracking is presented. NLFM and
DM have been developed to treat the problem of fracture
in materials that exhibit a softening behavior (i.e. quasi-
brittle materials). In such materials, fracture is preceded
by localization phenomena. In the proposed approach,
damage is assumed to occur on a surface (or on a line in a
2D problem) called an interface. The interface model
relates tractions to relative displacement jumps in the
localized zone. Damage is described by means of the
relative variations of stiffness.

An important limitation of LEFM is the necessity of
assuming the existence of a crack. Both NLFM and DM
concepts can be applied to treat the problem of crack
initiation in originally uncracked structures. In this paper
the problem of propagation of an already cracked area
is studied.

NLFM has been essentially applied to the problem of
fracture in concrete. In such an isotropic material, the ®rst
mode of fracture (tension) is predominant. Because of the
orthotropic behavior of wood, the crack propagates along
the grain under pure or mixed mode conditions. In the
present study, joint elements are used in a Finite Element
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(FE) scheme, in association with the DM model for the
analysis of cracking along an expected crack path. Such
techniques were used for different applications in civil
engineering (Ngo and Scordelis, 1967; Hohberg and
Bachmann, 1988; Gens et al., 1988; Rots and Schellekens,
1990; Garcia-Alavarez et al., 1994).

The proposed damage model and fracture mechanics
have the same kind of application and a link between the
two approaches is possible in terms of fracture energy.

The so-called ``size effect'' is de®ned through a com-
parison of geometrically similar structures of different siz-
es. Discussions are given in (Bazant, 1984) for concrete or in
(Aicher, 1992; Aicher et al., 1993) for wood. In the analysis
of this phenomenon, one may separate size-effect into a
``volume effect'' which is due to the existence of defects in
the material and a ``structural effect'' which is the direct
effect of the size on the response of cracked structures.

The process zone is a relatively important region for
small specimens but is negligible for large specimens. In
the former case, the process zone in¯uence produces a size
effect on the nominal strength that does not vary as the
inverse square root of the characteristic size (h)0.5) like in
LEFM (Bazant, 1984). DM and NLFM take into account the
process zone in¯uence for small specimens.

An experimental program was performed for the mode I
fracture analysis of spruce and ®r species. The three point
bending (TPB) test proposed at CIB-W18 (Larsen and
Gustafsson, 1989) was ®rst carried out for the determina-
tion of fracture energy with respect to the wood orienta-
tion (denoted RL and TL in the literature) and for a ®xed
beam depth (h = 45 mm) and width (b = 45 mm). The
study of the beam depth in¯uence on the nominal stress
(h = 45, 67, 100 mm), with a given wood orientation (TL)
and a ®xed beam width (b = 45 mm), shows that LEFM
concepts are not valid for the smallest beams as demon-
strated in (Aicher et al., 1993). Another important result is
that the fracture energy (Gf) does not depend on the
specimen size for the considered specimens.

In order to verify these experimental observations, TPB
tests with the smallest size were ®rst simulated by means
of LEFM. Some typical tests were chosen. It may be as-
sumed that proposed conclusions would be the same by
simulating other tests.

The FE method is used for the analysis of the crack
propagation. The critical energy release rate (Gc), normally
a material property, here a theoretical quantity, is deter-
mined from the maximum load (onset of propagation of
the initial crack).

In a second step, the TPB test was analyzed by the FE
method with the DM model. The only determined pa-
rameter is the fracture energy per unit cracked area (Yf)
which is a material parameter of the modeling and which
depends on the wood orientation. Yf was determined from
the maximum load.

Load-displacement curves are correctly described with
both LEFM and DM. As expected, the identi®ed critical
energy release rate (Gc) is different from the experimental
fracture energy (Gf) but the fracture energy of the DM
model (Yf ) is close to Gf.

The previous result con®rms that the fracture energy is
the parameter that governs fracture propagation and that

fracture energy obtained with the CIB-W18 TPB test can be
considered as a material parameter for the analysis of
fracture.

2
Experiments

2.1
Presentation
An experimental program has been carried out at CTBA
Paris and University of Tokyo for the determination of the
fracture energy in tension perpendicular to grain of spruce
and ®r species. According to RILEM and CIB-W18 rec-
ommendations (Larsen and Gustafsson, 1989), TPB tests
were performed in order to obtain a stable crack extension
in the longitudinal-tangential and longitudinal-radial
growth planes, denoted RL and TL respectively, from an
initial notch to the complete separation of both crack faces
(Fig. 1).

The mean density of wood is 440 kg/m3. Specimens
were conditioned at 20 � 2 °C and 65 � 5% RH. All the
specimens have the same width (b = 45 mm), the depth
(h) varies between 45 and 100 mm.

The stroke speed is chosen proportional to the depth
(h) in order to prescribe a constant strain rate. For
smallest specimens (h = 45 mm), the head speed was
chosen equal to 0.5 mm/min. in order to obtain approxi-
mately the same strain rate as in the Larsen and Gustafs-
son tests (1990).

A classical parameter of fracture for quasibrittle mate-
rials is the fracture energy Gf. It is the dissipated energy
per unit crack area. It is experimentally obtained by ana-
lyzing the whole dissipated energy in a specimen. The
fracture energy is (Larsen and Gustafsson, 1989):

Gf � W �m g u0

h0 b
�1�

W is the area under the load de¯ection curve by con-
sidering an ``equivalent force'' Peq = P ) m g/2 to take
into account the work due to the weight, u0 is the de-
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Fig. 1. Three point bending test (Larsen and Gustafsson 1989)
Bild 1. Drei-Punkt-BiegepruÈfung nach Larsen und Gustavsson
(1989)
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¯ection at failure, m is the mass of the beam, g is the
gravity acceleration, b is the beam width and h0 is the
ligament length.

2.2
Preliminary numerical results
The next section will discuss the numerical simulation of
these tests with both LEFM and DM models. Preliminary
results are given for the discussion of tests. Figure 2 gives
the theoretical in¯uence of the notch shape on the stability
of the load-de¯ection response computed by means of
LEFM. A thin notch (c = 1 mm) ®nalized with a 1 mm
razor blade (Fig. 1) is better than a V-notch (c = 3 mm).

Figure 3 shows the theoretical in¯uence of the initial
crack length on the load-displacement response computed
by means of DM. An initial crack length, equal to 60% of
the beam depth (h), ensures a stable response. This initial
crack length was also used by Aicher (1992).

2.3
Results
Table 1 gives the fracture energies with respect to the
growth plane and to the specimen depth (h). The mean
fracture energy value of white wood for the lower depth
(h = 45 mm, 107 specimens, spruce and ®r, any orienta-
tion), close to 200 Nm/m2, is lower than the value obtained
by Larsen and Gustafsson (1990). Note that the number of
tests presented in the previous paper is low for the con-
cerned density and beam depth. The presented result for
spruce and for the orientation RL (h = 45 mm) is close to
the fracture energy value found in (Aicher, 1992) with
quite the same dimension (b = 44 mm, h = 10±320 mm).

2.3.1
Size effect
The in¯uence of the specimen dimensions was also in-
vestigated for spruce and ®r in the TL orientation only. In
order to analyze the structural effect and not the volume
effect, specimens were 2D-similar: only the depth was
modi®ed (h = 45, 67, 100 mm) but not the width
(b = 45 mm).
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Fig. 2. Theoretical in¯uence of the notch shape on the stability of
the load-de¯ection response computed by means of LEFM
Bild 2. Theoretischer Ein¯uû der Nutform auf die StabilitaÈt des
Verhaltens unter Belastung und Entlastung entsprechend der
linearen elastischen Bruchmechanik (LEFM)

0 1
Deflection (mm)

1500

1000

500

0

Fo
rc

e 
(N

)

a=0

a=0.1 h

a=0.2 h

a=0.3 h
a= 0.4 h

a=0.5 h
a=0.6 h

Fig. 3. Theoretical in¯uence of the initial crack length computed
by means of DM
Bild 3. Theoretischer Ein¯uû der anfaÈnglichen RiûlaÈnge,
berechnet mittels ``Damage Mechanics'' (DM)

Table 1. Fracture energy (Gf) of spruce and ®r specimens with constant width (b = 45 mm) versus the specimen depth (h).
Tests 1 and 2 were performed at Paris, tests 3 and 4 at University of Tokyo. Tests 1, 2 and 4 use French wood. Tests 3 use
north American spruce. Nb denotes the number of tests and cv the coef®cient of variation (%)
Tabelle 1. Bruchenergie (Gf) von Fichten- und Tannenproben konstanter Breite (b = 45 mm) in AbhaÈngigkeit von der ProbenhoÈhe
(h). Tests 1 und 2 wurden in Paris durchgefuÈhrt; Tests 3 und 4 an der UniversitaÈt in Tokyo. Tests 1, 2 und 4 verwendeten franzoÈsische
Holzproben, Test 3 nordamerikanische Fichte. Nb bezeichnet die Anzahl der PruÈfungen und cv den Variationskoef®zienten (%)

Species h (mm) Orient. Mean (Nm/m2) Min (Nm/m2) Max (Nm/m2) Nb (cv %)

Spruce1 45 RL 220 159 345 32 (19)
(Picea excelsa) 45 TL 160 100 247 10 (29)
Fir2 45 RL 210 126 367 35 (26)
(Abies pectinata) 45 TL 157 97 236 5 (37)
Sitka Spruce3 45 RL 220 157 248 5 (16)
(Picea sitchensis) 45 TL 164 136 196 5 (16)
Spruce and Fir4 45 RL 251 184 371 5 (31)
(not distinguished) 45 TL 157 133 214 10 (15)
Spruce and Fir4 67 TL 160 115 209 9 (19)
Spruce and Fir4 100 TL 159 112 279 8 (34)
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The nominal stress (rN) is de®ned as:

rN �
P� 5 m g

12

b h
�2�

with P is the maximum force and m the mass of the beam.
According to LEFM, rN varies as h)0.5. In Fig. 4 are plotted
Gf and ln(rN) versus ln(h). This ®gure shows that the
LEFM nominal strength prediction is correct for the two
largest specimen sizes but not for the 45 mm one due to
the in¯uence of the process zone on the whole fracture
process of the specimen. It is possible to de®ne a brittle-
ness number for the discussion of LEFM applicability
(Bazant and Pfeiffer, 1987).

Table 1 and Fig. 4 show that the size effect seems to be
insigni®cant for fracture energy. Larsen and Gustafsson
(1990) noticed a slight size effect but these authors in-
creased proportionally both the beam thickness and depth
h (h = 40±160 mm). The size effect of the previous authors
may be due to the increase of defects as the thickness
increases.

Aicher (1993) obtained the same conclusions as the
ones presented here for specimen depths (h) varying from
10 to 320 mm for a RL orientation and a constant beam
width (b = 44 mm).

3
Modeling of localized fracture with damage mechanics
Damage phenomena are assumed to be concentrated on a
zero-thickness interface. Interface modeling allows a study
of crack propagation under pure or mixed mode condi-
tions.

The main features and assumptions of the damage
model are: Damage is described through the damage
variables d1 and d2 which are the relative stiffness de-
creases; further there is no damage under compression
(unilateral effect) and there are no irreversible displace-
ment discontinuities. During the elastic stage of the load-
ing process, no signi®cant relative displacement occurs.

The interface G connects the two parts of a solid W+ and
W) (Fig. 5).

To simplify, let us consider a plane stress problem in
the plane x1x2 (x1 is a unit vector along the grain direc-
tion). The relative displacement vector [u] at point P is
([x] denotes the jump of the quantity x between the W+

and W) regions):

�u� � u� ÿ uÿ � �u1�x1 � �u2�x2 with �u2� � 0 �3�
The traction vector is:

t � r12x1 � r22x2 �k1�1ÿ d1��u1�x1

� k2�1ÿ d2��u2�x2 �4�
d1 and d2 are the respective damage indicators in mode II
and I. The stiffnesses k1 and k2 have to be high to ensure
continuity of displacement when there is no damage
(penalty factors).

An example of a traction-relative displacement curve in
mode I is given in Fig. 6.

The variables Ydi (i = 1, 2) which are similar to the
energy release rates introduced in Fracture Mechanics, are
conjugated to di � xh i� denotes the positive part of x):

Yd1
� 1

2

r2
12

k1 1ÿ d1� �2 and Yd2
� 1

2

r22h i2�
k2 1ÿ d2� �2 �5�

The damage evolution equations are relations between d1,
d2 and Yd1

, Yd2
. A particular choice of the damage evolu-

tion law is presented:

Y � supjs�t Yd1
� cYd2

� � �6�
where supjs�t x� � is the maximum value of x(s) with time s
between 0 and t. c is a coupling factor between modes I
and II and:
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Fig. 4. Size effect on the nominal strength (rN) and the fracture
energy (Gf) for a TL orientation
Bild 4. Ein¯uû der ProbengroÈûe auf die nominale Festigkeit (rN)
und die Bruchenergie (Gf) fuÈr eine TL-Orientierung
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d � d1 � d2 � w�Y� � Y

Yf

� �n

and d � 1 �7�

Yf and n are characteristic parameters of the damage
evolution law of the interface. Yf corresponds to a critical
energy. These parameters can be identi®ed by the analyze
of fracture tests.

3.1
A link with Linear Elastic Fracture Mechanics
Interface models are introduced for the simulation of de-
cohesion between two solids or between two parts of a
solid. Classical fracture tests may be used for the identi-
®cation of fracture models. A link between Damage Me-
chanics and Fracture Mechanics is presented (Allix et al.,
1994).

Through fracture tests (Valentin et al., 1989) one can
obtain the three inter-laminar fracture toughnesses GIc,
GIIc and GIIIc relative to the modes I, II and III. Gic values
(i = I, II, III) are different because of the interface ort-
hotropy. Gic are de®ned in the framework of LEFM.

3.1.1
Analysis of fracture propagation
The dissipative phenomena are assumed to occur on the
interface G only. Let us consider a steady state of fracture
propagation. This means that during crack propagation
the process-zone has a constant size and translates without
modi®cation. This distinction between the fracture onset
and the steady state of propagation is classical for quasi-
brittle materials that exhibit a R-curve effect. Here, con-
trary to the critical energy release rate G(a0,Pu), de®ned at
the onset of cracking for the ultimate load Pu and for the
initial crack length a0, the critical energy release rate Gc =
G(a,P) de®ned for a steady state of fracture propagation, is
considered. The latter quantity is hard to obtain experi-
mentally because of the dif®culty to measure the crack
length (a) during the test.

Let us de®ne the crack tip by d = 1. An equivalence of
dissipated energies per unit cracked area gives:

Gc � GI � GII �
Z d�1

d�0

Yd2
dd�

Z d�1

d�0

Yd1
dd �8�

A mixed mode of fracture is considered. The intrinsic
toughnesses GIc and GIIc have to be introduced. Let us
de®ne the ratio c such that:

c � Yd1

Yd2

� GII

GI
then Gc �

Z d�1

d�0

�1� c�Yd2
dd �9�

By considering the constitutive equations (6), (7), this
becomes:

Gc � �1� c�Yf

1� cc
�10�

In particular, under pure modes of fracture:

GIc � Yf ; GIIc � Yf

c
� GIc

c
�11�

The previous equations give some relations between
Fracture Mechanics and Damage Mechanics parameters.

Using (8)±(11), the criterion for fracture propagation un-
der mixed mode conditions is:

GI

GIc
� GII

GIIc
� 1 �12�

The particular choice of the damage evolution (6), (7) is
then justi®ed: this kind of propagation criterion is clas-
sically proposed in the available analyses of fracture in
orthotropic materials such as wood (Hunt and Croager,
1982; Lum and Foschi, 1988; Murphy, 1986; Patton-
Mallory and Cramer, 1987; Triboulot et al., 1984; Valen-
tin et al., 1991). The second term of Eq. (12) can be
written with an exponent (generally equal to 2) as pro-
posed by some authors (Wu, 1967; Mall et al., 1983). The
proposed damage evolution law (6), (7) can be modi®ed
similarly.

Note that critical energy release rates are not suf®cient
data because they only give information about the area
under the stress-displacement curves but not on their
shapes.

3.1.2
Fracture energy
Now the fracture energy (Gf), dissipated during complete
cracking of a specimen (e.g. in mode I), is considered. In
the case of a perfectly brittle material, there is no process
zone, thus transient and steady states of propagation are
similar and then:

Gf � Gc �13�
The previous result is still valid for quasibrittle materials,
but only for large structures, in which the in¯uence of the
process zone can be neglected (Bazant, 1984). In the
general case of quasibrittle materials and non-large
structures, Eq. (13) does not hold.

3.2
Finite element strategies
The presented damage model was implemented in a FE
code. Joint elements were used to model the decohesion
between parts of the structure. Due to damage on inter-
faces, a instability point may appear. This critical point
cannot be passed with a Newton-Raphson method. An
indirect control algorithm (Riks, 1979) is necessary to
control the computation and pass such a limit point. In a
FE scheme, the iterative procedure is (Fig. 7):

F

U0 U1 U2 U

f(U )1

Fig. 7. Indirect control algorithm after Riks (1979)
Bild 7. Indirekter Kontroll-Algorithmus (Riks 1979)
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Kdi � ki�1Fÿ f�Ui�
ki�1 � ki � dki

g�dki� � 0

8<: �14�

Subscript i denotes the iteration, K is the global stiffness
matrix, Ui is vector of nodal displacements, di is the in-
cremental displacement vector, F is the nodal force vector,
scalar ki denotes the reached level of force at iteration i.
In the Newton-Raphson method �dki � 0�, by the indirect
control method the load factor is released. It is then nec-
essary to impose a constraint (g(dki) = 0).

To ensure good convergence, a local constraint that
considers only the more signi®cant degrees of freedom in
the increase of damage is used. It consists of imposing a
constant jump of displacement between nodes a and b
during iterations along the direction n (n = 1, 2 is the
mode of principal damage). a and b are the opposite nodes
close to the Gauss point where the increase of damage at
the ®rst iteration was maximum. dki is given by:

�di�an ÿ �di�bn � 0 for i � 1 �15�

4
Numerical analysis of tests
The fracture of four TPB tests is simulated (h = b =
45 mm). Thus, only the mode I of fracture is considered.

The ®rst two specimens (sp1 and sp2, tests 3 in Table 1)
are made of sitka spruce with RL and TL orientations, with
a density of 440 kg/m3 and with fracture energies close to
the mean experimental values (GfRL = 220 Nm/m2,
GfTL = 162 Nm/m2). The two other ones (sp3 and sp4,
tests 1 in Table 1) are made of spruce with RL and TL
orientations, with a density of 400 kg/m3 (GfRL = 174 Nm/
m2, GfTL = 100 Nm/m2).

4.1
Determination of elastic properties of specimens
The elastic moduli were chosen in a ®rst step according to
EN338 with respect to the actual density: class C30 for sp1
and sp2 (EL = 12 GPa, GLT @ GLR = 0.75 GPa), class C24
for sp3 and sp4 (EL = 11 GPa, GLT @ GLR = 0.69 GPa). The
Poisson coef®cient mRL = mTL, chosen equal to 0.45, has
little in¯uence. The standard EN338 gives a mean trans-
verse Young modulus value (E90 = 1/2 (ER + ET)) which
did not give the correct beam stiffness. Then, ER and ET

were determined for each couple of specimens with the
global stiffness of the beam during the elastic stage of the
test. Note that ER and ET values are of major importance
compared to the in¯uence of other elastic characteristics.
It is found: ER = 1 GPa, ET = 0.4 GPa for sp1 and sp2
specimens and ER = 0.53 GPa, ET = 0.3 GPa for sp3 and
sp4 ones.

4.2
By means of linear elastic fracture mechanics
The energy release rate G(P,a) is computed by the crack
closure technique. The critical energy release rate (Gc) is
conventionally identi®ed from the ultimate load of a
fracture test. The initial crack length seems to have no
in¯uence on Gc for double cantilever beams specimens
(Valentin and Morlier, 1982) and single end notched

specimens (Ewing and Williams, 1979). The theoretical
critical energy release rate (Gc) of each specimen is de-
termined from the maximum load (P = Pu) and for the
initial crack length (a = a0 = 0.6 h) with the equation:

Gc � G�P; a� �16�
The crack propagation is then analyzed with the identi®ed
value of Gc by increasing the crack length and by applying
(16). Results are given in Figs. 8±11. By comparing com-
putational and experimental results, it appears that the
LEFM approach can predict the load-displacement curve
but as expected, the Gc value is very different from Gf. By
assuming that the chosen elastic constants are correct, the
Gc values (Figs. 8±11) are low compared with the Gf values.
This result is not very surprising because Gc is related to
the onset of propagation of a manufactured notch (with no
process zone at the notch tip) and Gf is related to all the
fracture process (i.e. essentially to the propagation of a
natural crack).
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4.3
By means of damage mechanics
Cracking is now taken into account by means of joint el-
ements in the mid-plane of the beam. The elastic constants
were given. Only the characteristic parameters of the
damage model (6), (7) have to be determined.

In the analysis of fracture in mode I of an already
cracked structure the major parameter that governs
cracking is the fracture energy Yf, which is the area under
the stress-relative displacement curve (Fig. 6). Its value is
given in (10) (c = 0). Figure 3 shows the in¯uence of the
initial crack length on the load-de¯ection response for a
given set of parameters. It was noticed that the curve
(a0 = 0) depends on the fracture energy (Yf), the stiffness
(k = k2; k1 = 0) and the exponent (n) but the curve
(a0 = 0.6h) depends essentially on Yf. That remark con-
®rms that the fracture energy (Yf) is the parameter that
governs fracture propagation. Notice on Fig. 3 the snap-
back curve for short cracks which justi®es the presented

indirect control algorithm. In this paper, only the propa-
gation of an existing crack is studied. According to the
previous remark, k and n can be chosen very roughly.
Nevertheless, a tentative identi®cation procedure of these
parameters is proposed. [u]c is de®ned as the critical crack
tip opening displacement such that the continuum has no
cohesion (Fig. 6):

�u�c �
����������������������
2�n� 1�Yf

nk

r
�17�

For a given Yf, as k or n grows, the ductility ([u]c) de-
creases. Thus it seems necessary to introduce in the model
a characteristic length that characterizes the process zone
length and therefore the brittleness. Such characteristic
lengths were introduced by Irwin (1957) in fracture me-
chanics of metallic materials with con®ned plasticity or
Hillerborg et al., (1976), Bazant et al. (1987, 1990) for
concrete, Gustafsson (1985, 1988) for wood. All these
characteristic lengths (or brittleness numbers) are sub-
stantially equivalent in the description of size effects and
the associated transition from ductile behavior to brittle
LEFM behavior.

Examine the specimen sp1 in Fig. 8. In order to estimate
the unknown parameters, the following assumptions
concerning the transverse tensile strength (ft,90), the frac-
ture energy (Yf) and the exponent (n) are chosen:

ft;90 � 4:5 MPa; Yf � Gf � 220 Nm/m2; n � 0:2

�18�
Then, the only unknown parameter (k) is identi®ed such
that the maximum stress is equal to ft,90, which gives:

k � 500 N/mm3 �19�
It was veri®ed numerically that the identi®ed value of k is
not too low and does not affect the global beam stiffness.
The choice of the n value is justi®ed by the value of the
critical crack tip opening displacement (17):

�u�c � 0:08 mm �20�
This value is close to the one proposed by Gustafsson
(1985) (0.2 mm). This value is very small and may explain
that LEFM is valid for the large specimens investigated
(h = 67, 100 mm) in which the process zone length may
be neglected.

Previous k and n values are kept constant for the four
considered simulations. Like in LEFM, the fracture energy
Yf is determined from ultimate loads. Figures 8±11 give the
Yf values and the load-de¯ection curves obtained from
tests and from LEFM and DM simulations.

Load-displacement curves are correctly described by
the DM approach. The major point is that for the RL wood
orientation, the experimental fracture energy (Gf) value is
very close to the fracture energy value used in the mod-
eling (Yf). There is a slight difference between Gf and Yf in
the case of the TL orientation certainly due to the uncer-
tainty in the identi®cation of elastic stiffnesses and damage
parameters.
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Fig. 10. Load-de¯ection curve for the specimen sp3 (h = b =
45 mm)
Bild 10. Verformung in AbhaÈngigkeit von der Last fuÈr Probe sp3
(h = b = 45 mm)
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5
Conclusions

5.1
Experiments
The CIB-W18 draft standard for fracture energy determi-
nation is a simple method to obtain the fracture energy Gf

of wood in tension perpendicular to the grain.
A sharp notch ®nalized with a razor blade and an initial

crack length equal to 60% of the beam depth ensures stable
load-de¯ection curves.

The size effect study shows that LEFM is not valid for
the 45 mm specimen analysis. An important result is that
the fracture energy is not size dependent.

5.2
Numerical analysis of tests
An interface model based on Damage Mechanics has been
presented for the analysis of cracking under pure or mixed
mode conditions in an orthotropic medium such as wood.
A link between DM parameters and LEFM parameters
allows a clear identi®cation of the parameters of the
model. The use of joint elements to simulate the crack
propagation is easy to implement in a FE code.

Only pure mode I conditions were examined numeri-
cally. Comparisons between simulation results with LEFM
and experimental results of the TPB test have shown that
LEFM could predict the load-displacement curve but the
critical energy release rate could not be chosen equal to the
fracture energy. This is due to non-linear phenomena
which occur in the process zone.

The load-de¯ection curve is correctly predicted by the
DM model. In addition, it was shown that the fracture
energy was the major parameter that governs fracture
propagation in linear (large structures) or in non-linear
(small structures) fracture studies.
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