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ABSTRACT. The efficiency of the discrete element method for studying the fracture of 
heterogeneous media has been demonstrated, but it is limited by the size of the computational 
model. A coupling between the discrete element and the finite element methods is proposed to 
handle the simulation of impacts on large structures. The structure is split into two 
subdomains in each of which the method is adapted to the behaviour of the structure under 
impact. The DEM takes naturally into account the discontinuities and is used to model the 
media in the impact zone. The remaining structure is modelled by the FEM. We propose an 
extension of the coupling procedure to connect the Discrete Element model to shell-type 
Finite Elements. The efficiency of the coupling method is tested and validated. 

RÉSUMÉ. L�efficacité de la méthode éléments discrets pour étudier la rupture des matériaux 
hétérogènes a été démontrée, mais elle reste limitée par les capacités de calcul informatique. Un 
couplage entre éléments discrets et éléments finis est proposé. La méthode éléments discrets qui 
prend naturellement en considération les discontinuités est employée pour représenter la zone 
d�impact. La partie restante de la structure est simulée par éléments finis. Nous proposons une 
adaptation de la méthode de couplage pour relier le modèle éléments discrets à des éléments 
finis de type coque. L�efficacité de la méthode de couplage est testée et validée. 
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1. Introduction 

The general framework of this study deals with prediction of reinforced concrete 

structure response under a severe local dynamic loading such as an impact due to an 

aircraft, a missile or a near-field explosion. A reliable and efficient design of structures 

under such a loading needs to take into account both locally discontinuous behaviour 

(fractures, fragmentation) and the globally elastic response of the structure. 

The Discrete Element Method (DEM) (Hentz et al., 2004a) is appropriate for 

modelling material discontinuities and also very well adapted to dynamic problems. 

This method does not rely on any assumption regarding where and how a crack or 

several cracks occur and propagate since the DE model is naturally discontinuous. 

Nevertheless, computational time is still prohibitive for large Discrete Element 

Models, and the analysis of industrial-size structures with DEM only seems difficult. 

Because in most cases discontinuous phenomena such as fracture and 

fragmentation are localized right in the vicinity of the impact, it is worth coupling 

DEM with the standard Finite Element Method (FEM). The latter method is applied 

onto the part of the structure remaining elastic, allowing a reduction of both 

modelling and computation times. 

In the first part of the paper, the proposed Discrete Element (DE) modelling is 

presented. The identification process of DE parameters, in both linear and nonlinear 

range of the constitutive behaviour, is described briefly. Local model parameters are 

calibrated in order to reproduce macroscopic concrete behaviour. 

The coupling DE/FE algorithm has been first developed to couple discrete 

elements with 3D massive finite elements (Frangin et al., 2006). In the second part 

of this paper we remind the coupling method and present its adaptation for shell 

elements. Finally, the efficiency of the coupling algorithm is verified on a series of 

elastic, static and dynamic tests. 

2. Discrete element model 

2.1. Constitutive behaviour of concrete modelled by means of discrete elements 

The fundamentals of the used DEM are fully described in (Hentz et al., 2004a). 

The elements are rigid spheres of different sizes. The centroid positions are 

randomly generated through use of a special �disordering� technique (based on an 

algorithm described in Jerier et al., (2009)) that provides a polydisperse assembly 

with a particular size distribution. The characteristic sizes of elements do not have to 

be representative of concrete constituents, such as the granular or cement matrix, 

since the aim is to produce a macroscopic description. 

Two types of interactions are defined. Bond-type interactions are defined 

between two elements not necessarily in contact. During the simulation, additional 
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interactions of contact-type can be added. Interactions between two spherical 

discrete elements are defined by means of normal Kn and tangential Ks stiffnesses 

characterizing the elastic behaviour of concrete. �Micro-macro� relations (Hentz et 
al., 2004a) give the local stiffnesses Kn and Ks from the Young�s modulus and 

Poisson�s ratio. These relations stem from homogenization models (Liao et al., 
1997) typically used for regular DE assemblies; they have been modified to take into 

account both the relative disorder and the interaction surface Sint. Equation [1] shows 

the micro-macro relations applied to determining Ks and Kn between two elements a 

and b. 
,a b

in i tD  stands for the initial distance between elements a and b, with Ra and 

Rb being the element radii. The B, C and H parameters still need to be identified. All 

details about parameters identification can be found in Rousseau et al. (2008). 
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A modified Mohr-Coulomb criterion [2] associated with softening is used to 

model the non-linear behaviour of the material. Local parameters, such as local 

tensile strength T, cohesion Co and softening factor ] need to be identified from 

global parameters such as compressive and tensile strengths Vc and Vt and fracture 

energy Gf. A classical Coulomb friction constitutive behaviour is used between 

elements in contact (Figure 1). 
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Figure 1. Interaction laws for DE 

2.2. Identification of parameters relative to the nonlinear behaviour 

Figure 2 shows the flowchart of the identification procedure allowing to obtain 

local parameters (local tensile strength T, softening parameter ] and cohesion Co) 

through the simulation of uniaxial quasi-static tensile and compressive tests. 
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Figure 2. The identification procedure 

 
Figure 3. Tensile test 

This procedure was applied in order to identify local parameters of a concrete 

sample extensively studied in the laboratory 3S-R (Gabet et al., 2008). Results of 

tensile and compressive tests are shown on Figures 3 and 4. One can see that the use 

of a local tensile strength T of 3.3 MPa and softening factor ] of 10 provide a good 
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approximation of the experimental tensile test (Figure 3). Even though the post-peak 

part of the experimental curve is not available for updating, the DE model succeeds 

in reproducing the brittle behaviour typical for the concrete material. The second test 

involves uniaxial quasi-static compression. Results obtained with the DE model and 

Co = 4.4 MPa are in good agreement with the measured data (Figure 4). 

 

 

Figure 4. Compressive test 

3. Coupled model 

3.1. General coupling method 

This section concerns the coupling procedure between continuum and discrete 

domains. Discrete element method is convenient for modelling discontinuities and 

fracture but it leads to prohibitive costs of calculation for large structures. To 

optimize the numerical model, we have chosen to couple discrete elements used in 

the vicinity of the impact with elastic finite elements used in the rest of the structure.  

Many methods have been already developed for multi-scale problems (Xiao and 

Belytchko, 2004 and Ben Dhia and Rateau, 2005). Xiao and Belytchko, 2004 have 

introduced the idea of a bridging domain where the Hamiltonian is a linear 

combination of molecular dynamics and finite elements. Here, we use the bridging 

domain method to couple DE and FE models (Figure 5). Equation [3] shows that DE 

and FE Hamiltonians are weighted by a parameter K whose value is 1 in the FE 

domain and 0 in the DE domain. 

� �1FE DEH = H + HK K�  [3] 
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Figure 5. Bridging domain 

To guarantee kinematic continuity, the degrees of freedom of elements in the DE 

and FE domains have to be linked within the interface zone. Several approaches can 

be considered. Following Xiao and Belytschko (2004), we link the Discrete Element 

degrees of freedom with Finite Element degrees of freedom using Lagrange 

multipliers. Equation [4] presents the kinematic conditions in the bridging domain 

using DE displacements dr and FE displacements ur. Details of the method are 

explained in (Frangin et al., 2006) and (Rousseau et al., 2009). 

r rd = k u
G

G

 [4] 

The algorithm of DE-FE coupling is implemented in the fast dynamics software 

Europlexus (Europlexus, User�s Manual). In this code, an explicit time integration is 

used with a formulation based on velocities (Casadei and Halleux, 1995 and Key, 

1980). For mixed DE and FE models, the critical time step given by the classical 

stability condition is imposed by the discrete element model which is the most 

restrictive due to the small size of discrete elements. The coupling decreases the 

critical time step as explained in Rousseau et al. (2009). 

3.2. Coupling shell finite elements with discrete elements 

Because the shell elements are more widely used to model large thin structures, 

we adapt the coupling method presented in the previous section. The difficulty 

consists in finding the appropriate kinematics constraints between shell nodes 

displacements and discrete elements displacements. Figure 6 shows an example of 

possible location of DE with respect to the shell elements. For the two discrete 

elements in the middle, the nearest shell element cannot be easily identify: one of 

them is outside of the two shell elements thickness whereas another one belongs to 

both shells. 
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Figure 6. Difficulties in locating DE with respect to shell elements 

To solve this problem, we calculate an average normal for all shell nodes. Thus, 

our main idea is to create fictive nodes and build a fictive 3D finite element 

(Figure 7). With those fictive nodes, the previously described coupling method can 

be applied. Each fictive node is defined using the average normal n and the real 

thickness h [5]. 

2
fictif reel

h
x = x ± n
G G G

 [5] 

 

Figure 7. Definition of fictive nodes 

The kinematic constraints are formulated using displacements of the fictive 

nodes and the displacements u and rotations � of real shell nodes are calculated 

using the standard interpolation equation for shells ((Reissner, 1974) : 

fictif reel
u = u +z�

G

G G

with 
2

h
z = ±  [6] 
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4. Validation of the coupling method 

To validate the exposed coupling algorithm, several quasi-static and dynamic 

tests has been simulated. To reproduce the quasi-static conditions, an artificial 

damping, proportional to the velocity, is introduced for discrete and finite elements. 

For all tests considered, three numerical models have been compared: the full FE 

model, the coupled DE/shell FE model and the full DE model. 

We model a concrete bar (0.85m x 0.25m x 0.25m) with FE shells and DE using 

three FE layers in bridging domain (Figure 8). One end of the sample is blocked 

whereas a displacement is applied on the other end. 

 

Figure 8. FE, coupled and DE models used in validation tests 

First, on Figures 9 and 10, the final deformation shapes of the beam predicted by 

the three numerical models are compared with the correspondent theoretical 

solutions. A good agreement of results validates the coupling algorithm in elasticity 

for both static tension and bending. 

 

Figure 9. Comparison of results in quasi-static tensile tests 

D
o
w

n
lo

ad
ed

 b
y
 [

P
ro

fe
ss

o
r 

L
au

re
n
t 

D
au

d
ev

il
le

] 
at

 0
4
:5

0
 1

5
 M

ay
 2

0
1
2
 



Coupling discrete elements with shell finite elements     161 

 

Figure 10. Comparison of results from a bending test 

In dynamics, the objective is to evaluate the errors made using the coupling 

method compared with the finest model i.e. the discrete element model. The 

displacements are compared for the three models in two points of the beam (Figure 

11) situated in the DE zone at x = 0.75m, and in the bridging domain at x = 0.4351m 

(DE and coupled models) or 0.45m (FE model).  

The three models present very similar answers (Figure 12). The difference on the 

first frequency of oscillation is of 4% approximately between the coupled model and 

the DE model and about 1% between the coupled model and the FE model. The 

difference in amplitude is about 6% between the coupled model and the DE model 

and about 7% between the coupled model and the FE model. Displacements of the 

coupled model are between those of the FE and the DE models.  

Similarly, in bending, displacements are compared for the three models (Figure 

13). Here, the differences on the first frequency of oscillation are about 1 % between 

the coupled model and the DE model and approximately 3% between the coupled 

model and the FE model. The amplitude difference is about 3% for x=0.75m and 8% 

for x=0.4351m between the coupled model and the DE model. It is approximately 

2% for x=0.75m and 8% for x=0.4351m respectively for the coupled model and the 

FE one. It is observed that displacements of the coupled model are always situated 

between DE and FE model displacements. 
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Figure 11. Location of the comparison points for the dynamic tests 

 

Figure 12. Tension test: axial displacements in the DE zone and in the bridging domain 

  

Figure 13. Bending test: vertical displacements in the DE zone and in the bridging 
domain 
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Globally, the elastic responses of coupled DE-FE model in the considered tests 

are quite close to the reference solutions which proves the efficiency of the coupling 

method. The presented quasi-static and dynamic tests validate the coupling 

algorithm in linear elasticity. Next step consists in applying the DE/FE coupling to 

deal with nonlinear problems. 

5. Conclusion 

The proposed FE-DE coupling algorithm based on a robust identification 

procedure and the use of an efficient coupling method opens the way to simulate 

large reinforced concrete structures under impact. It was up to now impossible to 

simulate such problems by means of discrete elements only. The computational 

performances can still be improved by parallelizing the discrete element model and 

by using a multi-step time integration. 
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