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Abstract 

This article focuses on concrete structures submitted to impact loading and is aimed at 

predicting local damage in the vicinity of an impact zone as well as the global response of the 

structure. The Discrete Element Method (DEM) seems particularly well suited in this context 

for modeling fractures. An identification process of DEM material parameters from 

macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) 

will first be presented for the purpose of enhancing reproducibility and reliability of the 

simulation results with DE samples of various sizes. 

The modeling of a large structure by means of DEM may lead to prohibitive 

computation times. A refined discretization becomes required in the vicinity of the impact, 

while the structure may be modeled using a coarse FE mesh further from the impact area, 

where the material behaves elastically. A coupled discrete-finite element approach is thus 

proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of 

the structure. The proposed approach is then applied to a rock impact on a concrete slab in 

order to validate the coupled method and compare computation times. 
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1. Introduction 

The design of some civil engineering structures must take into account the risk of 

severe loadings due to natural or manmade hazards, such as rockfalls, aircraft or missile 

impacts. On a sensitive concrete structure, such loadings may have disastrous consequences, 

and an efficient and accurate prediction of damage proves to be of prime importance. 

Generally speaking, these severe loadings lead to fractures and fragmentation localized in one 

part of the concrete structure. The Discrete Element Method (DEM) (Cundall and Strack, 

1979) is appropriate for modeling such discontinuities. The model developed uses a 

disordered assembly of spherical elements of different sizes and masses in order to reproduce 

isotropic and homogeneous behavior at the macroscopic scale. This method does not rely on 

any assumption regarding where and how a crack or several cracks occur and propagate since 

the medium is naturally discontinuous and very well adapted to dynamic problems. In order to 

offer a predictive model, the DE model must properly depict concrete behavior. 

The identification process of Discrete Element (DE) parameters, in both linear and 

nonlinear behavior, will first be described. Local model parameters are calibrated so as to 

reproduce macroscopic concrete behavior. This process is nearly the same as that described in 

Hentz et al. (2004a), and the proposed modifications have simplified the process and 

improved the reproducibility and accuracy of the macroscopic characteristics obtained. These 

improvements have also provided a reliable and fast calibration method for parameters of 

large structures. 

Nevertheless, computation time increases with the number of DE, and the analysis of 

large structures with DEM proves difficult. A number of authors have pointed out that such a 

method is limited to small structures due to the computation cost of DEM. Use of the FE 

method further from the impacted area represents one way to minimize this constraint since in 
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most cases, severe degradation phenomena are localized right in the vicinity of the impact. In 

addition, the FE method is widely used, and efficient mesh generation software can 

dramatically reduce modeling duration, with the potential for faster calculations than when 

applying a full DE approach thanks to the facility of handling various discretization sizes. 

These facts naturally lead to proposing a coupled FE/DE approach. Such a coupling is based 

on partitioning the structure into two sub-domains: an initial FE domain where nonlinear 

phenomena may be neglected, and a second DE domain where severe nonlinear degradation 

phenomena due to impact loading may occur. The second section of this article will 

summarize the main features of the coupling method. Additional technical details can be 

found in another paper by the same authors (Frangin et al., 2006). 

In the fourth section of this article, the coupling method will be used for modeling a 

rock impact on a concrete slab. This part is intended to illustrate, by way of example, the 

identification process, validation of the coupling method through a comparison between a DE 

model and a coupled FE/DE model, and the computation time-savings offered by the coupled 

model. 

2. The Discrete Element model for concrete 

2.1 Model description 

Discrete methods can be split into two groups: lattice models and discrete element 

models. Lattice models use simple deformable elements like beams or bars organized into a 

structural network; these models are widely used to represent concrete at the microscopic or 

mesolevel scale (Leite et al., 2004; Prado and Van Mier, 2003). For example, Prado and Van 

Mier (2003) modeled concrete material according to three phases: aggregates, mortar and 

interfaces. They used 2D Euler-Bernoulli beams with elastic and fully brittle constitutive 

behavior. Such models perform poorly when it comes to representing the contact between 
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fractured areas, and a fine discretization scale is required. The extension to 3D models 

therefore is hardly feasible. 

More recently, Berton and Bolander (2005) developed a lattice model with Voronoi 

discretization. This model, based on the Rigid-Body-Spring Model (Kawai, 1978), has been 

used to simulate mode I fracture in concrete. For more general loading conditions, such as 

compression, the work of Shlangen and Garboczi (1997) and Cusatis and Cedolin (2007) 

merits recognition. Cusatis and Cedolin (2007) have developed a new lattice model called the 

"Confinement Shear Lattice model". They only considered the largest aggregates and 

connected the centroids with structural elements. An associated behavior for each element 

takes mortar, smaller aggregates and the cement-aggregate interface all into account. For this 

reason, modeled systems may actually be larger than the Prado and Van Mier (2003) systems; 

however, the calculation effort turns out to be sizable, especially in determining the 

constitutive behavior parameters. 

The second group of methods, i.e. using discrete elements, is based on modeling the 

continuum by means of rigid particles. The interaction laws between discrete elements serve 

to determine the macroscopic constitutive behavior. During early developments for non-

cohesive materials like sands (Cundall and Strack, 1979), particle interactions were described 

by friction laws, but the interaction laws for cohesive materials have since become refined 

(Hentz et al., 2004a). 

Particle shapes remain of great importance. With a circular-shaped contact, 

determination is very fast even though porosity gets introduced. Polyhedrons (Issa and 

Nelson, 1992) fill the space very well, yet contact determination requires a specific and 

expensive algorithm that is more complex than for spheres or ellipsoids. 

To guarantee reasonable computation times, a model based on Distinct Elements 

(Cundall and Strack, 1979) with rigid spheres has been chosen herein. Two types of 
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interactions are defined. The initial interactions between two elements are generally link 

interaction (the two elements are not necessarily in contact). Additional interactions of contact 

type can be added during the simulation. Interactions between two spheres are defined with 

normal Kn and tangential Ks stiffnesses characterizing the elastic behavior of concrete. 

"Micro-macro" relations (Eq. 1) from the Young's modulus and Poisson's ratio yield the local 

stiffnesses Kn and Ks. These relations stem from homogenization models (Liao et al., 1997) 

typically used for regular DE assemblies; they have been modified to take into account both 

the relative disorder and the interaction surface Sint. Equation (1) shows the micro-macro 

relations applied to determining Ks and Kn between two elements a and b. ,a b
in i tD  stands for 

the initial distance between elements a and b, with Ra and Rb being the element radii. The α, β 

and γ parameters still need to be identified. 
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Eq. (1) 

Stiffnesses Kn and Ks are used to compute the normal and tangential forces, Fn and Fs. 

The sign convention employed herein is a positive compression force. An equivalent contact 

point Pc is used to calculate local tangential displacement and rotation. For an interaction 

between elements a and b, the distance between the centroid of element a and the equivalent 

contact point Pc is:  

,1 ( ( ))
2

a b
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The aim of this study is to model very large structures or parts of structures. The 

interaction laws are therefore stated in order to best represent concrete behavior at the 

macroscopic scale. To model the nonlinear behavior of the material, a modified Mohr-

Coulomb model with softening has been adopted (see Fig. 1). When the tangential force Fs 

lies outside the yield surface presented in the right-hand part of Figure 1, Fs is taken at its 

maximum value for the corresponding normal force Fn. Local parameters are the tensile 

strength T, cohesion Co and softening factor ζ (both the friction Φi and contact Φc angles are 

not studied in this paper and have been assigned fixed values of 6°). These local parameters 

must be identified from global parameters, such as compressive and tensile strengths σc and 

σt. More sophisticated laws taking into account compaction phenomena can be elaborated but 

they are not necessary to model thin structures (like the slab we use in the last part) as flexion 

and tension effects are principally observed. 

Fig. 1: Interaction laws for DE 

Hentz et al. (2004a) established a procedure for identifying all material parameters 

based on a simulation of quasi-static compression and tension tests. These authors used an 

energy method to ensure that macroscopic parameters (Young's modulus) were not dependent 

on the various randomly-disordered DE samples. 

The centroid positions are randomly generated through use of a special "disordering" 

technique (based on an algorithm described in Jodrey and Torry, 1985) that provides a 

polydisperse assembly with a particular size distribution. The characteristic sizes of elements 
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do have to be representative of concrete constituents, such as the granular or cement matrix, 

since the aim is to produce a macroscopic description. The number of discrete elements must 

therefore be as small as possible to maintain a reasonable computation time. The specimen 

however must contain enough elements to guarantee a minimum number of links along with a 

correct distribution. 

Figure 2 shows the orientation distribution of the links present; this distribution is 

quasi-uniform for various DE samples, which ensures an isotropic macroscopic constitutive 

behavior for the concrete samples. 

 

Fig. 2: Distribution of contact orientations within the sample 

Initially, two discrete elements interact if the distance between their centroids is less 

than a given radius of interaction. According to the authors' experience, this radius of 

interaction is to be chosen such that the average number of interactions per DE equals 12: this 

value is the average number of links present in a regular (Face-Centered-Cubic) assembly of 

elements. Another value may be chosen, but such a change would introduce a different set of 

parameters. Of course this number cannot be too small to keep an isotropic specimen where 

there are not privileged directions of interactions. 

As part of the proposed identification process and in order to obtain reliable results, 

this average number of interactions is calculated with internal elements only (i.e. edges are 

not considered). Young's modulus can thus be predicted with a maximum relative error of 6%. 
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It should be noted that in all of the following simulations, both axial and radial strains 

reflect the sample averages. For stability reasons, only those DE far from the edges and far 

from the central axis will be taken into account (Fig. 3). 

 

Fig. 3: DE taken into account when computing the average strain 

2.2 Identification of linear parameters 

Tests carried out using the α, β, γ values identified by Hentz et al (2004a) reveal an 

error of between 20% and 30% for Poisson's ratio and about 5% for Young's modulus. The 

α, β and γ values must be reestablished. First of all, for some values of Ks/Kn, the ratio E/E0 

and Poisson's ratio ν were computed (a Ks/Kn=1 yields the E0 value), which produces the set 

of numerical points to be fitted. Figure 4 displays how Hentz's identification (dotted line) of 

α, β,γ does not fit the corresponding numerical points. 
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Fig. 4: Comparison of Young's modulus and Poisson's ratio computed and derived by approximation 

 

The values of α, β, γ need to be changed. The best-fit approximation (solid line in 

Figure 4) is obtained with: 
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Eq. (4) 

Tests have been carried out on 16 samples, as presented in Table 1. The first 10 of 

these have identical sizes but different disorders, nos. 11 through 16 also display different 

geometries. The characteristic element size is identical for all samples, except no. 16. Sample 

nos. 15 and 16 have the same geometries, but no. 16 contains fewer elements with a larger 

average radius (1,427 DE vs. 18,672 DE). 

Sample number Length (m) Width (m) Height (m) 
1 through 10 0.5 0.25 0.25 

11 0.5 0.4 0.25 
12 0.25 0.25 0.5 
13 0.25 0.25 0.25 
14 0.4 0.4 0.4 

15 and 16 0.6 0.6 0.6 

Table 1: Sample dimensions 

With these new values of the α, β and γ parameters, the average uncertainty now 

stands at 2% (with a maximum error of 7%) for Young's modulus and at approx. 3% 

(maximum error of 6%) for Poisson's ratio: these results are highly accurate. The process 

employed to set the elastic behavior is now simpler in comparison to Hentz's proposal (2004). 

Hentz was required to conduct two uniaxial tensile or compressive tests, the first as a 
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reference for calculating the energy correction applied during the second. With this new 

identification of α, β and γ, the energy criterion proposed by Hentz is no longer needed. A 

correctly-adjusted interaction radius, which neglects border elements, guarantees accurate 

measurements of both the Young's modulus and Poisson's ratio during the first computation. 

2.3 Identification of nonlinear parameters 

The focus in this section is to identify local parameters for modeling macroscopic 

values, such as compressive strength σc and tensile strength σt. 

As a first step, we have studied the reproducibility of both the compressive and tensile 

strength. A simulation of these uniaxial tests has been performed on the same set of samples 

as those used previously (Table 1). The parameters introduced here had been chosen 

arbitrarily and they are not held to be representative of any specific concrete. 
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Fig. 5: Reproducibility of the compression limit Fig. 6: Reproducibility of the tension limit 

The level of reproducibility for both compressive strength (Fig. 5) and tensile strength 

(Fig. 6) is quite high. The gap between highest and lowest values equals about 2.6 MPa (6%) 

for compression and 0.3 MPa (5%) for tension. 

These results suggest model reproducibility regardless of sample geometry or size and 

independently of the size of element used. From the perspective of modeling large structures, 

this identification process would be very expensive in terms of time, due to proportionality 
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with the number of elements. However, with reproducibility now demonstrated, a sample 

extracted from the entire large structure can yield the same results. The computation time 

required to determine behavioral parameters will therefore be reduced due to use of this 

extracted part. The sample must obviously be representative of the entire structure (i.e. not too 

small); in addition, it must be isotropic and attributed an adjusted interaction radius. 

After exhibiting model reproducibility, we will now apply this identification process to 

determine actual concrete parameters. Identification work will be based on the R30A7 

concrete studied at the 3S-R laboratory by Gabet et al. (2008). 

This process will first involve uniaxial and quasi-static tensile tests to evaluate the 

local tensile strength T and softening parameter ζ. During a subsequent approach, 

compressive tests will lead us to the appropriate cohesion parameter Co (Fig. 7). 

 
Fig. 7: The identification process 

A local tensile strength T of 3.3 MPa and softening factor ζ of 10 provide for a rather 

good approximation of the experimental tensile test (Fig. 8). Even though the post-peak part 

of the experimental curve is not available, we can still observe a brittle behavior characteristic 

for the concrete material. The damage frame (Fig. 9) indicates a well-known tension crack. 

Damage is evaluated as the ratio of broken links to initial links and remains proportional to 

sphere darkness. The black color corresponds to free DE. 
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Fig. 8: Tensile test: Comparison of experimental and 
numerical results 

Fig. 9: Damage in the sample at the end of the 
uniaxial tensile test 

The second test involves uniaxial and quasi-static compression. Results (see Fig. 10) 

appear to be suitable with Co = 4.4 MPa unless the last part of the experimental radial curve 

were to indicate otherwise. The damage shape reveals characteristic shear bands (Figs. 11 

and 12). 

With this identification process (Fig. 7), the Discrete Element Model can now 

accurately represent concrete behavior. As explained above, the identification time for a large 

structure would be reasonable when using a representative extracted part. 

 
Fig. 10: Compressive test: Comparison of experimental  

and numerical results (complete graph and close-up) 
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Fig. 11: Damage in the sample at peak stress of the 

uniaxial compressive test 
Fig. 12: Damage in the sample at the end of the 

uniaxial compressive test 

3. Model description of the coupled method 

Coupling methods have been widely studied. The first ones developed concerned the 

topic of Molecular Dynamics and Finite Elements at the microscopic scale. Curtin and Miller 

(2003) offered an overview of these atomistic methods; they introduced important notions, 

such as edge-to-edge coupling or bridging domain and energy weighting. Edge-to-edge 

methods typically require each Discrete Element to be coincident with a Finite Element node, 

which seems to be rather difficult within a disordered assembly. For this reason, edge-to-edge 

methods are naturally set aside. The bridging domain may be defined as a zone where MD 

and FE are both present and where the energy of both models is weighted. However, the 

bridging domain developed at the microscopic scale cannot be directly applied to a coupled 

DE-FE problem at the mesoscopic scale. 

Xiao and Belytschko (2004) then developed a coupling method based on a bridging 

domain (Fig. 13) with energy weighting. Xiao's method proposes minimizing the Hamiltonian 

(H), which is the sum of the Hamiltonians of both the FE and DE. 

FE DEH H Hα β= +  with cin pH E E= +  and 1α β+ =  Eq. (5) 

where α and β are the weight parameter of the FE Hamiltonian and the DE Hamiltonian, 

respectively. α and β have been defined on Figure 13, which presents an example of the 

bridging domain with four FE layers. 
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Fig. 13: Bridging domain and bridging parameter 

To guarantee kinematic continuity, the degrees of freedom of both domains within the 

interface zone must be linked. Several approaches could be considered. Xiao and Belytschko 

(2004) proposed directly linking the Discrete Element degrees of freedom with Finite Element 

degrees of freedom using Lagrange multipliers. Eq. (6) presents the kinematic conditions on 

bridging domain r, with d DE displacements and u FE displacements. 

.r rd k u=
r r  Eq. (6) 

The Arlequin method (BenDhia and Rateau, 2005) uses displacement and strain 

projections over shape functions, in assuming field continuity. This method enables a spatial 

relaxation of the kinematic conditions. With Discrete Element models, the displacement and 

strain are not known at all points and such projections are not simple to use. This method may 

be adapted to DE models, by approximating the displacement and deformation fields, 

although this would increase computation time. 

The preferred method therefore calls for using rigid kinematic conditions, like those in 

Xiao and Belytschko (2004). Complementary kinematic constraints must then be added to 

link the DE rotations. Equation (7) lists the kinematic conditions linking DE rotations ω and 

displacements d with FE displacements u over bridging domain r. Both numerical simulations 
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and experimental results (Calvetti, 1997) have shown that DE rotations are equal to the 

antisymmetrical part of the displacement gradient. 

.  and .r r r rd k u h uω= =
r rr r   Eq. (7) 

We have derived the solution by minimizing Equation (8), with the kinematic 

conditions being taken in account using Lagrange multipliers λd for displacements and λω for 

rotations. 

( ) ( )d
rg r r rH H d k u h uωλ λ ω= + − + −

uur uuruur uur ur uur
  Eq. (8) 

The time discretization relies upon an explicit scheme: 

( ) ( ) ( ) ( )
..

22u t t u t u t t t u t+ Δ = − − Δ + Δ  Eq. (9) 

Each degree of freedom value is calculated without taking in account coupling. Then a 

correction is applied using the Lagrange Multipliers (Eq. (8)). Further details on the method 

developed can be found in Frangin et al. (2006). 

The difference in discretization size between FE and DE may induce wave reflection at 

the interface, an effect that can be mitigated in different ways, e.g. damping, yet the choice of 

damping coefficient is not straightforward. We have proposed a method to attenuate the 

reflection by introducing a reduction parameter for Lagrange multiplier influence. This 

method leads to a temporal relaxation of the kinematic constraints and is equivalent to a 

penalty method with an automatic process for optimizing the penalty parameter. All of these 

methods are discussed in Frangin et al. (2006). In the next section, the application presented 

introduces just such a relaxation parameter, which serves to divide the influence of Lagrange 

multipliers in reducing wave reflection. 

4. A rock impact on a concrete slab 
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This section will present an application of both the coupling method and DE 

identification process. The full DE model will be compared with the coupling method, and the 

identification process explained above will be used in the two cases to determine local DE 

parameters. 

This application consists of a rock impact on a concrete slab. A cubic rock block with a 

30-cm side length impacts a concrete slab 2.5 m long, 2.0 m wide and 0.28 m thick. The 

velocity of the impacting object is set at 40 m/s. The two opposite sides are locked in the 

direction perpendicular to the medium slab plane. The slab is first divided into two parts: the 

center modeled by DE, and the sides modeled by FE with three bridging domain layers (Fig. 

14). In a second model, only the DE are used. 

 

 

Fig. 14: Combined FE/DE model, and a side view of the DE part 

In both models, the DE identification process previously described has been applied. A 

representative cube of the slab is extracted for identification purposes. This sample is 

isotropic, as shown by the orientation of interaction directions (Fig. 15). Moreover, the 

interaction radius is adjusted in order for the average number of interactions per element to 

equal 12. Sets of compression and tension computations are also performed to identify the 
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local concrete parameters. Such local parameters are determined so as to yield a tensile 

strength of around 3 MPa and a compressive strength in the vicinity of 20 MPa (Table 2). 

 

Fig. 15: Orientation of interaction directions for the extracted sample 

T C0 ζ Φi Φc E ν 

3.1 MPa 36 MPa 5 6° 6° 30 GPa 0.2 
Table 2: Local concrete parameters 

With these DE parameters, impact simulations are carried out using DE/FE in one 

model and DE only in the other. Figure 16 and 17 present comparisons of displacement 

between just the DE model (solid line) and the coupled DE/FE model (dashed line) at two 

different points. The maximum displacement predictions of both models are similar and, on 

the whole, the time response for the two models is the same. 

  

Fig. 16: DE displacement under the impacting object Fig. 17: DE displacement vs. FE displacement 

The combined model also efficiently describes damage in the vicinity of the impacted 

zone. In Figure 18, the damage obtained from the full DE approach and coupled DE/FE model 
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are compared simultaneously. Damage is measured as the ratio of broken links to initial links 

and remains proportional to sphere darkness. The black color corresponds to free DE. 

The goal of this combined FE/DE model is to utilize the efficiency of DE to locally 

represent the fracture process on a large structure. A computation time analysis for this 

problem reveals that the coupled FE/DE model runs ten times faster than the full DE model 

(Table 3). 

Model DE Coupled DE/FE 

Number of DE 120808 6588 

Number of FE node 0 5935 

Number of time step 100000 100000 

Duration of computation 42h50mn 3h39mn 
Table 3: Comparison of the duration of the simulation 

This difference in computation time stems from two points. The coupled model 

enables proceeding with a coarse discretization (FE discretization) on four-fifths of the 

structure. The time-savings offered by the smaller number of degrees of freedom can be 

increased by using a multi-time step algorithm, which makes the computation cost of this part 

negligible in comparison with the total computation cost. 

Because of the DE contact check, the computation time in DE does not increase 

linearly with the number of DE. By reducing the simulation time, we are able to simulate 

larger or more complex structures and/or refine the discretization. 

 

Fig. 18: Comparison of damage response between the full DE model (left) and coupled model (right) 
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5. Conclusion 

The Discrete Element model offers an efficient and reliable means to represent 

concrete. A simple and effective process is now available and has been validated to identify 

local parameters. The reproducibility of results indicates that shape or size of the sample used 

to identify parameters exerts no influence. The identification for a large sample could thus be 

performed on a smaller sample extracted from the larger one. In addition, the computation 

time for model identification is reduced. 

In contrast, the coupled approach seems to facilitate modeling a large structure 

submitted to local damage such as an impact. Comparative results between a full DE model 

and a combined model demonstrate that the two methods yield similar output, yet with a 

computation time ten times faster for the coupled method. We can therefore apply the coupled 

method to simulate an impact on very large structures, in recognition of the quality with 

which DE describes fractures and discontinuities. 

 

Keywords: Discrete Element, Coupling Method, Concrete, Impacts. 
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