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Sébastien Hentz *, Frédéric V. Donzé, Laurent Daudeville
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Abstract

The use of a 3D discrete element method (DEM) is proposed to study concrete submitted to dynamic loading. The

model has already been validated through quasi-static simulations. This paper aims first at extending the validation of

the model and at contributing to the understanding of the physical mechanisms in stake. Once the correct quasi-static

identification of the model parameters is done, compressive dynamic tests are first simulated. Unchanged, the model

proves able to reproduce the concrete strain rate dependency, and confirms the inertia-based hypothesis at high strain

rates. Dynamic tensile tests show that a local rate effect has to be introduced to reproduce the experimental rate depend-

ency, which would then be a material-intrinsic effect.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous types of structures may be exposed to dy-

namic loading at a wide range of strain rates (see Fig. 1),

which is why the dynamic behaviour of (plain) concrete

has been extensively studied. One of the main features of

concrete dynamic behaviour, that a model must repro-

duce, is the significant enhancement of the apparent con-

crete strength with the strain rate. The understanding of

this rate effect has been the purpose of many experimen-

tal works, as well as of numerous models.
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1.1. Experimental background

Various experimental devices have been used to

explore a wide range of strain rates, as described in

[4,19]. Compression and direct tension tests have been

performed, from static loading up to strain rates of

10�1 s�1 with a hydraulic testing machine, whose dis-

placement control capabilities or stiffness are limiting

[4]. Charpy Impact tests were commonly used, and sig-

nificant results are found in the literature, up to 100

s�1. These tests were once mainly qualitative, and ad-

vances have been made with instrumented Charpy

impact tests [19]. But difficulties remain with the meas-

urement of the data at higher rates. With Drop Weight

Impact Tests, rates of 101 s�1 may be reached, but the

energy transmitted to the specimen is limited by the size

of the device: weights around 50–100 kg are dropped

from heights of 2–6 m. Higher strain rates in tension

and compression, up to more than 102 s�1 are obtained
ed.
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Nomenclature

c local cohesion

Co celerity of the specimen�s medium

Da,b D distance between centroids of two discrete

elements a and b

E Young�s modulus

F interaction force vector

Fn normal interaction force vector

Fmax
n maximum normal force

Fs shear interaction force vector

Fmax
s maximum shear force

Freduced
s updated shear force vector during slip

Finput input force at the bar–specimen interface

Foutput output force at the bar–specimen interface

Gf Fracturation energy of the material

Kn interaction normal stiffness

Ks interaction shear stiffness

l length of the real specimen

n unit interaction vector

Ra R radius of a discrete element a

S cross-sectional area of the real specimen

Sint average surface where an interaction is

defined

T local maximum tensile strength

Tcs local static tensile strength

Ttd local dynamic tensile strength

Tts local static tensile strength

Un normal displacement vector of one element

Us tangential displacement vector of one

element

Va velocity vector of the element a

Ve ejection velocity of a fragment

Vinput input velocity at the bar–specimen interface

Voutput output velocity at the bar–specimen

interface

xa x position vector of a discrete element a

Zc distance from the rupture to the free end of

the specimen

Greek symbols

b softening factor

ei strain of the longitudinal incident wave

er strain of the longitudinal reflected wave

et strain of the longitudinal transmitted wave
_es average strain rate imposed on the specimen
_e strain rate
_estat quasi-static strain rate at which the quasi-

static properties of the concrete have been

identified

c interaction range

m Poisson�s ratio
/i internal friction angle

/c contact friction angle

q density of the specimen

rs average stress imposed on the specimen

rc compressive strength

rd dynamic strength

rcs compressive static strength

rt tensile strength

rtd tensile dynamic strength

rts tensile static strength
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Fig. 1. Regimes of strain rates [4,8].
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with a Split Hopkinson Pressure Bar (SHPB) Test which

has now become very popular with the introduction of

data processing allowing a good precision. Even higher

strain rates (_e P 103 s�1) may be reached with the use

of explosive charges.

The strain rate effect has been studied on different

characteristics of concrete: Young�s modulus, Poisson�s
ratio, energy-absorption capacity and axial strain at
maximum strength are rate-sensitive quantities, but at

a much lower intensity than the compressive and tensile

strengths [5,44,45].

Finally, a large part of the results is compiled in Figs. 2

and 3, in terms of the ratio dynamic strength over static

strength. Two distinct types of behaviour can be ob-

served: The first one shows a linear dependence of the

ratio with logð_eÞ. The second one is a sharp rise in the rate



Fig. 3. Strain rate dependency of the tensile strength [34].

Fig. 2. Strain rate dependency of the compressive strength [4].
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dependence. The limit between the two is around
_e ’ 3� 101 s�1 in compression and around _e ’ 100 s�1

in tension.

To fully understand the rate effect, it is important to

be able to answer the following question: is it a material-
intrinsic effect, or rather a structural effect, the state of

stress and strain not being homogeneous in the speci-

men? To do so, it is necessary to look at some results

concerning the influence of different parameters on this

ratio: ratio water=cement ¼ w=c [5,19,45], boundary
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conditions [4] and presence of free water [42,45]. It first

appears that w=c and boundary conditions are second-

ary parameters, as they have only a slight influence (nev-

ertheless, it seems that the strain dependence is higher

for concretes with lower strengths). Moreover, the ratio

dynamic strength over static strength seems to be rather

more rate-sensitive in tension than in compression. On

the other hand, it now seems clear that the strain rate

effect at least when _e 6 101 s�1 is explained by the pres-

ence of free water in concrete, inducing an effect similar

to the Stefan effect [42]. For higher strain rates, the situ-

ation is much less clear: in tension, some new insights

were recently proposed by Hild et al. [22] and in com-

pression, Janach [25] proposed the hypothesis that the

effect of bulking combined with inertia was responsible

for the increase of load-carrying capacity of the speci-

men, making it a structural effect. The aid of powerful

models was needed to confirm this hypothesis.

1.2. Modelling background

First of all, the numerous models used to represent

concrete-like materials can be classified in three catego-

ries, associated with a class of loading [17]: The first one

corresponds to a mostly uniaxial loading, where the

main physical behaviour is micro-cracking. The second

one deals with strong multiaxial loading, where plastic

flow occurs. The third one is concerned with high pres-

sure loading, when compaction occurs, and usually

strain rate dependency is neglected.

We will ignore the last two classes of model, consider-

ing that the stress state of structures submitted to dy-

namic loading at strain rates of interest here is strongly

deviatoric. In this matter, concrete has been extensively

modelled, mostly with elasto-plastic models, either with

or without associated flow rules. The cracking may be

taken into account with smeared cracked models which

introduce a loss of rigidity in the direction perpendicular

to the direction of maximum tensile stress [43], or damage

models [35]. In the dynamic case, models differ in partic-

ular in the way strain rate dependency is represented.

Some authors introduce viscosity [4]. Others intro-

duce viscosity combined with inertia, one of the two ef-

fects becoming preponderant, depending on the value of

the strain rate [17]. Some micromechanics-based fracture

models have considered that the crack growth was ther-

mally-activated [19] introducing an activation energy, or

a characteristic time of loading [28]. This leads to the fol-

lowing type of dependence: rd / _en, where rd is the

strength. It is also the case of the CEB formulation [1],

one of the most comprehensive model, based both on

test results and analytical models, and of direct use in

numerical analyses. It takes into account most of the

experimental observations described in the previous sec-

tion (see Fig. 2 and 3). This model will be discussed later

in this paper.
When it comes to FE computational modelling,

attention has to be paid to the fact that the softening

behaviour of all these models may cause the loss of

objectivity with respect to the mesh in dynamic prob-

lems. This may be solved by the use of different regular-

ization techniques, like the crack band model [3], the

Cosserat media [6], or the non-local approach [38].

The increasing complexity of these models, associ-

ated with the difficulties of dynamic problems, make

their computational use somewhat awkward, in terms

of either implementation, convergence, or simply cost.

In particular, the occurrence of cracking often has to

be identified, and effects like internal friction after crack

opening, or structural effects like inertia of micro-crack-

ing have to be explicitly accounted for.

1.3. Objectives

This paper proposes the use of the discrete element

method (DEM) [12], which is an alternative to contin-

uum-type methods, to study the dynamic behaviour of

concrete at high strain rates, where the rate effect is

not clearly understood as previously mentioned. This

method does not rely upon any assumption about where

and how a crack or several cracks occur and propagate,

as the medium is naturally discontinuous and is very

well adapted to dynamic problems.

Nevertheless, when one uses a DEM model, one has

to address the issue of the modelling scale: the DEM is

of course particularly adapted to the modelling of gran-

ular material [11,24,30], in which case one element repre-

sents one grain. Numerous authors have also used the

DEM to simulate cohesive geomaterials like concrete,

at the scale of the heterogeneity [39,41], that is to say

the size of one element is of the order of the biggest het-

erogeneity, around 1 mm. This approach allows a better

understanding of concrete fracture, but of course makes

real structures modelling impossible, as the computation

cost becomes ‘‘gigantic’’ (see [33] with Lattice-type mod-

els). Another approach consists in using a higher scale

model, which considers that the whole assembly of ele-

ments must reproduce the macroscopic behaviour of

concrete. Thus some authors like [10,31,36] have mod-

elled impacts on concrete structures, but usually, the

model parameters are identified directly on the impact

tests, and the different components of the model are

not validated through more simple tests.

The purpose of this paper is two-fold: Keeping in

mind that the final goal is to represent 3D concrete struc-

tures, this work aims at extending the validation of a

three-dimensional distinct element (DE) model through

the simulation of SHPB tests at high strain rates, and

at contributing to the understanding of the physical prin-

ciples in stake. The DE model has been fully described

and validated in quasi-static problems as well as in dy-

namic compression in [21]. It is to be noted that in the
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proposed approach, the local parameters are identified

thanks to a quasi-static process, allowing the control of

the modelling scale imposed by the available computing

power. Firstly, the model and the compression results

will be briefly reminded, and then the results of tensile

SHPB tests will be presented.
2. DEM model used

It is of importance that the discrete model should be

able to reproduce two particular points of the concrete

behaviour, with a low computation cost:

1. Sound concrete behaviour is linear, elastic, isotropic

and homogeneous.

2. The non-linear behaviour of concrete is more similar

to a nearly non-porous medium than to a granular

material.

The present numerical model has been implemented

within the ‘‘Spherical Discrete Element Code’’ [13]. It

uses discrete spherical elements of individual radius

and mass, which allows an obvious and quick computa-

tion of the contacts. But the orientation distribution of

these latter has to be as homogeneous as possible to sat-

isfy the first condition, and the assembly of elements has

to be as compact as possible to satisfy the second condi-

tion. This is obtained through the use of a particular

‘‘disorder’’ technique (see [14], based on an algorithm

described in [26]) which gives a polydisperse assembly

with a particular size distribution. Once the assembly

has been set, pairs of initially interacting discrete ele-

ments are identified. These interactions have been cho-

sen to represent as well and as simply as possible, the

elastic and cohesive nature of concrete. To do this, elas-

tic forces with a local rupture criterion are applied be-

tween two interacting elements.

Using the constitutive equations for each interaction,

the numerical model solves the equations of motion. The

explicit time integration of the laws of motion will pro-

vide the new displacement and velocity for each discrete

element.

As time proceeds during the evolution of the sys-

tem, change in the packing of discrete elements may

occur and new interactions be created. One of the

features of this numerical model will then be to deter-

mine the interacting neighbours of a given element.

This will be achieved by defining an interaction range

and identifying all elements within it which are

interacting.

2.1. Interaction range

The overall behaviour of a material can be repro-

duced by means of this model by associating a simple
constitutive law to each interaction. An interaction be-

tween elements a and b of radius Ra and Rb respectively,

is defined within an interaction range c and does not nec-

essarily imply that two elements are in contact. Then,

these elements will interact if,

cðRa þ RbÞ P Da;b ð1Þ

where Da,b is the distance between the centroids of ele-

ments a and b and cP1. This is an important difference

from classical discrete element methods which use spher-

ical elements where only contact interactions are consid-

ered (c=1). This choice was made so that the method

could simulate materials other than simple granular

materials in particular those which involve a matrix as

found in concretes. Its principal effect is the increase of

the contact number for an equal number of elements,

which helps obtaining a homogeneous contact orienta-

tion distribution (cf. condition 1). Beside, it increases

as well the ‘‘effective’’ size of the elements, which virtu-

ally increases the assembly compacity (cf. condition 2),

and helps in modelling with a DE model materials which

may be considered as continuous at this scale.
2.2. Elastic properties

The interaction force vector F which represents the

action of element a on element b may be decomposed

into a normal and a shear vector Fn and Fs respectively,

which may be classically linked to relative displace-

ments, through normal and tangential stiffnesses, Kn

and Ks.

Fn ¼ Kn 	 Un

DFs ¼ Ks 	 DUs

�
ð2Þ

where Un is the relative normal displacement between

two elements, and DUs is the incremental tangential dis-

placement. The strain energy stored in a given interac-

tion cannot be assumed to be independent of the size

of the interacting elements. Therefore interaction stiff-

nesses are not identical over the sample, but follow a

certain distribution, which is another important particu-

larity of the SDEC model. The macroscopic elastic prop-

erties, here Poisson�s ratio m, and Young�s modulus E,

are thus considered to be the input parameters of the

model.

‘‘Macro-micro’’ relations are then needed to deduce

the local stiffnesses from the macroscopic elastic proper-

ties and from the size of the interacting elements. Com-

pression tests have been run with one given sample and

values linking Poisson�s ratio m, and Young�s modulus E

to the dimensionless values of Ks

Kn
were obtained. To fit

these values, relations based on the best-fit model [32]

are used:
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E ¼ Da;b
init

Sint

Kn

b þ c Ks

Kn

a þ Ks

Kn

m ¼
1� Ks

Kn

a þ Ks

Kn

8>>>><
>>>>:

ð3Þ

where Da;b
init is the initial distance between two interacting

elements a and b, coefficients a, b and c are the fitted val-

ues and Sint is an ‘‘interaction surface’’:

Sint ¼ pðminðRa;RbÞÞ2 ð4Þ

These relations are simply inverted to obtain the local

stiffnesses.

2.3. Inelastic behaviour

2.3.1. Before rupture

To reproduce the behaviour of geomaterials like

rocks and concrete, a modified Mohr–Coulomb rupture

criterion is used. Thus, for a given interaction, a maxi-

mum tensile strength T (with T>0) is given and defines

a maximum normal force F max
n ¼ �TSint where Fn=FnÆn,

n being the normal contact unit vector.

The maximum shear force can be calculated as

F max
s ¼ cSint þ F n tan/i; ð5Þ

where Fs is the absolute value of the shear force, c is the

cohesion and /i is the ‘‘internal’’ friction angle. If Fs is

greater than F max
s , then the shear force is reduced to

the limiting value and written as

Freduced
s ¼ Fmax

s

F s

Fs: ð6Þ

Finally the model is consistent with the behaviour of

concrete. Failure comes with the coalescence of micro-

cracks undergoing tension.

2.3.2. After rupture

After initial interactions have broken, new ones are

identified, which are not cohesive any more: they are

merely ‘‘contact’’ interactions, and cannot undergo any

tension force. Then a classical Coulomb criterion is

used, with a ‘‘contact’’ friction angle, /c.

Fig. 4 summarizes the rupture criteria used in the

model.

It is to be noted that the model is enriched with a

local softening factor b, without which the obtained

macroscopic behaviour would be somewhat too brittle.

2.4. Parameters calibration

Calibration of the model parameters is necessary to

adjust the properties of the material represented by the

assembly of discrete elements to the real geomaterial

properties, a particular type of concrete. For this pur-

pose, a quasi-static uniaxial compression/traction proce-
dure has been established and is fully described in Hentz

et al. [21]. This procedure allows to determine for a sin-

gle assembly the values of the local parameters T, /i, /c,

b and c to obtain the macroscopic behaviour character-

ized by the Young�s modulus, the Poisson�s ratio, the

tensile and compressive strengths, as well as the fracture

energy. As far as the macroscopic elastic properties are

concerned, it appeared that the ‘‘macro-micro’’ relation-

ships discussed in Section 2.2 give only a good approxi-

mation of the macroscopic elastic properties, because of

the random aspect of the generation of the assembly. To

solve this problem, the procedure is the following:

1. A compact, polydisperse discrete element assembly is

generated.

2. An elastic compression test is run with elastic local

parameters given by the ‘‘macro-micro’’ relations.

3. A correction is applied according to an energy-based

criterion, in relation with the characteristic size of the

elements.

4. Compressive and tensile rupture axial tests are simu-

lated to deduce the remaining local parameters.
Remark 1. As previously mentioned, spherical elements

allow an obvious treatment of the contacts. Neverthe-

less, this is a rather simplistic way to model the

complexity of the microscopic phenomena, and in

particular, particle rotations are not well constrained.

This is now a well-known problem in the DE modelling

of granular materials [15,27,30], and different solutions

may be used: less regular shaped elements [41] or the

introduction of a law couple/rotation [24]; to obtain a

reasonable friction angle, Calvetti et al. [9] simply inhibit

the rotations. DE modelling of cohesive materials have

been the purpose of much less work, thus the effect of

spherical elements was unknown until recently: though

less critical, Huang [23], Hentz et al. [20] have shown

that it leads to a compressive/tensile strengths ratio too

low. Again, this may be solved by the use of less regular

shaped elements [40], and by the constraint of the

rotations, which has been chosen for the present study

(see Hentz et al. [20] for a description).
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Conclusion. To summarize, the presented approach al-

lows us to control the modelling scale. Its specific and

original features are the use of simple ingredients, an inter-

action range, and an identification process based on quasi-

static uniaxial tests. The latter gives the value of the local

parameters, and ensures that the quasi-static behaviour

of concrete is well reproduced. Thus, in the following com-

putations, no parameter has been identified with the

dynamic tests: they are real predictive simulations.

3. Dynamic simulations: the SHPB experiments

3.1. Dynamic compression

A typical SHPB (Split Hopkinson Pressure Bar)

experimental setup [46] can be seen in Fig. 5.

It consists of two long aligned metallic bars and a

short concrete specimen between them. A projectile im-

pacts the free end of the input bar thus leading to the

development of a compressive longitudinal incident

wave ei(t). Once it arrives at the bar–specimen interface,

it splits into a reflected wave er(t) which travels in the

input bar and a transmitted wave et(t) which travels in

the output bar. These three waves are recorded by

gauges which have been cemented on each bar. Data

recorded from the gauges have to be shifted to deduce

the forces (Finput and Foutput) and velocities (Vinput and

Voutput) on both faces of the specimen. This processing

is highly difficult, as it demands correction techniques

to allow very accurate information, which is now possi-

ble [18].

Classical SHPB analysis relies on several

assumptions:

1. One-dimensional wave propagation theory describes

accurately the propagation of waves along the bars.

2. Stress and strain fields in the specimen are uniform in

the axial direction.

3. The specimen inertia is negligible.

4. Friction effect in the compression test is negligible.

Data recorded from the gauges have to be shifted to

deduce the forces (Finput and Foutput) and velocities

(Vinput and Voutput) on both faces of the specimen. This

processing used to be done according to the first

assumption, as the SHPB method was first intended
Fig. 5. Setup for SH
for metal testing. Metal specimens had a low diameter

to avoid radial dispersion in the wave propagation.

But concrete testing requires large specimen diameter

because of the grain size, which enhances the radial dis-

persion and demands the use of correction techniques, as

proposed by [18], which allows very accurate informa-

tion on the faces of the specimen.

In addition, metal specimens had a low length, so

several wave reflections quickly occurred, satisfying

assumption two. In our case, the understanding of brit-

tle failure of concrete demands the investigation of the

transient state of the specimen, as well as the structural

effects like inertia and friction.

Moreover, Gary and Zhao [18] showed that a so-

called three-waves formula gives a correct average strain

rate and a correct average stress imposed on the speci-

men, so that,

_esðtÞ ¼
V outputðtÞ � V inputðtÞ

ls
ð7Þ

rsðtÞ ¼
F inputðtÞ þ F outputðtÞ

2Ss

ð8Þ

where ls and Ss denote respectively the length and the

cross-sectional area of the specimen.

3.1.1. The experimental data set

SHPB tests on concrete specimens have been carried

out by Gary and Zhao [18], Gary [16]. The data set is

shown in Fig. 6.

The concrete specimens that are used are cylinders

with a height of 0.036 m and a diameter of 0.036 m.

The density is 2500 kg/m3 and the average compressive

wave velocity is 3865 m/s [44].

Three loading experiments, ms2b, ms3b and ms5b

respectively at 350, 500 and 700 s�1 strain rate have been

run and for each of these runs both the input and output

velocities and forces are plotted.

3.1.2. Numerical setup

Up to 6200 spherical discrete elements with sizes

ranging from 9·10�4 to 47·10�4 m, have been used

to build the numerical concrete sample.

Local parameters were calibrated using the quasi-sta-

tic procedure already discussed to obtain the expected

concrete behaviour: Density 2500 kg/m3, Young�s
PB experiment.



Fig. 6. Measured experimental data from compressive SHPB tests. Solid, dashed, and dotted line are, respectively, experiments ms5b,

ms3b and ms2b.
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modulus 30 GPa, Poisson�s coefficient 0.2, compressive

strength 60 MPa, and tension strength 5 MPa.

The experimental input and output velocities are ap-

plied to the platens. The radial displacement values are

assumed to be zero on the input and output surfaces.

The resulting input and output forces are computed by

summing all the forces applied on the platens. Given

the experimental velocity histories, at each time step

the applied input and output velocities are updated lead-

ing to the computation of numerical force histories,

compared with experimental forces.

3.1.3. Results

Fig. 7 shows stress/strain curves obtained for the

three tests (Stress and strain are given by the Eqs. (7)

and (8)). The experimental curves are very well fitted

in the pre-peak region, but this is less often the case after

the peak, except for ms2b. Maximum amplitudes of

computationed stress fit the experimental stress quite

well, despite the recording problems of the tests. More-

over, Fig. 8 shows the damage state of the sample for a

given stress of 50 MPa in the elastic phase, for the slow-

est and the fastest test. As the damage increases, the col-

or darkens. It can clearly be seen that as the strain rate
increases, the extent of the damage lessens. Moreover,

this damage, very diffuse, is not homogeneous and tends

to propagate inwardly from the lateral free surfaces of

the specimen thus forming a contact cone as seen in real

experiments.

This result confirms the inertia-based hypothesis first

proposed by Brace and Jones [7] and Janach [25]: In this

range of strain rates, the rate effect is a consequence of

the transition from a state of uniaxial strain into uniaxial

stress. This transition is accompanied by bulking, as a

result of which the material must accelerate in the radial

direction, giving rise to inertial forces. The outer region

of the specimen then plays a confining role, preventing

the central core from unloading and thus giving the

specimen a greater apparent load carrying capacity.

Because of the fretting condition on the boundary,

the unloading front from the free surface is not parallel

to it, explaining the cone-like shape of the damage

distribution.

With the 3D DE model, the transient specimen state

of damage and stress may be investigated and quite

accurately represented, without having to identify a par-

ticular cracking zone. What is more, it proves able to

quantitatively reproduce the increase of compressive



Fig. 7. From left to right: Stress/strain curves for ms2b, ms3b and ms5b.

Fig. 8. Damage for: from up to bottom, ms2b, ms5b (the

darker, the higher the damage). Axial cuts.
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strength with the increase of strain rate, and this, with-

out requiring the use of viscosity in the model, or of

any characteristic time. In other words, the increase of

the dynamic strength in this range of strain rates is

merely apparent and seems to be a structural effect more

than a material effect as considered by the CEB formu-
Fig. 9. Setup for SHPB ex
lation. The next section will explore strain rate sensitiv-

ity in tension.

3.2. Dynamic tension

Initially used in compression, the SHPB technique

has been extended to tension. This time, there is only

one input bar, and no output bar (see Fig. 9). A projec-

tile impacts the input bar, giving rise to a compressive

wave in the input bar, which propagates into the speci-

men, and reflects into a tensile wave at its free end. If

the wavelength of the loading pulse is longer than the

specimen length, the pulse front is reflected in a tensile

wave and is superposed to its own back tail still propa-

gating. Addition of the two parts of the pulse gives rise

to a tensile stress in the specimen, leading to complete

rupture if its amplitude is sufficiently high. Parameters

of the experiment are: acoustic impedances, sections

and lengths of the projectile, of the bar, and of the spec-

imen, as well as the impact velocity of the projectile. For

a complete description, see [29].

As in compression, signals recorded by the gauges

have to be separated and shifted at the impact side of

the specimen.

3.2.1. The experimental data set

Tensile SHPB tests were carried out by Brara [8],

Klepaczko and Brara [29] to explore higher strain rates

(20 s�1< _e<130 s�1) than was available in the literature.

Tested concrete has the following quasi-static character-

istics: Young�s modulus E=35 GPa, density q=2350

kgm�3, compressive strength rc=42 MPa and tensile
periment in tension.
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strength rt=4 MPa. Constraints listed above led to the

following parameters: specimen diameter is equal to 40

mm, its length is 120 mm.

Two tests in particular were chosen, referred to here

as BE16 and BE12. Table 1 shows their respective

parameters. Fig. 10 shows the input forces for the two

tests at the specimen face, only data available. The dy-

namic strength, that is to say the value of the (tensile)

longitudinal stress when rupture occurs, may be evalu-

ated in two different ways: firstly, the simulation of the

propagation and superposition of the waves, and thus

the determination of the stress at the known rupture

position. Secondly, and more simply, ultra-high speed

ccd video was used to film the tests, so it is possible to

evaluate the speed of ejection of the ruptured fragment,

and deduce the strength with the equation [29]

rtd ¼ qC0V e ð9Þ

where rtd is the ‘‘dynamic’’ strength, C0 the wave veloc-

ity, and Ve the relative velocity of the two fragments of

the ruptured specimen. It is to be noted that BE16, the

slowest test, led to only one rupture, while BE12, faster,

led to two ruptures. In the case of multi-ruptures, the

first to appear is the only one considered experimentally,

in terms of critical strength, and is due to the superposi-

tion of the transmitted compressive wave and of the
Fig. 10. SHPB tension tests data set.

Table 1

Tensile test characteristics: impact velocity V0, strain rate _e,
failure stress rtd and rupture distance from the free end of the

specimen Zc

Test id V0 (ms�1) _e (s�1) rtd (MPa) Zc (mm)

BE16 7.5 35.9 19.2 65.8

BE12 15 70.4 33.5 First: 69,

second: 41
reflected tensile wave. The second rupture, occurring at

quite a short distance from the first one (20/30 mm)

and at nearly the same time (in roughly 10 ls), is prob-
ably due to a lot of short waves, consequence of the first

rupture, which makes it difficult to explain the results

concerning the second rupture.

3.2.2. The numerical setup

Numerical samples were as close to the real geometry

as possible, with roughly 8000 elements, their sizes var-

ying from 1.5 to 4 mm. Values of the local parameters

were set thanks to the quasi-static procedure (see Section

2.2 or [21]) to obtain the expected macroscopic quasi-

static behaviour.

Next another size distribution was used, from 1.5 to 4

mm. Experimental input forces were converted in veloc-

ity with Eq. (9), which was applied to the sample

through a platen.

Results were compared with experimental ones in

terms of number and position of ruptures, and of critical

stress, computed through homogenization just before

rupture (the chosen homogenization technique is based

on an analogy with the continuous media [2,37]) and

the ejection speed.

3.2.3. Results

Fig. 11 shows the state of ‘‘damage’’ in an axial cross-

section of the specimen for both tests, with the local

parameters identified in the quasi-static case. (The dam-

age is computed per element: it is equal to the ratio num-

ber of broken interactions over the initial number of

interactions. In this picture, the darker, the higher the

damage). In particular, the local tensile resistance T is

unchanged and is equal to 2.8 MPa, its static value. In

the two tests, damage is relatively spread over the sam-

ple, and is significant: the specimen is crushed, the sim-

ulated concrete is too weak. It is to be noted that early

damage occurs, even before than the compressive wave

had time to reflect.

Next the local tensile resistance T was artificially in-

creased, until the simulated results fit the experimental

ones, as far as the BE16 test was concerned: T was set

to 4 MPa. Fig. 12 shows the input force and the number

of broken interactions (28,390 interactions are initially

created) during the simulation. Table 2 compares the

experimental and numerical results, obviously very close

to each other.

However, with this value of T=4 MPa, the BE12 test

showed that the specimen is again crushed, and a uni-

axial quasi-static tensile test shows a corresponding

strength equal to 6.4 MPa.

Finally, the local tensile resistance T was again in-

creased up to T=5.1 MPa, so the BE12 simulation re-

sults fit the experimental ones. Fig. 13 shows the input

force and the number of broken interactions during

the simulation. Table 2 compares the results, again very



Fig. 11. Damage field for: top BE16, bottom BE12.

Fig. 12. BE16 test: Input velocity and number of broken interactions versus time.
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satisfactory. Homogenized stress gives a lower value

than the experimental stress, which may be due to inac-

curate instant of the stress computation, as both rup-

tures occur in less than 10 ls time. All other values

seem to be correct.

If the BE16 test is simulated with this value of T, re-

sults show no rupture and only a little damage, and the

corresponding quasi-static tensile strength is equal to 8.2

MPa.
3.2.4. Discussion

These results show that, unlike compressive tests, the

model, unchanged, is unable to take into account strain

rate dependency of concrete under tension. But on the

other hand, they enable us to draw several conclusions:

Firstly, inertia alone, intrinsically accounted for in the

model, cannot explain strain rate dependency of con-

crete in tension. Secondly, the artificial increase of the

local tensile resistance is enough to represent correctly



Fig. 13. BE12 test: Input velocity and number of broken interactions versus time.

Table 2

Comparison between experimental and analytical results for the tensile tests: rupture distance from the free end of the specimen Zc,

failure stress rtd and ejection velocity Ve

Test id. BE16

(with T=4 MPa)

BE12

(with T=5.1 MPa)

BE16

(updated model)

BE12 (updated model)

Experimental Zc (mm) 65.8 First: 69, second: 41 65.8 First: 69, second: 41

Experimental rtd (MPa) 19.2 33.5 (for the first rupture) 19.2 33.5 (for the first rupture)

Simulated Zc (mm) 72

(at t=60·10�6 s)

First: 75, second:

43 (t’55·10�6 s)

72

(at t=60·10�6 s)

First: 77, second:

46 (t’55·10�6 s)

Simulated rtd from

homogenization (MPa)

17 23 (for both ruptures) 21 28 (for both ruptures)

Simulated Ve 2.3

(at t=79.1·10�6 s)

First: 3.8, second: 2.2 2.4

(at t=81·10�6 s)

First: 3.2, second: 2

Simulated rtd from Ve (MPa) 20.8 First: 35, second: 20 21.7 First: 29, second: 18
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the rate effect, in terms of increase of apparent tensile

strength, as well as in terms of number, position and

shape (nearly plane or meniscus-shaped) of ruptures.

The increase of strain rate does not seem to change

whatsoever the failure behaviour of concrete, everything

happens like the tensile strength of concrete increases.

This means that, rather than a structural effect, the

strain rate dependency in tension at these strain rates

seems to be a material-intrinsic behaviour. Therefore,

it seems legitimate to introduce a local strain rate

dependence to reproduce this behaviour. This is the pur-

pose of the next section.

3.3. Modelling of strain rate dependence in tension

If indeed the strain rate sensitivity in tension is a

material effect, the local implementation of a law of
the same shape as the apparent macroscopic rate

dependence should be relevant. An easy-to-use and

physical relationship between the dynamic strength

and the strain rate was then looked for. As at the

high strain rates considered, even a dry concrete

shows a rate dependence, but at a lower intensity

than for a ‘‘wet’’ concrete [8], viscosity alone does

not seem to explain the concrete dynamic behaviour.

The use of a more empirical law was preferred, of

the shape rd / _en. It is the case of the CEB

formulation which is mostly based on test results

compiled from the literature, and on analytical re-

sults: Gopalaratnam et al. [19] and Klepaczko [28] de-

duced the same kind of law, from physical

assumptions. For the sake of simplicity, it has been

decided to implement a law based on the CEB

formulation.
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3.3.1. The CEB formulation

In tension (the formulation is different in compres-

sion), the rate dependence is given by

rtd

rts

¼

1 for _e 6 _estat
_e

_estat

� �1:016d
for _estat < _e 6 30 s�1

h _e
_estat

� �1=3

for _e > 30 s�1

8>>><
>>>:

ð10Þ

where rtd is the dynamic tensile strength at _e, rts is the

static tensile strength at _estat ¼ 3·10�6, _e is the strain

rate in the range of 3·10�6 to 300 s�1, logðhÞ ¼
7:11d � 2:33, d ¼ 1

10þ6rcs
rco

(rcs is the compressive static

strength) and rco=10 MPa is a reference value.

Thus this formulation takes into account the follow-

ing properties: The increase of strength is related to a

strength measured at a specific quasi-static strain rate,

it is higher for concretes with lower strengths, and in a

log rtd
rts

� �
versus logð_eÞ plot, it is bilinear with a change

of slope around 3·101 s�1. Nevertheless, Malvar and

Crawford [34], after reviewing the properties of concrete

under dynamic loading, have concluded that the CEB

formulation accurately fitted the experimental results

in compression, but not quite so in tension, and pro-

posed an alternate formulation. In particular, the mod-

ified change of slope occurs at _e ¼ 100 s�1, the slope of

the first part d is changed, as well as the quasi-static

strain rate _estat.
3.3.2. Discrete element model update and results

The model is modified so that the local tensile

strength T depends on the strain rate _e:
Fig. 14. BE16 test with the modified model: Axial s
T td

T ts

¼

1 for _e 6 _estat
_e

_estat

� �d
for _estat < _e 6 100 s�1

h _e
_estat

� �1=3

for _e > 100 s�1

8>>><
>>>:

ð11Þ

where Ttd is the local dynamic tensile strength at _e, Tts is

the local static tensile strength at _estat ¼ 5·10�6 s�1,

logðhÞ ¼ 1
3
� d

� 	
logð_estatÞ, and d ¼ 1

38
, rco=10 MPa.

Considering an interacting couple of discrete ele-

ments a and b, of velocity vectors Va and Vb, and of

position vectors xa and xb, the discrete strain rate is

given by

_e ¼ ðVb � VaÞ:ðxb � xaÞ
kxb � xak2

ð12Þ

Of course, attention has to be paid to the way local

softening is taken into account.

In the case of the simulation of the BE16 and BE12

tests, Tts=2.8 MPa (identified to obtain a quasi-static

tensile strength rts=4 MPa). Figs. 14 and 15 show the

velocity field in the specimen for both tests with the

modified model, at time t=3.28·10�3 s after impact.

The results are compiled in Table 2, in terms of

experimental failure stress, position of ruptures, and

ejection velocity.

These results are very satisfying, and tend to show

that the modified model is able to reproduce accurately

the strain rate effect in tension: For the BE16 test, the

position of the rupture is the same as in the case when

the local tensile strength was artificially increased, and

still very close to the experimental position. More

importantly, it is also the case for the critical stress:

the ejection velocity is nearly unchanged, and the

homogenized stress is even more accurate. For the

BE12 test, the positions of ruptures are again close to
peed field in the specimen at t=3.28·10�3 s.



Fig. 15. BE12 test with the modified model: Axial speed field in the specimen at t=3.28·10�3 s.
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the experimental ones. The critical stresses, slightly

lower than the experimental result, are very close to each

other, whether deduced from homogenization or from

the ejection velocity, at least as far as the first rupture

is concerned.
4. Conclusion

In previous work, a three-dimensional discrete ele-

ment approach was proposed to study the dynamic

behaviour of concrete. The main specificities of this ap-

proach are the following: the modelling scale is higher

than the heterogenity scale, so the model may be used

in the future to simulate real structures, which means

the DEM is used here only for its ability to treat dis-

continuities; the introduced interaction laws are then

very simple and are close to macroscopic laws; last,

an identification process based on quasi-static tests is

used, so the quasi-static behaviour of concrete is

reproduced.

The present work aims at further validating this ap-

proach through dynamic tests, and at investigating con-

crete behaviour. The parameters are calibrated with the

quasi-static procedure, which means that the computa-

tions here are really predictive.

First compressive SHPB tests were simulated, at

strain rates ranging from 350 to 700 s�1. Real properties

of the considered concrete are obtained through the

quasi-static calibration of the local parameters. Thanks

to this step, the results of the simulation of the dynamic

tests are very satisfying, qualitatively, as well as quanti-

tatively, despite the great difficulty involved in reproduc-

ing such tests. The concrete apparent strain rate

sensitivity is well represented, and this, without requir-

ing the use of any viscosity or characteristic time in
the model. The discrete element method allows the

investigation of the transient phenomena (stresses, dam-

age) in the specimen, during and after impact. This con-

firmed the inertia-based hypothesis: In this range of

strain rates, the increase of load-carrying capacity of

concrete comes from the transition from a state of uni-

axial strain to a state of uniaxial stress, associated with

bulking; it is a structure effect.

Then simulations of tensile SHPB tests were run, at

strain rates ranging from 36 to 70 s�1. Unchanged, the

model did not show any strain rate dependency, but

an increase of the local tensile strength is enough to fit

the experimental results. This finding tends to show

firstly that inertia alone cannot explain the increase of

strength in this range of strain rates, and secondly that

in tension, the rate sensitivity is more a material intrinsic

effect. This justifies the introduction of a local discrete

rate dependence law. The pattern, the number and the

positions of the ruptures are accurately simulated, as

well as the increase of strength.

These simulations have extended the validation of the

method to model concrete under these types of loading.

Another step before real concrete structures under im-

pact could be modelled, is the validation of the model

through the simulation of beam-bending tests, and the

introduction of the reinforcement. This will show

whether the model is able to exhibit good results in dif-

ferent configurations, in terms of both loading and size

of the structure.
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constitutive behavior of concrete through quasi-static

discrete element simulations. In: Ling HI, Anandarajah

A, Manzari MT, Kaliakin VN, Smyth A, editors. Consti-

tutive modeling of geomaterials. Boca Raton, FL,

USA: CRC Press; 2003. p. 113–21.

[21] Hentz S, Daudeville L, Donzé F-V. Identification and
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