
Mixed DEM/FEM Modeling of Advanced Damage in
Reinforced Concrete Structures

Serguei Potapov1; Aurélien Masurel2; Philippe Marin3; and Laurent Daudeville4

Abstract: This paper aims to present a mixed, or combined, numerical approach to modeling advanced degradation and predicting failure in
reinforced concrete (RC) structures. The discrete-element method (DEM) is used to model the cohesive behavior and fracturing of concrete,
whereas the standard finite-element method (FEM) is applied to represent steel reinforcement through an elastic-plastic beam model. Because
of specificity in the geometric support, which does not allow for hierarchical mesh refinement, convergence of the spherical DEM has never
been proved, making it difficult to master DE simulations. In this paper the authors present results of a computational study conducted by
means of deforming a DEM sample and varying several parameters, which allowed determining the minimum discretization required for a
DEM sample to correctly reproduce the macroscopic behavior of concrete, and thus evaluating consistency of the spherical DEM used herein.
An original steel-concrete bond model, developed to simulate the interaction between the steel and concrete models, is also presented. This
model was devised to decouple normal and tangential responses, which allows fitting them separately in accordance with experimental data.
The numerical simulations of tests performed on unreinforced and reinforced concrete samples and the modeling of the hard-type impact on a
RC beam indicate the relevance of the proposed approach for simulating advanced damage in civil engineering structures under both static
and dynamic loads. DOI: 10.1061/(ASCE)EM.1943-7889.0001173. © 2016 American Society of Civil Engineers.
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Introduction

The discrete-element method (DEM) is a powerful alternative to
the finite-element method (FEM) whenever advanced damage
states and concrete failure need to be studied (Camborde et al.
2000; Hentz et al. 2004a). Although continuous approaches such
as FEM are well adapted to the nonlinear analysis of structures be-
fore failure, their limitations are exposed when seeking to describe
macrocracking and fragmentation mechanisms. The use of erosion
techniques (Belytschko and Lin 1987) may generate discontinuities
in the standard FEM, but the full algorithm becomes difficult to
control during the fragmentation process (due to difficulties of mass
and energy conservation and contact treatment of newly created
surfaces); moreover, results are entirely dependent on the erosion
criterion applied.

To overcome the difficulty of FEM in describing large material
deformations and material discontinuities, many so-called mesh-
free methods have been developed—smooth particle hydrody-
namics (SPH), element free Galerkin (EFG), reproducing kernel
particle method (RKPM), material point method (MPM), meshless
local Petrov–Galerkin (MLPG), and so forth (see Nguyen et al.

2008; Liu 2010 for a review)—using either strong or weak formu-
lation of equations, global or local background mesh to perform
integration, and different definitions of the support domain and
shape functions if used. In contrast, DEM is a completely discon-
tinuous approach to representing the material; thus, it does not need
any background integration mesh. Particles-based (Camborde et al.
2000; Hentz et al. 2004a), lattice-based (Prado and VanMier 2003),
and mixed lattice discrete particle models (Cusatis et al. 2011) have
been proposed to study fracturing in rocks and plain concrete on
different micro-, meso-, or macroscopic modeling scales. DEM
easily yields realistic (from a qualitative standpoint) macrocrack
patterns and material fragments given its discontinuous nature. Yet
it must still be handled carefully with regard to calibration of its
parameters and mesh construction in order to produce physically
(quantitatively) realistic results.

Most real concrete engineering structures are strengthened by
ribbed steel rods called reinforcing bars, or rebars, to ensure struc-
tural resistance in regions where high tensile stresses appear and the
concrete is cracked. For the numerical model to accurately predict
the advanced degradation states and failure of reinforced concrete,
two key modeling components must be developed and duly vali-
dated: the plain concrete model and the steel-concrete bond model.
Both are discussed within the computational framework set forth
herein.

To begin, a brief theoretical description of the spherical-type
DEM, adopted here to model concrete behavior on a macroscopic
level, is presented. Because of specificity in the geometric support,
which does not allow for hierarchical mesh refinement, it is not
possible to mathematically prove convergence of the considered
DEM. The only way to prove the credibility of the spherical DEM
approach is to simulate a variety of existing experiments involving
different loading conditions, different sizes and forms of specimens,
and going from elementary plain concrete samples to industrial-
type reinforced concrete structures. Moreover, mastering calcula-
tions using spherical DEM requires answering two important
questions: (1) what is the minimum fineness of the discrete-element
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(DE) assembly needed in order to guarantee that the DEM accu-
rately reproduces the macroscopic behavior of the material under
various types of loading; (2) how do DE assembly properties (fine-
ness, compactness) and packing method influence DEM model
behavior? To answer these questions and obtain information on the
consistency of the DEM model employed, an extensive computa-
tional study was conducted by varying DE mesh fineness and com-
pactness when subjecting DE samples to compressive and shear
loads. The main results from this study as well as from two DE
simulations of well-known tests (i.e., the Brazilian indirect splitting
test and Nooru-Mohamed’s shear-tension test on a double-edge
notched specimen) are presented to demonstrate the capability of
the DEMmodel introduced to reproduce crack initiation and propa-
gation in a multiaxial case.

Next, a new steel-concrete bond model is presented in order
to appropriately tie FEM rebar to DEM concrete. This model de-
couples the normal and tangential responses of the steel-concrete
interface and moreover allows choosing a suitable form of the con-
stitutive laws for each component. The two methods can therefore
be fitted separately in accordance with experimental data. The nor-
mal and tangential bond laws are also described.

To illustrate the modeling capabilities of this proposed mixed
DEM/FEM approach, as implemented in the EUROPLEXUS fast
dynamics software, the simulation of a steel-concrete tie in tension
and the hard-type impact on a RC beam are presented and analyzed.

Discrete-Element Modeling of Concrete

General Presentation of the Discrete-Element Model

The DEM considered herein corresponds to the descriptions pro-
vided in Hentz et al. (2004b) and Rousseau et al. (2008, 2009). The
DEM is based on cohesive and contact interactions linking discrete
elements. Discrete elements are rigid spheres of different sizes and
masses. DE mesh constitutes a disordered polydisperse assembly
generated by a special geometric algorithm (Jerier et al. 2010) that
allows padding (filling) a given tetrahedral mesh of the modeled
structure using spheres of varying sizes. To illustrate this, Fig. 1
shows an initial tetrahedral mesh of a rectangular sample and the
resulting DE mesh. This padding algorithm was implemented in the
SpherePadder++ free software, which was subsequently intro-
duced as a plug-in module into the open-source SALOME platform.
The SpherePadder++ algorithm yields a very regular DE size
distribution (as depicted in Fig. 2) between the minimum and maxi-
mum radii imposed by the user.

The characteristic size of the discrete elements used herein is not
representative of concrete constituents such as aggregates. In fact,
this model is of a higher scale and seeks to reproduce the macro-
scopic behavior of concrete in both linear and nonlinear regimes.
The behavior of undamaged plain concrete is assumed to be linear,
elastic, isotropic, and homogeneous. The discrete-element assembly
is thus required to be isotropic so as to reproduce the isotropic prop-
erty of undamaged concrete and prevent the development of non-
physical cleavage, which may appear with aligned elements when
the concrete behavior becomes nonlinear. In a DEM context, the
isotropy of a DE assembly can be evaluated by projecting contact
orientations onto three orthogonal planes. Fig. 3 shows angles (α)
used to project a link between two discrete elements denoted A and
B (Fig. 3).

To evaluate the isotropic property of DEM meshes, a paral-
lelepiped sample was first meshed with increasingly refined
tetrahedral meshes, containing between 1 and 9 tetrahedra per
transverse edge, and then transformed by SpherePadder++ into

DE assemblies with different levels of fineness. For all DE meshes,
the following ratios were used (default options set for Sphere-

Padder++): Rmax=Rmin ¼ 3 and FE tetrahedron edge/DE mean
diameter = 4. The DE meshes obtained and the rosette projections
for one of the mesh generators employed are shown in Fig. 4. As
can be observed, DEM model isotropy is quickly established as
the mesh becomes more refined. As an example, for Sample 4, de-
rived from the tetrahedral mesh containing 4 tetrahedra per edge,

Fig. 1. Initial tetrahedral mesh and the resulting DE mesh

Fig. 2. Typical DE size distribution in a DE sample

Fig. 3. Main planes for the projection of links in a DE sample
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Fig. 4. DE sample meshes and distribution of contact orientations in the XY, YZ, and XZ planes
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the interaction distribution is nearly uniform; hence, the sample can
be assumed to exhibit isotropic behavior.

Linear Elastic Cohesive-Type Model

Apart from its initial isotropy, the cohesive-type DE model needs to
reproduce the macroscopic elastic behavior of the solid material
volume under various loading conditions. Because the DE model
considered herein is a complex mass-spring system governed by
Newton’s laws and does not satisfy continuum mechanics equa-
tions, as opposed to FEM, the aforementioned requirement is not
automatically met. Local DEM properties must therefore be iden-
tified by comparing the DEM response in tension and compression
with the corresponding laboratory tests. In other words, local model
parameters are calibrated to enable DEM to reproduce macroscopic
concrete behavior.

Cohesion-type interactions in each pair of neighboring discrete
elements are defined by means of nonlinear normal and tangential
(shear) stiffnesses. Because the strain energy for a given cohesive
spring-type link depends on the size of the interacting elements, the
local interaction stiffnesses are not identical throughout the sample.
Micro-macro relations (see Hentz et al. 2004b for details) are used
to calculate these local stiffnesses KN and KS in the elastic regime
from macroscopic elastic parameters—namely, Young’s modulus E
and Poisson’s ratio ν:

KN ¼
ESint

DIJ

1þ α

βð1þ νÞ þ γð1 − ανÞ

KS ¼ KN

1 − αν

1þ ν
ð1Þ

where Sint ¼ minðπR2
I ; πR

2
JÞ = interaction surface for a pair of in-

teracting discrete elements I and J; DIJ = distance between their
centers; and α, β, and γ = set of parameters specific to the packing
algorithm.

The relations in Eq. (1) stem from homogenization models
adapted to take into account both the relative disorder of the DE
assembly and the dependence of the interaction surface on the size
of the interacting elements. After calibration, therefore, the local
parameters α, β, and γ of the DE model account for the size and
spatial distribution of discrete elements in the sample; moreover, they
are a priori specific to each packing algorithm. To enable the DEM to
correctly reproduce the cohesive features and initial isotropy of con-
crete, cohesive links must interconnect the discrete elements beyond
their immediate neighbors. All details about parameter identification
(i.e., general procedure, order of identification, choice of the form
and size of samples, etc.) can be found in Rousseau (2009).

Consistency Study of the Model in the Elastic Regime

As opposed to FEM, whose convergence properties are well estab-
lished with increased mesh refinement, it is not possible to prove con-
vergence for the spherical DEM used herein because it does not lead
to hierarchical mesh refinement. Every modification of the DE mesh
thus involves a change in its properties, requiring, strictly speaking, a
recalibration of local parameters. To guarantee the quality of DEM
calculations, two important questions first need to be answered:
(1) what is the minimum level of fineness of the DE assembly re-
quired in order to ensure that the DE model is accurately reproducing
the macroscopic behavior of the material under various types of load-
ings and (2) how do DE assembly properties (fineness, compactness)
and packing method influence the DEM model response?

To obtain information on the consistency of the spherical
DEM model, the authors conducted an extensive computational
study whereby DE samples of different fineness, compactness, and

geometry were subjected to quasi-static compressive and shear
loads. In this study, the local parameters of micro-macro relations
[Eq. (1)] were identified on Sample 4 (i.e., with 4 tetrahedra per
edge) when simulating a compression test by imposing an increas-
ing axial displacement on discrete elements located in the vicinity
of the sample’s opposite ends. This set of parameters was sub-
sequently used for the other samples when simulating the uniaxial
compression test. The mean values of Young’s modulus (E) and
Poisson’s ratio (ν) were then determined from the deformed state
of the samples and reported in Fig. 5. Table 1 summarizes relative
errors between the reproduced and the target values of E and ν ob-
tained for different DE meshes. It can be observed that for Sample 4
(i.e., the one used for local parameter identification), the values of
global parameters E and ν are replicated almost identically. When
applying the same set of local parameters to finer-meshed samples,
results do not vary considerably: the maximum error obtained for
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E (MPa)

(a)

(b)

Fig. 5. Reproducibility of (a) Young’s modulus and (b) Poisson’s ratio
values for various sample DE meshes

Table 1. Relative Errors on Young’s Modulus and Poisson’s Ratio Values

Sample
Error on Young’s modulus

(%)
Error on Poisson’s ratio

(%)

2 13.1 22.5
3 1.8 4.1
4 0.1 1.1
5 2.8 0.7
6 3.7 1.5
7 5.6 1.4
8 6.0 5.3
9 7.2 1.1
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E and ν does not exceed 8% in the worst case (Table 1), which
attests to some consistency of the spherical DEM model and sug-
gests the possibility of reusing the same set of parameters for dif-
ferent discretizations, provided they are produced with the same
tetra-mesh generator, thus avoiding the systematic recalibration of
local parameters. However, the use of finer meshes with the param-
eters calibrated on a coarse mesh can lead to overestimating the
resistance capacity of the structure.

Very similar results were obtained when simulating a pure shear
test using a cubic-shaped sample (Fig. 6 and Table 2). In this case,
two computed values of shear modulus G were compared with the
theoretical G value: the first one was identified from the deformed
sample dimensions and applied force, whereas the second was cal-
culated from the Young’s modulus and Poisson’s ratio values pre-
viously identified for the considered samples (Fig. 5).

The results obtained clearly indicate the minimum discretization
needed for a DE sample to reproduce the macroscopic behavior
of the material for both compression and shear types of loadings.
The mesh fineness derived for Sample 4 (with 4 tetrahedra per
edge) seems to be a good compromise between precision and cost,
whereas coarser meshes would obviously be insufficient and
should not be used. Finer meshes should be used whenever a com-
plex crack pattern is foreseen in the concrete.

Identification and Validation of the Nonlinear
Constitutive Model for Concrete

The nonlinear behavior of concrete is modeled by means of two
local rupture criteria:

f1ðFn;FsÞ ¼ Fs − tanðΦiÞFn − SintCo ð2Þ

f2ðFn;FsÞ ¼ SintT − Fn ð3Þ

where Fn and Fs = normal and shear forces related to stress quan-
tities Co (cohesion) and T (local tensile limit), respectively; Φi =
frictional angle.

These constitutive behavior parameters are identified (in a sim-
ilar way as for E and ν) from macroscopic properties such as the
compressive and tensile strengths σc and σt, and the fracture energy
Gf. A softening factor ξ (which must be identified) is introduced in
tension to make the tensile effort tend progressively to zero (Hentz
2003). A maximum interaction distance Dmax and the postpeak
force are defined as follows:

Dmax ¼ Dinit þ ð1þ ξÞ
SintT

Kn

ð4Þ

Fn ¼
Kn

ξ
ðDb

−DmaxÞ ð5Þ

where Dinit and Db = initial and actual distances between the in-
volved elements.

After the loss of cohesion at D ¼ Dmax, the cohesive (or linked)
interaction becomes a contact interaction modeled by means of a
classical Coulomb friction model characterized by a friction angle
Φc (Fig. 7).

A priori, friction angles Φi and Φc are independent because con-
tact friction is related to the roughness of the contacting surfaces,
whereas cohesive friction is related to the cohesive properties of the
material. The DE model considered herein does not represent the
material at the mesoscale, but seeks to reproduce the macroscopic
behavior of concrete. Thus, these friction angles must be identified
separately, as suggested in Camborde et al. (2000).

Compression Test Simulation

To identify the constitutive behavior parameters, a compression
test was simulated with σc ¼ 33 MPa, E ¼ 30 GPa, and ν ¼
0.21 (Gabet 2006; Gabet et al. 2006) using the DE sample shown
in Fig. 1. No numerical damping was applied. This simulation
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G calculated

G identified

Fig. 6. Reproducibility of the shear modulus for various sample DE
meshes

Table 2. Errors on the Shear Modulus

Sample
G (GPa)
calculated

Error
(%)

G (GPa)
observed

Error
(%)

3 14.34 1.4 13.82 4.9
4 14.63 0.6 14.58 0.3
5 14.92 2.6 14.74 1.4
6 15.07 3.7 14.85 2.2
7 15.26 4.9 15.28 5.1
8 15.36 5.7 15.45 6.3
9 15.55 6.9 15.67 7.8

(a)

(b)

Fig. 7. Interaction laws in (a) tangential and (b) normal directions
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made it possible to identify Co, ξ (Fig. 8). This compression test is
unsuitable for identifying the local tensile strength T because this
parameter only exerts a slight influence on the compression test
simulation.

Brazilian Test Simulation

The Brazilian indirect tensile test (Carneiro 1943; Fig. 9) serves to
identify the local tensile strength T. In the simulation performed,
DEM was applied to model the cylindrical concrete specimen
(diameter of 16 cm, length of 32 cm), and the two wooden bearing
strips were represented through a conventional finite element (FE)
model (Fig. 10).

The following DE model parameters were used: E ¼ 25 GPa,
ν ¼ 0.16, T ¼ 2.3 MPa, C0 ¼ 4.5 MPa, Φi ¼ 15°, Φc ¼ 15°,
ξ ¼ 5. Fig. 11 shows the horizontal displacement, Ux, of the

DE specimen once it has been split into two half-cylinders, as
would be expected for this brittle fracture test in which a vertical
crack is generated as shown in the figure by a dashed white line.
Because of vertical compressive loading, the tensile state occurs
perpendicular to the loading plane, which in turn causes the speci-
men to split. A sharp basic color change in the horizontal direction
in Fig. 11 reveals creation of two half-cylinder blocks moving in
opposite directions.

To quantify the specimen response, the tensile stress at the
specimen center is calculated using the well-known formula, σt ¼
2P=πdL, with P being the resultant vertical force applied by bear-
ing strips on the specimen and d and L being the specimen diameter
and length, respectively. The calculated tensile strength of 3.4 MPa
is in good agreement with the experimental value of 3.3 MPa
(Fig. 12). A dynamic resolution algorithm is used. To be sure that
the applied velocity is small and the calculation reproduces quasi-
static conditions correctly, it is verified a posteriori that the kinetic
energy is small compared with the deformation energy.

Nooru-Mohamed Multiaxial Test Simulation

The Nooru-Mohamed test (Nooru-Mohamed 1992) was simulated
in order to qualitatively validate the DEM for its description of
damage in a double-edge notched specimen subjected to a succes-
sive combination of shear and tension (Fig. 13).

Fig. 8. Simulation of a compression test

Fig. 9. Brazilian indirect tensile test setup

Fig. 10. Mixed DE-FE mesh for the Brazilian test

Fig. 11. Ux displacement field after splitting

Fig. 12. Calculated tensile strength σt
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First of all, the specimen was loaded by an increasing shear
force Ps while maintaining the normal force Pt equal to zero. After
reaching a certain load level, the force Ps was held constant and the
specimen was subjected to an increasing normal displacement.
Three values of shear force were considered: Ps ¼ 5 kN, Ps ¼
10 kN, and Ps ¼ 27.5 kN, with the last value being the maximum
shear force the specimen was able to withstand. In all cases, the
failure pattern consisted of two macroscopic cracks propagating
from the notches in an inclined direction. For the lowest shear force
value, these cracks were nearly horizontal and close to each other
whereas for the highest value they were highly curved (Fig. 14,
adapted from Nooru-Mohamed 1992).

The specimen used for the DE simulation had the same dimen-
sions as in the test, except for the slightly greater notch width used
because the SpherePadder++ algorithm cannot deal for the mo-
ment with very narrow notches. This modification exerted no influ-
ence on the crack path, which solely depends on the Ps=Pt ratio.
The initial tetrahedra and final DEmeshes are shown in Fig. 15. The
following DE model parameters were used: E ¼ 29 GPa, ν ¼ 0.2,
T ¼ 3 MPa, C0 ¼ 6 MPa, Φi ¼ 15°, Φc ¼ 15°, ξ ¼ 5.

The crack path’s output by the EUROPLEXUS calculation
(Fig. 16) can be compared with the experimental results (Fig. 14)
for three shear force values. For the three loading paths, the numeri-
cal crack path predictions are in a very good agreement with ex-
perimental results. Even the highly curved cracks generated by the
highest load level have been reproduced accurately. For each DE,
damage is defined as a ratio of remaining cohesive links over the
initial number of links; thus, it can be used only as an indicator for
material degradation and cannot indicate definitively the presence
of a macrocrack. To ensure that the damage state displayed in
Fig. 16(a) corresponds to a real discontinuity, the vertical displace-
ment field of the DE specimen was drawn [Fig. 16(b)]. The basic
color changes in the vertical direction reveal the presence of two

macrocracks going through the specimen. Dashed white lines de-
pict experimental crack patterns.

The force-displacement (f-u) diagram is not shown here because
it is difficult to obtain for this particular case. Indeed, to generate
tension in the DE model of the specimen, two zones have been
defined at the upper and lower sides (horizontal black lines in
Fig. 13), and linearly increasing vertical displacements have been
imposed on discrete elements whose centers were situated in these
zones. Thus, to obtain the resulting force for the f-u diagram, it is
necessary to sum up the vertical projections of all interelement
forces (normal and tangential components of cohesive links) cross-
ing the complex separation surface [because of polydisperse DE
graining as shown Fig. 15(b)] between these zones and the rest of
the specimen.

An accurate description of damage and cracks pattern in the
Brazilian and Nooru-Mohamed tests validates the proposed ap-
proach to modeling concrete behavior under static loading.

Steel-Concrete Bond Modeling

General Presentation

The modeling of reinforced concrete structures requires accounting
for steel reinforcement and its interaction with concrete. It is pos-
sible to model rebars in a DEM framework by using aligned dis-
crete elements and special beam-like connections, as proposed in
Rousseau (2009). However, because of the complex grid patterns
of rebars used in actual engineering structures, the application of
a DEM-type model for steel is inconvenient for many reasons,

Fig. 13. Schematic of the Nooru-Mohamed test

(a) (b) (c)

Fig. 14. Crack patterns for three different shear load values: (a) Ps ¼ 5 kN; (b) Ps ¼ 10 kN; (c) Ps ¼ 27.7 kN (adapted from Nooru-Mohamed
1992)

Fig. 15. (a) Tetrahedra and (b) DE meshes for the Nooru-Mohamed
test simulation
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including complicated mesh construction and poor numerical per-
formance owing to the small size of discrete rebar elements. In this
study, the steel reinforcement was modeled through a conventional
FEM with beam-like elements; also, a new steel-concrete bond
model is proposed to appropriately link concrete spherical discrete
elements with FE rebar (Masurel 2015).

In the proposed computational framework, the steel-concrete
(S-C) interface has been modeled as a set of links established be-
tween a given rebar and the concrete discrete elements located in
the vicinity of the rebar (Fig. 17). Consequently, for a given mn

rebar finite element, S-C links are created for the concrete discrete
elements (shading in Fig. 17) that feature an orthogonal projection
on this rebar element; their centers lie within an interaction zone
whose radius (referred to as the interaction distance,Dint) is propor-
tional to the rebar radius Ra, with λa as the proportionality coef-
ficient. To determine the value of this coefficient, the procedure
suggested in the literature (Torre-Casanova 2012) is applied, rely-
ing on a series of simulations of the pull-out test by varying the

interaction coefficient in order to match the numerical response
with the imposed S-C tangential law.

Each S-C link can be symbolically represented as shown in
Fig. 18(a). This representation is equivalent to two independent
nonlinear springs: one normal, the other tangential. The behav-
ior of the normal spring is assumed to be brittle in tension and
elastic-plastic in compression [Fig. 18(c)]. The tangential behavior
[Fig. 18(b)] is devised to reproduce the response of the S-C bond
observed in pull-out tests; this response differs for high-strength
ribbed rebar and smooth rebar.

The key point of this S-C bond model is that its normal and
tangential components remain independent. For the normal compo-
nent, the restoring force [Eq. (6)] is calculated at each time step
from the variation in distance between the concrete DE center
and its orthogonal projection (point PN) on the corresponding rebar
element:

FN ¼ −KNðh
n
− h0Þ ð6Þ

Because point PN is fictitious, the calculated restoring force
is logically redistributed on the nodes of the given rebar beam
element. The calculation remains the same as in the case of exten-
sive sliding, where the concrete DE is projected onto the neighbor-
ing rebar element [Fig. 19(a)]. The normal component forces are
always in equilibrium for both translation and rotation.

For the tangential component, another projection point PS is
defined. As opposed to PN , which can slide along the rebar, PS

does not move from its initial position on the rebar element. The
restoring force [Eq. (7)] for the tangential spring is proportional to
the distance between PN and PS:

FS ¼ −KSuS ð7Þ

As for the normal component, the force FS is distributed on
the nodes of the rebar element, where point PN is also projected.

Fig. 16. (a) Crack patterns and (b) vertical displacement calculated for three shear load values

Fig. 17. Schematic representation of steel-concrete links
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The tangential forces are balanced in translation but not in rotation,
which can generate model instabilities. To respect rotation equi-
librium, two vertical reaction forces Rm and Rn [green arrows in
Fig. 19(b)] are calculated from Newton’s second law for rotation
and then applied to the nodes of the considered rebar element.

The interaction laws for the normal and tangential components
of the proposed bond model were adequately implemented into the
EUROPLEXUS fast dynamics software; moreover, verification
tests were performed in loading-unloading regimes to ensure that
the prescribed laws (Fig. 18) were respected during complex load-
ing paths (Fig. 20). As can be observed, the normal and tan-
gential stiffnesses (curve slopes) of the bond components vary in
an appropriate manner with respect to hardening and softening
regimes—namely, the slope decreases in the softening regime and
the envelope curve (Fig. 18) is systematically reached as the dis-
placement increases.

For the moment, the tangential behavior is completely indepen-
dent of what happens in the normal direction. This corresponds to
the situation that typically occurs in standard (unconfined) pull-out
tests, where mainly tangential behavior is involved. To couple nor-
mal and tangential responses, the actual model has to be completed
and calibrated on confined pull-out tests.

Steel-Concrete Tie in Tension

To test the capability of the mixed DE/FE model to reproduce the
cracking of reinforced concrete, the simple model case of a steel-
concrete tie in tension is considered (Fig. 21). According to this
case, as fully described in Torre-Casanova (2012), the loading is
applied symmetrically at the ends of a single reinforcing rod em-
bedded in a concrete column, and the S-C interface is directly
involved in load transmission between the steel and the concrete.

(a) (b) (c)

Fig. 18. Representation of the (a) S-C link and its interaction laws in both the (b) tangential and (c) normal directions

(a)

(b)

Fig. 19. (a) Normal and (b) tangential behavior in the event of significant sliding
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Standard material properties are adopted for the steel (E ¼
210 GPa, ν ¼ 0.3) and concrete (E¼ 30 GPa, ν ¼ 0.2, T ¼ 2MPa,
C0 ¼ 6 MPa, Φi ¼ 15°, Φc ¼ 15°, ξ ¼ 5) of this tie.

Fig. 22(a) shows the damage state of the tie when the cracking
process is completely stabilized (no more new transverse cracks
appear). A finite number of cracks is generated, which is in agree-
ment with the experimental results found during the tie tensile tests
(Farra and Jaccoud 1993). By comparing tensile stress in the rebar
[Figs. 22(b) and 23] with the final damage state of the concrete, it
can be seen that plastic flow occurs in the rebar sections in front

of the formed cracks. These cracks separate the concrete fragments
with uniform longitudinal displacements, as indicated by the basic
color changes in Fig. 22(c). Relative sliding of the rebar with respect
to the surrounding fragmented concrete can be seen in Fig. 24.

These first results show that the proposed mixed DEM/FEM
model ensures an effective load transmission between the rebar
model and the concrete model, in obtaining a realistic distribution
of force and damage along the rebar. Work is in progress to study
the capability of this approach to represent the effect of the rein-
forcement ratio on the crack spacing.

Hard Impact on a RC Beam

To demonstrate the modeling capability of the proposed numerical
approach, a low-velocity hard-type impact on a reinforced concrete
beam is simulated and numerical results are compared with mea-
sured data obtained on a CEA Orion drop tower (Chambart 2009).

(a)

(b)

Fig. 20. (a) Normal and (b) tangential behavior during a loading-
unloading regime

U(t) U(t)

L = 3 m

A = 10 cm × 10 cm
Steel rebar D = 1 cm

Fig. 21. Schematic representation of the studied steel-concrete tie

Fig. 22. (a) Damage state of the concrete; (b) tensile stress in the rebar; (c) Ux displacement of the concrete

Fig. 23. Tensile stress in the rebar

Fig. 24. Longitudinal displacements in the concrete and the rebar
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A short concrete beam of 1.3-m length with a rectangular cross
section (height 0.2 m and width 0.15 m) is considered. The beam is
made of ordinary concrete with a compressive strength of 33 MPa.
It is doubly reinforced with two 12-mm-diameter ribbed high-yield
steel rebars at the bottom of the beam and two 8-mm-diameter
ribbed high-yield steel rebars at the beam’s top. The rebars are
welded to 1-cm-thick steel plates disposed at the beams’ ends to
avoid excessive sliding between the rebars and the concrete during
deformation and cracking. Two steel semicircular cylinders support
the beam and form the 1-m span. To avoid rebound on the supports,
the beam is held by two steel frames. Impact loading is generated
by a 103.65-kg mass dropped from a height of 3.5 m directly onto
the beam with an impact velocity of 8.3 m=s. In this hard impact
case, a characteristic conical shear plug delimited by oblique
cracks is generated (Fig. 25) but the longitudinal rebars are not
broken.

A detailed mixed DE/FE numerical model of the experimental
device is built (Fig. 26): the concrete is represented by DE formu-
lation, whereas FEM is used to model the bending steel reinforce-
ment, the end plates, the semicircular cylindrical supports, the steel
frames (not shown in the figure), and the impactor. Unilateral con-
tact conditions are prescribed everywhere between the DE and FE
parts of the model. Steel-concrete bond laws presented previously
are applied to describe the interaction between the concrete and the
steel reinforcement. Pull-out tests for 8- and 12-mm ribbed high-
yield steel rebars were realized to characterize the tangential laws of
the model. To study the influence of discretization refinement of the
concrete on the whole response of the model, two different DE
meshes are built. The DE Mesh n°1 shown in Fig. 26 contains
24.677 DE elements (Rmax ¼ 1.05 cm, Rmin ¼ 3.5 mm), whereas
Mesh n°2 is finer and contains 55.690 DE with Rmax ¼ 7.9 mm,
Rmin ¼ 2.6 mm.

To take into account the increased resistance of the concrete
under high rate loading, the local strain-rate dependency (through
a bilinear law proposed in Hentz 2003) is introduced in the model,
enabling it to correctly reproduce the experimental strain-rate sen-
sitivity. Infinite impulse response filtering is applied to the velocity
before calculating the strain rate.

Fig. 27 shows the damage pattern, after the projectile rebound,
obtained in the simulations with two DE meshes considered. In the
absence of shear reinforcement, a shear plug is formed under the

impactor, with the angle of the plug in conformity with the exper-
imental observation (Fig. 25).

Because the diffuse damage state is difficult to interpret in terms
of macrocracking, a special algorithm has been developed to detect
fragments in the DE concrete model. This algorithm helps make
visible material discontinuities between the DE blocks created in
the simulation with no common links left. These discontinuities
correspond to sharp color changes in Fig. 28. As can be seen,
the damaged zone is limited by oblique cracks as observed in
the experiment.

The time evolution of deflection of the beam is shown in Fig. 29.
The calculated residualUy displacement is very close to the 24-mm
displacement measured in the experiment. These global-type

Fig. 25. Experimentally observed shear-type failure mode (adapted
from Chambart 2009)

Fig. 26. View of the DEM/FEM model with coarse and fine DE
meshes

Fig. 27. Final damage state obtained with the coarse and fine DE
meshes
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results show that the model dissipates the right amount of energy
injected into the beam by the impactor.

Conclusion

An original mixed DEM/FEM approach was proposed to model the
advanced damage states of reinforced concrete structures subjected
to severe accidental-type loads. This model is based on a discrete-
element modeling of concrete, which yields a very natural repre-
sentation of both the undamaged cohesive behavior of concrete
and its cracking and fracturing processes during the final stages
of deformation. In order to master the DEM modeling of concrete,
an extensive numerical study was conducted to determine the mini-
mum discretization needed for a DEM sample to reproduce the
macroscopic behavior of concrete. The standard finite-element
method was applied to represent steel reinforcement through an
elastic-plastic beam model. This setup accounts for the arbitrary
complex grid patterns of rebars used in actual engineering struc-
tures. To complete this modeling framework, an original steel-
concrete bond model was developed; its normal and tangential
responses were effectively decoupled and could be treated inde-
pendently with a suitable fitting on the available experimental data.
The material parameters of this novel approach were identified by
simulating both the compression test and the Brazilian indirect
tension test. An accurate description of the damage phenomena
(damage pattern and curved cracks) in the simulation of the com-
plex Nooru-Mohamed shear-tension test validated the proposed ap-
proach to modeling concrete behavior. The entire approach was
then applied to simulate a steel-concrete tie in tension. A realistic
cracking process and suitable load transmission between the rebar
model and the concrete model were predicted. Lastly, the mixed

DEM-FEM model was applied to simulate the advanced damage
state of a RC beam under a hard-type impact. The crack pattern
predicted by the calculation was in general accordance with the ex-
periment. The global nonlinear response of the RC structure was
also correctly predicted—namely, the beam deflection.

The whole DEM/FEM computational framework presented
in this study runs on parallel computers, and it is now ready for use
in simulating the static and dynamic responses of industrial-size
reinforced concrete structures.

Acknowledgments

The authors gratefully acknowledge the financial support (contract
no. 2011/1105) provided by the French National Research and
Technology Association (ANRT).

References

Belytschko, T., and Lin, J. I. (1987). “A three-dimensional impact-
penetration algorithm with erosion.” Comput. Struct., 25(1), 95–104.

Camborde, F., Mariotti, C., and Donzé, F. V. (2000). “Numerical study of
rock and concrete behavior by discrete element modeling.” Comput.

Geotech., 27(4), 225–247.
Carneiro, F. L. L. B. (1943). “A new method to determine the tensile

strength of concrete.” Proc., 5th Meeting of the Brazilian Association

for Technical Rules (“Associação Brasileire de Normas Técnicas—

ABNT”), 126–129 (in Portuguese).
Chambart, M. (2009). “Endommagement anisotrope et comportement

dynamique des structures en béton armé jusqu’à la ruine [Anisotropic
damage and dynamic behavior of reinforced concrete structures until
failure].” Ph.D. thesis, Ecole normale supérieure de Cachan (ENS
Cachan), Cachan Cedex, France (in French).

Cusatis, G., Pelessone, D., and Mencarelli, A. (2011). “Lattice discrete
particle model (LDPM) for failure behavior of concrete. I: Theory.”
Cem. Concr. Compos., 33(9), 881–890.

EUROPLEXUS [Computer software]. 〈http://www-epx.cea.fr〉.
Farra, B., and Jaccoud, J. P. (1993). “Influence du béton et de l’armature

sur la fissuration des structures en béton [Influence of concrete and
reinforcement on cracking of concrete structures].” Rapport des essais
de tirants sous déformation imposée de courte durée [Rep. on Ex-

periments on Ties under an Imposed Strain of Short Duration], EPF de
Lausanne, Lausanne, Switzerland (in French).

Gabet, T. (2006). “Comportement triaxial du béton sous fortes contraintes:
Influence du trajet de chargement [Triaxial behavior of concrete under
strong stresses: Influence of the loading path].” Ph.D. thesis, Université
de Grenoble, Saint-Martin-d'Hères, France (in French).

Gabet, T., Vu, X. H., Malecot, Y., and Daudeville, L. (2006). “A new ex-
perimental technique for the analysis of concrete under high triaxial
loading.” J. Phys. IV, 134, 635–640.

Hentz, S. (2003). “Modélisation d’une Structure en Béton Armé Soumise à
un Choc par la méthode des Éléments Discrets [Modeling of a structure
in reinforced concrete submitted to a choc by the discrete element
method].” Ph.D. thesis, Université de Grenoble, Saint-Martin-d'Hères,
France (in French).

Hentz, S., Daudeville, L., and Donzé, F. V. (2004a). “Discrete element
modelling of concrete submitted to dynamic loading at high strain rate.”
Comput. Struct., 82(29–30), 2509–2524.

Hentz, S., Daudeville, L., and Donzé, F. V. (2004b). “Identification and
validation of a discrete element model for concrete.” J. Eng. Mech,
10.1061/(ASCE)0733-9399(2004)130:6(709), 709–719.

Jerier, J.-F., Richefeu, V., Imbault, D., and Donzé, F. V. (2010). “Packing
spherical discrete elements for large scale simulations.” Comput.

Methods Appl. Mech. Eng, 199(25–28), 1668–1676.
Liu, G. R. (2010). Meshfree methods: Moving beyond the finite element

method, 2nd Ed., CRC Press, Boca Raton, FL.
Masurel, A. (2015). “Modélisation mixte éléments discrets/éléments finis

de la dégradation de structures en béton armé sous impact sévère

Fig. 29. Deflection predicted in the calculation with the coarse mesh

Fig. 28. Concrete fragments detected in the calculation with the coarse
mesh

© ASCE 04016110-12 J. Eng. Mech.

 J. Eng. Mech., 04016110 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

se
rg

ue
i p

ot
ap

ov
 o

n 
10

/3
0/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1016/0045-7949(87)90220-3
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1016/j.cemconcomp.2011.02.011
http://www-epx.cea.fr
http://www-epx.cea.fr
http://www-epx.cea.fr
http://dx.doi.org/10.1051/jp4:2006134098
http://dx.doi.org/10.1016/j.compstruc.2004.05.016
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
http://dx.doi.org/10.1016/j.cma.2010.01.016
http://dx.doi.org/10.1016/j.cma.2010.01.016


[Mixed discrete element/finite element modeling of degradation of
reinforced concrete structures under severe impact].” Ph.D. thesis,
Université de Grenoble Alpes, Saint-Martin-d'Hères, France (in French).

Nguyen, V. P., Rabczuk, T., Bordas, S., and Duflot, M. (2008). “Meshless
methods: A review and computer implementation aspects.” Math.

Comput. Simul., 79(3), 763–813.
Nooru-Mohamed, M. B. (1992). “Mixed-mode fracture of concrete: An

experimental approach.” Ph.D. thesis, Delft Univ. of Technology, Delft,
Netherlands.

Prado, E., and Van Mier, J. (2003). “Effect of particle structure on mode I
fracture process in concrete.” Eng. Fract. Mech., 70(14), 1793–1807.

Rousseau, J. (2009). “Modélisation numérique du comportement dyna-
mique de structures sous impact sévère avec un couplage éléments
discrets / éléments finis [Numerical modeling of dynamic behavior of
reinforced concrete structures under severe impact using DEM/FEM

coupling].” Ph.D. thesis, Université de Grenoble, Saint-Martin-d'Hères,
France (in French).

Rousseau, J., Frangin, E., Marin, P., and Daudeville, L. (2008).
“Damage prediction in the vicinity of an impact on a concrete
structure: A combined FEM/DEM approach.” Comput. Concr., 5(4),
343–358.

Rousseau, J., Frangin, E., Marin, P., and Daudeville, L. (2009). “Multi-
domain finite and discrete elements method for impact analysis of a
concrete structure.” Eng. Struct., 31(11), 2735–2743.

SALOME [Computer software]. 〈http://www.salome-platform.org/〉.
SpherePadder++ [Computer software]. 〈https://subversion.assembla.com

/svn/spherepadder/trunk〉.
Torre-Casanova, A. (2012). “Account for steel-concrete bond in simulation

of industrial structures.” Ph.D. thesis, Ecole Normale Supérieure de
Cachan, Cachan Cedex, France (in French).

© ASCE 04016110-13 J. Eng. Mech.

 J. Eng. Mech., 04016110 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

se
rg

ue
i p

ot
ap

ov
 o

n 
10

/3
0/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/10.1016/S0013-7944(03)00125-5
http://dx.doi.org/10.12989/cac.2008.5.4.343
http://dx.doi.org/10.12989/cac.2008.5.4.343
http://dx.doi.org/10.1016/j.engstruct.2009.07.001
http://www.salome-platform.org/
http://www.salome-platform.org/
http://www.salome-platform.org/
https://subversion.assembla.com/svn/spherepadder/trunk
https://subversion.assembla.com/svn/spherepadder/trunk
https://subversion.assembla.com/svn/spherepadder/trunk
https://subversion.assembla.com/svn/spherepadder/trunk

