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Identification and Validation of a Discrete Element Model
for Concrete

Sébastien Hentz1; Laurent Daudeville2; and Frédéric V. Donzé3

Abstract: The use of a three-dimensional discrete element method~DEM! is proposed to study concrete structures submitted to dyn
loading. The aim of this paper is to validate the model first in the quasistatic domain, and second in dynamic compression, at
scale. A particular growing technique is used to set a densely packed assembly of arbitrarily sized spherical particles interactin
representing concrete. An important difference from classical DEMs where only contact interactions are considered, is the
interaction range. First, the correct identification of parameters of the DEM model to simulate elastic and nonlinear deformation
damage and rupture is made through quasistatic uniaxial compression and tension tests. The influence of the packing is shown
produces a quantitative match of strength and deformation characteristics of concrete in terms of Young’s modulus, Poisson’s
and compressive and tensile strengths. Then, its validity is extended through dynamic tests. The simulations exhibit complex m
behaviors of concrete, such as strain softening, fractures that arise from extensive microcracking throughout the assembly, an
dependency.
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Introduction
The design of concrete safety structures is a big challeng
engineers; for example, some structures present in mounta
areas are dedicated to protection against natural hazards, s
avalanches, rock falls, etc. and thus may be submitted to im
loads and high deformation. Despite their geometry which is
ally massive, with an extremely high fraction of reinforcem
and of course a design satisfying usual building standards,
are found to be totally damaged. This inconsistency demand
ther investigation and understanding of the failure mechanis

Different approaches have been used to model fractu
brittle geomaterials, such as concrete. Some introduce dam
the constitutive relations of the material, and most often are
for engineering purposes, whereas others deal directly with
merous microscopic cracks; the latter are often used to unde
the damage mechanisms of the materials.

The use of a three-dimensional~3D! distinct element metho
~DEM! ~Cundall and Strack 1979; Cundall 1988! is proposed her
to study the fracture and the fragmentation of a complete con
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structure, which is now made feasible thanks to ever-incre
computing power. This method does not rely upon any ass
tion about where and how a crack or several cracks occu
propagate as the medium is naturally discontinuous, and is
well adapted to dynamic problems. Although numerous aut
~Meguro and Hakuno 1989; Potyondy et al. 1996! have use
similar two-dimensional approaches to model cohesive geo
rials, few have thus modeled concrete, and even fewer have
eled complete 3D structures. This requires some modificatio
the usual DEM models. Unlike continuous methods, the pa
eters of the material behavior model are not defined at the
roscopic scale; in addition, access to physical interaction qu
ties, such as friction coefficient and stiffnesses is not allo
unlike real granular materials, for which information at the g
scale may be obtained. Therefore, a calibration of the param
at the local scale is needed. This paper deals first with the
tification of the constitutive equations parameters of the dis
element model thanks to elementary tests, such as quas
uniaxial compression and tension tests. Second, once para
are known, the validation of the model will be extended thro
split Hopkinson pressure bar~SHPB! tests.

Discrete Element Method Model Used

The present numerical model has been implemented withi
‘‘spherical discrete element code’’~SDEC! ~Donzé2000!. It uses
discrete spherical elements of individual radius and mass. T
elements represent a polydisperse assembly with a size dis
tion obtained by using a particular growing technique~Donzé
2002!. Once the assembly has been set, pairs of initially inte
ing discrete elements are identified. These interactions have
chosen to represent, as well and as simply as possible, the
and cohesive nature of a certain class of geomaterials, su
concrete. To do this, elastic forces with a local rupture crite

are applied between interacting elements.

URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004 / 709
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Using the constitutive equations for each interaction, the
merical model solves the equations of motion with an algor
similar to those used in molecular dynamics~Allen and Tildesley
1987!. The explicit time integration of the laws of motion w
provide the new displacement and velocity for each discrete
ment.

As time proceeds during the evolution of the system, cha
in the packing of discrete elements may occur and new int
tions be created. One of the features of this numerical mode
then be to determine the interacting neighbors of a given ele
This will be achieved by defining an interaction range and i
tifying all elements within it which are interacting. Depending
the spatial distribution of the discrete elements, two diffe
methods are available to identify the interacting neighbors. I
distribution is rather compact with little fluctuations in size, a g
subdivision method is used~Allen and Tildesley 1987, Magnie
et al. 1997!. If, however, the distribution is dispersive with lar
size fluctuations then the previous method will be costly a
spatial sorting method is used~Müller 1996; O’Connor 1996
Magnier et al. 1997!.

Interaction Range

The overall behavior of a material can be reproduced by mea
this model by associating a simple constitutive law to each i
action. An interaction between elementsa andb of radiusRa and
Rb respectively, is defined within an interaction rangeg and doe
not necessarily imply that two elements are in contact. T
these elements will interact if,

g~Ra1Rb!>Da,b (1)

whereDa,b5distance between the centroids of elementsa andb
and g>1. This is an important difference from classical DE
which use spherical elements~Cundall and Strack 1979! where
only contact interactions are considered~g51!. This choice wa
made so that the method could simulate materials other
simple granular materials in particular those which involve a
trix as found in concretes. To take into account the effects o
matrix which may cement two aggregates which are not th
selves in contact, the interaction rangeg is set to be greater tha
1 when the assembly of elements is initially built. However,
long-range interaction is limited to nearest neighbors.

The location of the interaction point is given by

xa,b5xa1~Ra20.5~~Ra1Rb!2Da,b!n (2)

wheren5unit vector pointing from elementa to elementb; and
xa5position vector of elementa.

Interaction Forces

The interaction force vectorF, which represents the action
elementa on elementb, may be decomposed into a normal an
shear vectorFn andFs, respectively, so that,

F5Fn1Fs (3)

where

Fn5Kn~Deq
a,b2Da,b!n (4)

where Deq
a,b5equilibrium distance between the two elementa

andb which was set when the interaction was created.
The normal force vector may be expressed such that i
counts for possible inelastic deformations.
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The shear vector forceFs is computed incrementally and w
given by other authors~Hart et al. 1988!. The incremental force
given by

DFs52KsDUs (5)

whereDUs5shear displacement vector increment between th
cations of the interacting points of the two elements ov
timestepDt.

Elastic Properties

The strain energy stored in a given interaction cannot be ass
to be independent of the size of the interacting elements. T
fore, interaction stiffnesses are not identical over the sample
follow a certain distribution. The macroscopic elastic proper
here Poisson’s ration, and Young’s modulusE, are thus consid
ered to be the input parameters of the model.

‘‘Macro–micro’’ relations are then needed to deduce the l
stiffnesses from the macroscopic elastic properties and from
size of the interacting elements. Compression tests have be
with one given sample and values linking Poisson’s ration, and
Young’s modulusE to the dimensionless values ofKs/Kn were
obtained. Relations fitting these values~based on the best-
model Liao et al. 1997! can be expressed as

E5
Deq

a,b

Ãint
KnS 0.825Kn12.65Ks

2.5Kn1Ks D (6)

n5
Kn2Ks

2.5Kn1Ks
(7)

whereÃint5surface where the interaction is defined, with

Ãint5p•min~Ra,Rb!2 (8)

The distribution of the local stiffnesses over the sample
tained through the use of this interaction surface is anothe
portant particularity of the SDEC model. The adequacy of
relations~6! and ~7! will be discussed further.

Strength Properties

Before Rupture
A modified Mohr–Coulomb rupture criterion is used. Thus, f
given interaction, a maximum tensile strengthT ~with T.0) is
given and a maximum normal forceFmax

n is defined such that

Fmax
n 52TÃint (9)

A maximum interaction distanceDmax is defined such that,

Dmax5Deq1~b11!S uFmax
n u

Kn D (10)

whereDeq5equilibrium distance; andb5softening factor for thi
interaction withb.0. Note that in all these developments,
indicesa andb which represented the interacting elements, h
been dropped to alleviate the formulations. Two cases may o
1.

Fn,Fmax
n and D,Dmax⇒Fn5

Kn

b
~D2Dmax! (11)

Fn,Fmax
n and D>Dmax⇒ HFn50

s (12)
F 50
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The cohesive interaction is broken: Rupture occurs.
Fig. 1 summarizes the behavior of the normal force for

different values ofb which illustrates the difference between
brittle elastic behavior~dotted line! and a quasibrittle behavi
~i.e., presence of softening, dashed line!. As long asFn>Fmax

n the
normal force follows the solid line. As soon asFn,Fmax

n and
depending on the value chosen forb, different paths can be fo
lowed. If b→0, thenDmax→Dmax 1and rupture occurs~dotted line
in Fig. 1!. If b52 thenDmax5Dmax 2 and before rupture, the no
mal force follows the dashed line.

However, a global softening may still be induced at the m
roscopic scale while the local softening factor tends to zero i
size distribution of the elements is large enough. This is bec
if there exists a large distribution of radii for the elements, t
according to Eq.~9! there will be a large distribution of maximu
normal forces which will in turn introduce softening effects~Her-
rmann et al. 1989!. Therefore, some caution must be exerc
before using a local softening factor.

The maximum shear force can be calculated as

Fmax
s 5cÃint1Fn tanf i (13)

wherec5cohesion; andf i5‘‘internal’’ friction angle. If the ab-
solute value of the shear force is

uFsu5~Fs"Fs!1/2 (14)

which is greater thanuFmax
s u, then the shear force is reduced to

limiting value and written as

Freduced
s 5Fs@Fmax

s /uFsu# (15)

After Rupture
After initial interactions have broken, new ones are identi
which are not cohesive any more: They are merely ‘‘cont
interactions, and cannot undergo any tension force.

Then, a new maximum shear force can be calculated as

Fmax
s 5Fn tanfc (16)

wherec5cohesion; andfc5contact friction angle, which may b
different fromf i , the internal friction angle. If the absolute va
of the shear force is

uFsu5~Fs"Fs!1/2 (17)

which is greater thanuFmax
s u, then the shear force is reduced to

limiting value and written as

Fs 5Fs@Fs /uFsu# (18)

Fig. 1. Strength properties of normal force
reduced max

JO
Again, the use ofÃint induces a certain strength proper
distribution over the sample, which is very consistent with a
material behavior.

Fig. 2 summarizes the rupture criteria used in the model.

Irreversible Deformations
The model is able to take into account the loss of rigidity du
damage after a compression phase, where irreversible def
tions occur. To do so, the normal force vector may be expre
differently. The irreversibility will be initiated after a compre
sional phase (Da,b,Deq

a,b , whereDeq
a,b is the equilibrium distanc

between the two elementsa andb which was set when the inte
action was created!. In that case, a different loading and unlo
ing path can be considered, using a coefficienta. a51 means th
unloading path is unchanged, anda→` means that the unloadin
path is vertical. Fig. 3 summarizes the behavior of the no
force.

Homogenized Quantities

It was considered important to be able to look at the state of s
and strain in the specimen. The computation of a homoge
stress and strain has then been implemented within SDEC. A
as the stress is concerned, a technique based on an analog
the continuous media has been chosen~Bardet 1997; Morea

Fig. 2. Rupture criteria used in the model

Fig. 3. Behavior of normal component of interaction force. Slop
loading path during compression isKn; it is aKn for unloading path
during compression.
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004 / 711
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1997!, the average stresss in the volumeV is defined as th
weighted average of the average stress in each particlea in V, and
is given by:

s i j 5
1

V (
aPV

(
bPI a

Fi
b→aRanj

ab (19)

where I a5set of particle b in contact with particle a;
Fb→a5contact force of particleb on particlea; and nab5unit
vector from the centroid of particlea to the contact point wit
particleb. The computation of the homogenized strain leads
more complex relation: It follows the best fit method, fully
scribed in Liao et al.~1997!.

Quasistatic Simulations

Calibration of the model parameters is performed by adjustin
properties of the material represented by the assembly of dis
elements to the real geomaterial properties, a particular ty
concrete. For this purpose, we have established a quas
uniaxial compression/traction procedure.

Sample Preparation

This is a step of particular importance, as the properties o
‘‘discrete’’ material strongly depend on the packing. The sam
used are standard specimens, cylinders with a height of 0.0
and a diameter of 0.016 m. The procedure must produce iso
packings, with a high compacity and a given size distributio
consists in several points:
1. First, an initial set of elements, all of identical radiusR, are

distributed according to the most compact geometry pos
~e.g., a face-centered-cubic lattice! in a cylinder shaped vo
ume, as well as two platens, and a hollow cylinder surro
ing the sample.

2. The second step introduces a certain disorder in the pac
in terms of the sample element positions, and of their r
inside the hollow cylinder and between the bottom and
platens, which remain unchanged. This is performed th
to an original growing technique~Donzé2002!, based on a
algorithm described in Jodrey and Tory~1985!; this tech-
nique is completely geometrical, unlike many others wh
are dynamical. It allows fine isotropy and compacity~of
roughly 0.67 for the samples used!. Fig. 4 shows a typica
size distribution obtained.

3. The final step consists in removing the hollow cylin
around the sample in its final state.

Monitoring

The load is applied to the sample by moving the top wall do
ward and keeping the bottom wall at a fixed position. One d
cult point is to assure the quasistatic aspect of the simulatio
the method finds the new element positions through the int
tion of Newton’s equation, and at the same time the comp
tional cost must stay reasonable. Therefore, attention has
paid to the way the load is applied~low speed and low acceler
tion!, and to the damping of the elastic waves propagating in
medium. The displacement law of the top platen consists in
phases: constant acceleration, then constant speed, then c
position. Equilibrium is checked by comparing the total for
applied by the sample to both platens, and looking at the

kinetic energy in the sample.
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Results: Elasticity

First, simulations have been run with strength properties s
very high values, so the material remains elastic. The stre
computed by dividing the total axial force applied by the plat
the sample by the surface of the sample; the axial and r
deformations are computed via geometrical measures. We d
from these quantities Young’s modulus,E and Poisson’s coeffi
cient,n.

At this point, some remarks can be made: As usual, the D
gives good qualitative results; the study of the homogenized
in the medium shows a real 3D stress state and it is easy to
a good order of magnitude of Young’s modulus and Poiss
coefficient using Eqs.~6! and ~7!.

However, in order to study the influence of the disorder
different samples have been generated, with the same geo
and a nearly identical size distribution~see Fig. 4!, but only dif-
fering through the random aspect of their generation. The
contain roughly 2000 elements and the interaction rangeg has
been set to 1.55. Figs. 5 and 6 show the results.E is the sampl
Young’s modulus,Em528 MPa is its mean value,n is the Pois
son’s coefficient, andnm50.252 its mean value.

Dispersions of Young’s modulus~respectively of Poisson’s c
efficient! are 28% ~16%!, and standard deviation of the ra
E/Em ~respectivelyn/nm) are 0.07~0.05!. In addition, there is n
obvious convergence of the elastic properties when the num
elements increases. Considering our objective, which is to m
a complete structure, these results are somehow awkwar
demand the modification of the macro–micro relations~6! and
~7!. This is discussed in the next section.

Energy Criterion

The strain energyEsd stored in the assembly may be compute
the following way:

Esd5E
Vd

tr~sd•«d= !dVd5 (
~n,m!

FI n→m
•~UI m2UI n!

5 ( Anm
•TI n→m

•~UI m2UI n! (20)

Fig. 4. Size distribution of discrete elements in the sample
~n,m!
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where (n,m)5interaction between thenth and themth element
UI n5displacement of thenth element; andFI n→m5force applied
by thenth element on themth element, proportional to the inte
action surface,Anm. It appears that the strain energy, and thus
elastic properties, are strongly dependent on the definition o
interaction surface. This remark leads one to plot the You
modulus versus the total sum of the interaction surfaces in
assembly, as in Fig. 7, which shows an obvious relation bet
these two quantities.

Fig. 5. Values of the ratioE/Em

Fig. 6. Values of the ration/nm
JO
The ratioe5Esc /Esd was computed for each assembly, wh
Esd is the strain energy we wish to store in the real conc
sample.

It is easy to show that

e5
Esc

Esd
5

E

Eapp
•

S

Sapp
•

,app

,
(21)

where the indice app corresponds to the apparent properties
discrete sample.

It appears thate differs from assembly to assembly and is
equal to one. The decision was then made to use as new in

tion surfacesAnm85e•Anm, and to run the same tests. Res
show the new dispersions of Young’s modulus~respectively o
Poisson’s coefficient! are 12%~10%!, and standard deviation
the ratioE/Em ~respectivelyn/nm) are 0.038~0.03!. This is an
encouraging result, as dispersions are divided by roughly 2.
the energy criterion, the influence of the random aspect o
assembly generation, as well as the influence of the number
and local configuration of the elements, is highly reduced.

Results: Rupture

Parameters of the model are here set to study the fracture
sample, and to obtain strength properties of a typical conc
Properties of interest in this section are the compression an
sion strengthssc ands t , and their associated strains«c and« t ,
as well as the fracture energyGf . First, concrete behavior
qualitatively very well represented, and the simulations exhi
very similar response to observations during a laboratory un
compression test.

However, the high value of the ratiosc /s t for concrete
makes its behavior very specific, and has to be numeri
matched. If unchanged, the SDEC model can only reach a ra
around 3 or 4@Huang ~1999! obtained the same value with
similar model#. This is due to the fact that a single interact
between two elements does not transmit any moment: Re
rotation without sliding is free. Therefore, rotations are preve
for the following simulations, which led to a very correct ra

Fig. 7. Young’s modulus versus the sum of the interaction surf
sc /s t around 8. Then, the use of the softening factor led toG f

URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004 / 713
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.60 Jm22, which is not far from typical values for concre
Figs. 8 and 9 show one typical stress/strain plot obtained.
plot shows tendencies very similar to what can be observed
real concrete sample.

In order to estimate how the values of interest are affecte
the random aspect of the assembly generation, tests have be
with the 20 different assemblies already used in elasticity,
with the corrected interaction surfaces. Results show that d
sions of compressive strength~respectively of tension strengt!
are 19%~31%!, and standard deviation of the ratiosc /scm ~re-
spectivelys t /s tm) are 0.047~0.083!, where scm ~respectively
s tm) are the mean compression~tension! strengths, 36 MPa~4.4
MPa!. Compared with the elasticity dispersions, these value

Fig. 8. Stress/strain plot in compression

Fig. 9. Stress/strain plot in tension
714 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004
n

higher, but not so far from what could be obtained with
concrete failure tests, which makes these results very satisfa

In addition, failure patterns show a good match with exp
mental results, see Figs. 10 and 11. In compression, fretting
appear, as the elements are ‘‘glued’’ to the platens, which is
sistent with experimental observations. In tension, a macro
perpendicular to the loading direction appears, which was
pected. The study of the homogenized strain shows a clear
localization in this macrocrack, in the peak region.

Dynamic Simulations: Split Hopkinson Pressure Bar
Experiments

Keeping in mind our objective, which is to model a conc
structure submitted to impact loading, it is of importance to v
date the model through dynamic simulations. Now, simula
have shown that the method is able to reproduce the quas
behavior of concrete, the writers propose here to simulate
namic compression tests.

Uniaxial compressive or tensile strengths of concrete inc
with an increase in strain rate. At low strain rates, («̇,1s21), this
effect is relatively well explained by the presence of free wat

Fig. 10. Radial displacement field in an axial cut after failure
compression

Fig. 11. Displacement field in an axial cut after failure in tensi
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ms3b,
the material~Rossi et al. 1992!; Traction tests on dry concre
have shown no such rate effect, which confirms this assum
~Rossi et al. 1994!. The rate dependence is thus well represe
by a viscous model~Dubéet al. 1996; Gopalaratnam et al. 199!.
At higher strain rates, (ė.102 s21), some authors~Brace and
Jones 1971; Bischoff and Perry 1991! argue that inertia, produ
ing an effective confining stress, plays a major role in the ap
ent and important rate dependence. Accurate information
now be obtained with SHPB tests, in terms of forces and disp
ments of the specimen. Donze´ et al. ~1999! used a similar 3D
model to simulate some SHPB tests, without a reliable ident
tion of the sample behavior. Nevertheless, this first study
firmed the inertia-based hypothesis.

Dynamic Compression

A typical SHPB experimental setup~Zhao and Gary 1996! is
shown in Fig. 12. It consists in two long aligned metallic bars
a short concrete specimen between them. A projectile impac
free end of the input bar thus leading to the development
compressive longitudinal incident wave« i(t). Once it arrives a
the bar–specimen interface, it splits into a reflected wave« r(t)
which travels in the input bar and a transmitted wave« t(t) which
travels in the output bar. These three waves are recorde
gauges which have been cemented on each bar. They ar
artificially shifted so as to record them at the bar–specimen i
faces, so that the forces and velocities measured on both fa
the specimen~Zhao and Gary 1996! are given by

Vinput~ t !5C„« i~ t !2« r~ t !… (22)

Voutput~ t !5C« t~ t ! (23)

F input~ t !5SBE„« i~ t !1« r~ t !… (24)

Foutput~ t !5SBE« t~ t ! (25)

whereC5AE/r5celerity of the medium;E5Young’s modulus;r
is the density; andSB5cross-sectional area of the bars.

Once these forces and velocities are obtained, a so-c
three-waves formula gives the average strain rate and the av
stress imposed on the specimen, so that,

«̇s~ t !5
Voutput~ t !2Vinput~ t !

l s
(26)

ss~ t !5
F input~ t !1Foutput~ t !

2Ss
(27)

where ,s and Ss denote respectively the length and the cr
sectional area of the specimen.

The complete data set then consists ofF input, Foutput, Vinput,
andVoutput. If the correct constitutive behavior has been used
model, then given one of these pairs, the other data pair shou

Fig. 12. Setup for split H
obtained. In the following simulations, the velocities will be used

JO
n

f

as the input data and the forces will thus be computed numer
and compared to the real experimental data forces.

Experimental Data Set
SHPB tests on concrete specimens have been carried out b
~1990! in the framework of the ‘‘GRECO ge´omatériaux project’’
and data obtained from these different tests were made w
available.

The concrete specimens that are used are cylinders w
height of 0.036 m and a diameter of 0.036 m. The density is
kg/m3 and the average compressive wave velocity is 3865
~Toutlemonde 1995!.

Three loading experiments, ms2b, ms3b, and ms5b, re
tively at 350 s21, 500 s21, and 700 s21 strain rate have been r
and for each of these runs both the input and output velocitie
forces are recorded. Some problems in these recordings h
be noted: Arrival times of the output velocities vary in a la
range, and so do the Young’s moduli which are much lower
what was expected from the static value~Toutlemonde 1995!
which is more than 30 GPa. The Young’s moduli are obta
from the slopes of the stress strain curves of Fig. 13. This p
deduced from Eqs.~26! and ~27!, and shows best the strain r
dependency.

Such fluctuations in the data set are not surprising when
sidering the very high strain rates at which these experimen
run and may come from the error bar on the applied correcti
the travel times of the compressive waves, but it makes i
tremely difficult to define a precise reference material that c
be used in the numerical model. Despite these difficulties,

son pressure bar experiment

Fig. 13. Stress versus strain curves for experimental data set.
dashed and dotted lines are, respectively, experiments ms5b,
and ms2b. Slopes of curves give elastic modulus.
opkin
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parameters were calibrated using the quasistatic procedu
ready discussed to obtain the expected concrete behavior: D
2,500 kg/m3, Young’s modulus 30 GPa, Poisson’s coefficient
compressive strength 50 MPa, and tension strength 5 MPa.
1 shows the values of the local parameters.

Numerical Setup
Up to 6,200 spherical discrete elements with sizes ranging
9.1024 m to 47.1024 m, have been used to build the numer
concrete sample, and the shape of the size distribution is s
to Fig. 4.

The experimental input and output velocities are applied to
platens. The radial displacement values are assumed to be z
the input and output surfaces. The resulting input and ou
forces are computed by summing all the forces applied on
platens. Given the experimental velocity histories, at each
step, the applied input and output velocities are updated lead
the computation of numerical force histories. No damping
been used, and rotations are still prevented.

Results
Fig. 14 shows force histories for both the experiment and
simulation at 350 s21, as well as the number of broken inter
tions during the simulation. The global wave form of the sig
as well as the amplitude are well reproduced, which is com
ing.

In particular, the elastic phase fits very well, for both input
output phases. However, fractures arise a little too soon, and
the amplitude of the input force is slightly too low; at the sa
time, the amplitude of the numerical output force exceeds th
the experiment, meaning that the material is not damaged en
When the force is at its peak, more than one-third of the inte
tions have ruptured.

The oscillation amplitude of the postpeak region is slightly
low as far as the input force is concerned, but quite well re
duced for the output force. It seems then that the numerica
havior around the peak is too ductile.

At the end of the simulation, numerical and experime
samples show very similar behaviors, except in the last 30ms.
Fractures keep occurring, spreading all over the sample.

Fig. 15 shows stress/strain curves obtained for the three
@stress and strain are deduced from the computationed force
velocities by Eqs.~26! and ~27!#. The experimental curves a
very well fitted in the prepeak region, but this is less often
case after the peak, except for ms2b. The behavior seem
brittle in the last part of the simulation. Maximum amplitudes
computationed stress fits the experimental stress quite wel
spite the recording problems of the tests. Fig. 16 shows the
age state of the sample for a given stress of 50 MPa in the e
phase, for the slowest and the fastest test. As the damag

Table 1. Local Parameter Values

Parameters Values

g 1.4
a 1
b 1

T (MPa) 7

c (MPa) 3.5

f i (degrees) 4

fc (degrees) 40
creases, the color darkens. It can clearly be seen that as the strai
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.

rate increases, the extent of the damage lessens. Moreove
damage, very diffuse, is not homogeneous and tends to prop
inwardly from the lateral free surfaces of the specimen thus f
ing a contact cone as seen in real experiments.

The model proves able to quantitatively reproduce the inc
of compressive strength with the increase of loading rate,
this, without requiring the use of viscosity in the model, or of
characteristic time. An inertia-based hypothesis, given by Ja
~1976!, might then explain the strain rate dependency: The c
pressive stress waveC in the brittle material generates a dilat
in the radial direction because of the opening of cracks. Thu
material exhibits a reduced unloading modulus in the radial d
tion which allows the damage zone to propagate inwardly

Fig. 14. Input and output forces for ms2b~350 s21!. Dotted lines ar
original experimental curves; solid lines are computed numeric
sults.
nthe free surface with an unloading velocityCf which can be less
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than the compressive wave velocity. If this is the case, the
unloading could be sufficiently slow such that the central cor
the specimen would not have had time to unload which m
that this specimen will have a greater load-carrying capacity~see
Fig. 17!. Because of the fretting condition on the boundary,
unloading front from the free surface is not parallel to it, expl
ing the conelike shape of the damage distribution. All of th
points are confirmed by the results of the tests simulations

Fig. 15. From the left- to right-hand sid

Fig. 16. Damage for: From top to bottom, ms2b, ms5b. Axial c

Fig. 17. Simplified lateral unloading process proposed for cylin
cal specimen that fails by brittle fracture in split Hopkinson pres
bar compressional tests
the discrete element model.

JO
Conclusions

A 3D DEM has proved its capability to model concrete. Qu
static simulations of uniaxial compression and tension tests
been run to calibrate the model parameters, and to identif
numerical sample behavior.

First, the identification of the elastic behavior has been s
ied, and the results are qualitatively as well as quantitat
good. The stress state in the sample is consistent with labo
results as well. Nonetheless, perturbations in the packing dis
have been found to strongly influence the values of You
modulus and Poisson’s coefficient, and high dispersions ar
served. In order to reduce these dispersions, an energetic cr
has been introduced to modify the macro–micro constitu
equations of the model, which gives satisfactory results.

The method has proved its ability to capture the other ch
teristic properties of concrete: Quantitative results like p
strengths under both compression and tension and their asso
strains, and fracture energy, as well as qualitative results like
ening stress–strain relation in the postpeak region, and fa
patterns, are in good accordance with laboratory results. D
sions are higher than for elastic properties but are of the
order of magnitude as what experiments have shown.

Despite the great difficulty to reproduce such tests, SHPB
namic compression experiments have been satisfactorily
lated, thus increasing the capability of the model. With the
discrete element model, the transient specimen state of da
and stress may be investigated and quite accurately repres
What is more, it proves able to quantitatively reproduce the
crease of compressive strength with the increase of strain
and this, without requiring the use of viscosity in the model, o
any characteristic time. This confirms the inertia-based hyp
esis: In other words, the increase of the dynamic strength in
range of strain rates is merely apparent and seems to be a
tural effect.

SHPB tension tests are now being simulated to study the
rate dependency under this type of loading. Then, steel-reinf
concrete structures under dynamic loading should be mode

Notation

The following symbols are used in this paper:
Ãint 5 average surface where an interaction is defined
Ãnm 5 average surface where an interaction between

particlesn andm;
C 5 celerity of the specimen’s medium;

Cf 5 unloading velocity;
c 5 cohesion;

Da,b 5 D distance between centroids of two discrete

ess/strain curves for ms2b, ms3b, and ms5b
e: Str
elementsa andb;
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Dcorrection
a,b 5 correction distance for unloading;

Deq
a,b 5 Deq equilibrium distance between two discrete

elementsa andb;
Dmax 5 maximum interaction distance;

E 5 Young’s modulus;
Eapp 5 apparent Young’s modulus;
Em 5 average Young’s modulus;
Esc 5 strain energy stored in the equivalent continuou

medium;
Esd 5 strain energy stored in the discrete assembly;

e 5 interaction coefficient;
F 5 interaction force vector;

Fa→b 5 force from particlea on particleb;
Fn 5 normal interaction force vector;
Fs 5 shear interaction force vector;

Freduced
s 5 updated shear force vector during slip;
F input 5 input force at the bar–specimen interface;

Foutput 5 output force at the bar–specimen interface;
Fmax

n 5 maximum normal force;
Fmax

s 5 maximum shear force;
Gf 5 fracturation energy of the material;
I a 5 set of particles in contact with particlea;

Kn 5 interaction normal stiffness;
Ks 5 interaction shear stiffness;

, 5 length of the real specimen;
,app 5 apparent length of the numerical specimen;

n 5 unit interaction vector;
nab 5 unit interaction vector pointing from elementa

to elementb;
Ra 5 R radius of a discrete elementa;

S 5 cross-sectional area of the real specimen;
Sapp 5 apparent cross-sectional area of the numerical

specimen;
T 5 maximum tensile strength;

UI n 5 displacement of the elementn;
V 5 homogenization volume;

Vinput 5 input velocity at the bar–specimen interface;
Voutput 5 output velocity at the bar–specimen interface;

xa 5 x position vector of a discrete elementa;
xa,b 5 vector location of the interaction point between

a andb;
ẋ 5 velocity vector of a discrete element;
ẍ 5 acceleration vector of a discrete element;

xa 5 component of the position vector of a discrete
elementa;

a 5 unloading factor;
b 5 softening factor;
g 5 interaction range;

DFs 5 incremental interaction shear force vector;
DUs 5 shear displacement increment vector;

Dt 5 integration time step;
« i 5 strain of the longitudinal incident wave;
« r 5 strain of the longitudinal reflected wave;
« t 5 strain of the longitudinal transmitted wave;
«c= 5 strain matrix in the continuous medium;
«d= 5 strain matrix in the discrete medium;
«̇ 5 strain rate;

«̇s 5 average strain rate imposed on the specimen;
n 5 Poisson’s ratio;

nm 5 average Poisson’s ratio;
r 5 density of the specimen;
sc 5 compressive strength;

718 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004
scm 5 average compressive strength;
ss 5 average stress imposed on the specimen;
s t 5 tensile strength;

s tm 5 average tensile strength;
s= 5 stress matrix in the continuous medium;

sd= 5 stress matrix in the discrete medium;
fc 5 contact friction angle;
f i 5 internal friction angle; and
Vd 5 volume occupied by the assembly.
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Donzé, F.-V. ~2002!. ‘‘Packing spherical discrete elements of uneq
size.’’ Tech. Rep. ISRN: GEONUM-NST-2002-02-FR1ENG.
GEONUM report, Francêwww.geonum.com&.
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PhD thesis, Ecole polytechnique fe´dérale de Lausanne, Switzerlan

O’Connor, R. M. ~1996!. ‘‘A distributed discrete element modelin
environment—algorithms, implementation, and applications.’’ P
thesis, Massachussetts Institute of Technology, Cambridge, Mas

Potyondy, D., Cundall, P., and Lee, C.~1996!. ‘‘Modeling rock using
bonded assemblies of circular particles.’’Rock Mech.,1937–1944.

Rossi, P., Mier, J. V., Boulay, C., and Maou, F. L.~1992!. ‘‘The dynamic
behavior of concrete: Influence of free water.’’Mater. Struct.,25,
JO
509–514.
Rossi, P., Mier, J. G. V., Toutlemonde, F., Maou, F. L., and Boula

~1994!. ‘‘Effect of loading rate on the strength of concrete subjecte
uniaxial tension.’’Mater. Struct.,27, 260–264.

Toutlemonde, F.~1995!. ‘‘Résistance au choc des structures en be´ton; du
comportement du mate´riau au calcul des ouvrages.’’ PhD thesis, Ec
Nationale des Ponts et Chausse´es ~in French!.

Zhao, H., and Gary, G.~1996!. ‘‘On the use of SHPB techniques
determine the dynamic behavior of materials in the range of s
strains.’’ Int. J. Solids Struct.,33~23!, 3363–3375.
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2004 / 719


