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ABSTRACT: High strain rate unconfined compressional tests on concrete are simulated by a 3D discrete-element
method. The laboratory data set was provided by three unconfined experiments on a split Hopkinson pressure
bar apparatus at very high strain rates (350–700 s21). This numerical method was chosen because it is well
adapted to problems involving the characterization of fracturing and fragmentation in geomaterials. The simu-
lations input data are the recorded experimental velocities, whereas the simulations output data are the computed
forces that are compared with the experimental ones. The fit between the experimental and the numerical data
is quite good. Based on this fit, it is shown that the strain rate dependency of the material strength can be
explained by inertial effects.
INTRODUCTION

Understanding the response of concrete specimens when
subjected to high strain rates is essential to grasp the behavior
of concrete structures involved in extreme situations such as
impact loadings. It has been observed that geomaterials exhibit
significant changes in their response during dynamic versus
static loading phases, which is why it is difficult to use their
static properties to explain their dynamic behavior. These
noted changes seem to greatly affect the macroscopic prop-
erties, such as strength, stiffness, and ductility (Bischoff and
Perry 1995). Their studies have shown that the uniaxial com-
pressive strength of plain concrete increased with an increase
in strain rate and that the compressive impact strength was
much greater than the static strength. In other experimental
data, the resistance was seen to increase rapidly at high loading
rates, whereas prepeak crack growth that occurs at all loading
rates decreased with increasing rates (Gopalaratnam et al.
1996).

Although the behavior of concretes at low strain rates,
which range around 1025 s21, seems well understood, knowl-
edge of their high strain rate (>100 s21) behavior is rather lim-
ited. The low strain rate region (i.e., static loading) is associ-
ated with creep (Bischoff and Perry 1991).

For high strain rates an important consensus seems to exist
on the preponderance of two effects: (1) The viscoelastic char-
acter of the hardened cement paste; and (2) the time-dependent
nature of the crack growth that is thermally activated (Gopa-
laratnam et al. 1996). Some authors interpret the viscous be-
havior that contributes to the rate dependence as being due to
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the presence of the free water in the material, leading to an
effect similar to the Stefan effect (Rossi et al. 1994). These
authors note that at strain rates ranging around 100 s21 samples
do not seem to exhibit any loading rate dependence unless free
water is present. However, their conclusions cannot explain
the observed rate dependence at higher strain rates (>102 s21)
on dry samples.

Although the majority of authors do not consider inertia to
play a major role in the rate dependence, few others argue in
favor of its importance. During rapid loading, microcracks
have less time available for their development or propagation.
Local equilibrium is not attained, and the inertial forces, which
are in opposition to the displacement, will increase the appar-
ent resistance. Thus, an increased loading will be required be-
fore cracking becomes prominent enough to ruin the material
(Bischoff and Perry 1995). Alternatively, it has been suggested
that a concrete specimen, subjected to a very high strain rate,
is loaded so rapidly in the axial direction that it will not be
able to expand instantaneously in the lateral direction because
of inertial restraint, thus producing an effective confining
stress (Brace and Jones 1971; Bischoff and Perry 1991).

To study the behavior of materials at high strain rates, var-
ious experimental tests have been performed, such as the
Charpy impact test, to determine the toughness of structural
materials, or the well-known drop weight impact test (Gopa-
laratnam et al. 1996). Nevertheless, difficulties still remain in
obtaining enough precision in the data sets when attempting
to describe the behavior of concrete at high strain rates (>102

s21). Recent improvements in data processing have shown that
it was now possible to get good information via the split Hop-
kinson pressure bar (SHPB) (Gary and Zhao 1996). This de-
vice, which was initially designed to study the mechanical be-
havior of metals at high strain rates, has also been used to test
concrete specimens because precise measurements of forces
and displacements could be obtained.

In the present work, data available from SHPB unconfined
compressive tests on concrete specimens (Gary 1990) will be
used to study the dynamic behavior of concrete with a 3D
numerical model based on a discrete-element method (DEM).

In this alternative numerical approach to more classical fi-
nite-element methods (FEM), the medium is considered to be
fully discontinuous and a continuum is just a special case.
These methods derived from molecular dynamics have already
proven to be effective in dealing with complex media where
continuous and discontinuous properties need to be handled
concurrently, particularly in the case of dynamic loadings.
Early applications of these methods and their advantages in
the studies of high strain rate loadings have been seen when
considering a shallow explosive event and the resulting wave
propagation (Donzé et al. 1996), studying the evolution of the
fracture patterns such as the radial fracture propagation from



a blasthole (Donzé et al. 1997), or when characterizing the
fragmentation process involved in a missile impacting a con-
crete beam (Magnier and Donzé 1998).

The DEM used to simulate a geomaterial such as concrete
will be first presented followed by the methodology used to
simulate the SHPB compressive tests. Unlike in 1D Malvern-
Sokolovsky-type constitutive models where viscosity is re-
quired to explain the strain rate dependency (Zhao and Gary
1996), here in the 3D model the viscous terms are deliberately
omitted to see if the sole presence of inertial effects can ex-
plain the data for strain rates on the order of 102 s21.

DEM

The present numerical method uses discrete spherical ele-
ments of individual radius and mass. These elements represent
a polydisperse assembly with a size distribution obtained by
using a growing technique described in Appendix I (Magnier
et al. 1997). Once the assembly has been set, pairs of discrete
elements are identified. This will be the first step in determin-
ing which elements are initially interacting. These interactions
have been chosen to represent, as best as possible and in a
simple way, the elastic and cohesive nature of a certain class
of geomaterials such as concrete. To do this, elastic interaction
forces with a tensile strength have been chosen. When this
geomaterial is subjected to large deformations, the cohesive
nature will disappear and fractures will propagate. To repro-
duce this fracturing process, a local rupture criterion is applied
on the interaction forces. To account for the irreversibility of
this process, all subsequent interactions will be noncohesive;
that is, the tensile strength will be set to zero.

The numerical model solves the equations of motion with
an algorithm similar to those used in molecular dynamics (Al-
len and Tildesley 1987) whereby the constitutive equations for
each interaction are used to solve Newton’s equations of mo-
tion. The explicit time integration of the laws of motion will
provide the new displacement and velocity for each discrete
element.

As time proceeds during the evolution of the system, large
displacements of discrete elements may occur and new inter-
actions may be created. One of the major parts of this nu-
merical model will then be to determine the interacting neigh-
bors of a given element. This will be done by defining an
interaction range. Once this neighborhood is established, it is
then necessary to identify all elements within it that are inter-
acting. Depending on the spatial distribution of the discrete
elements, two different methods are available to identify the
interacting neighbors. If the distribution is rather compact with
little fluctuation in size, a grid subdivision method is used
(Allen and Tildesley 1987; Magnier et al. 1997). If, however,
the distribution is dispersive with large-size fluctuations then
the previous method will be costly, and a spatial sorting
method is used (Müller 1996; O’Connor 1996; Magnier et al.
1997).

Constitutive Laws

The overall behavior of a material can be reproduced in this
model by associating a simple constitutive law to each inter-
action. An interaction between elements a and b of radius Ra

and R b, respectively, is defined within an interaction range g
and does not necessarily imply that two elements are in con-
tact. Then, these elements will interact if

a b a,bg(R 1 R ) $ D (1)

where D a,b = distance between the centroids of elements a and
b and g $ 1. This is an important difference from classical
DEMs, which use spherical elements (Cundall and Strack
1979) where only contact interactions are considered (g = 1).
This choice was made so that the method could simulate ma-
terials other than simple granular materials, particularly those
that involve a matrix as found in concretes. To account for the
effects of this matrix, which may cement two aggregates that
are not themselves in contact, the interaction range g is set to
be >1 when the assembly of elements is initially built. How-
ever, this long-range interaction is limited to nearest neighbors.
Recall that the present assembly is made up of elements of
different radii, which induces here a low number of initial
contacts (see Appendix I).

A similar technique was used when simulating the propa-
gation of fractures due to rock blasts (Donzé et al. 1997) or
impacts (Magnier and Donzé 1998). It was seen to be of utter
importance to obtain a proper localization of the fractures
while using only contact interactions (g = 1), the fractures
were more diffuse.

The location of the interaction point is given by

a,b a a a b a,bx = x 1 (R 2 0.5((R 1 R ) 2 D )n (2)

where n = unit vector pointing from element a to element b;
and xa = position vector of element a.

Interaction Forces

The interaction force vector F that represents the action of
element a on element b may be decomposed into a normal
and a shear vector Fn and Fs, respectively, so that

n sF = F 1 F (3)

The normal force vector may be expressed such that it ac-
counts for possible irreversible deformations. However, this
irreversibility will only be initiated after a compressional phase
(D a,b < where is the equilibrium distance betweena,b a,bD , Deq eq

the two elements a and b, which was set when the interaction
was created). In that case, a different loading and unloading
path can be considered. Loading means that uFn u is increasing,
whereas unloading means that it is decreasing. The normal
force vector after a compressional phase can then be written
(Walton 1993)

n a,b a,bK (D 2 D )n for loadingeqnF = (4)n a,b a,b a,bHaK (D 2 D 2 D )n for unloadingeq correction

where represents the correction to be applied on thea,bD correction

equilibrium distance so that the absolute value of the unload-
ing force is always less than or equal to the absolute value of
the loading force. The value of a must be $1. Note that for
a = 1, = 0 and for a → `, → 2 D a,b).a,b a,ba,bD D (Dcorrection correction eq

After each unloading path, the equilibrium position is up-
dated such that

a,b a,b a,b(D ) = (D ) 2 D (5)eq new eq old correction

For the case where compression has never occurred and
where only tension (D a,b < is involved, the loading anda,bD )eq

unloading paths are the same, and the normal force vector may
be exposed as

n n a,b a,bF = K (D 2 D )n (6)eq

Fig. 1 summarizes the behavior of the normal force. As long
as Fn $ the normal force follows the solid line.nFmax

The normal stiffness Kn is linear, and it is expressed assum-
ing that the stiffnesses and of the interacting elementsa bk kn n

act in series (within a constant) so that

a bk kn nnK = 2 (7)F Ga bk 1 kn n

The shear vector force Fs is computed incrementally and
was given by other authors (Hart et al. 1988; PFC3D 1995).
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FIG. 1. Behavior of Normal Component of Interaction Force.
Slope of Loading Path during Compression Is K n; It Is aK n for
Unloading Path during Compression

It is computed in two steps. First it is updated with respect to
the possible rotations that occur between times t 2 1 and t.
The first rotation is with respect to the change in normal di-
rections of the interaction and can be expressed as

s s sF = F 2 F 3 n ` n (8)rot.1 t21 t21 t21 t

whereas the second rotation is the relative rotation of the el-
ements about the new normal direction

s s sF = F 2 F 3 vDt (9)rot.2 rot.1 rot.1

where = average angular velocity vector of the two inter-v
acting elements about the new normal direction; and Dt = time
step.

The second step consists of computing the incremental vec-
tor itself given by

s s sDF = 2K DU (10)

where DUs is the shear displacement vector increment between
the locations of the interacting points of the two elements over
a time step Dt. The shear stiffness Ks is linear, and it is ex-
pressed assuming that the stiffness and of the interactinga bk ks s

elements act in series (within a constant) so that

a bk ks ssK = 2 (11)F Ga bk 1 ks s

Finally, the new shear interaction force can be expressed as

s s sF = F 1 DF (12)rot.2

The total interaction force vector F can also be written Fa,k

for the interaction between elements a and b if this interaction
is the kth interaction for element a. Once it has been calcu-
lated, all other interactions that element a has with other ele-
ments are now considered, and the resulting interaction forces
are computed. Then, the total force acting on element a is the
sum of all n interaction forces and all other l applied forces
(gravity, boundary conditions, etc.) such that

n l

a a,k jF = (21) F 1 F (13)SO D O
k=1 j=1

The total moment acting on element a is

n

a a,k a kM = (21) [(x 2 x ) 3 F ] (14)SO D
k=1
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FIG. 2. Strength Properties of Normal Force

Strength Properties

The brittle properties of the medium can then be introduced
if both a normal and shear rupture threshold are defined for
the corresponding interaction force. This is a Mohr-Coulomb
rupture criterion. Beyond these thresholds the nature of the
interaction force changes. Thus, for a given interaction, a max-
imum tensile strength T (with T > 0) is given and a maximum
normal force is defined such thatnFmax

n ˜F = 2TA (15)max int

where = average surface where the interaction is definedÃint

with
2

a bR 1 R
Ã = p (16)int S D2

A maximum interaction distance Dmax is defined such that

nuF umax
D = D 1 (b 1 1) (17)max eq S DnK

where Deq = equilibrium distance; and b = softening factor for
this interaction with b > 0. Note that in all of these develop-
ments, the indices a and b, which represented the interacting
elements, have been dropped to lighten the formulations. If

nF = 0n nF < F ; D $ D ⇒ (18a,b)max max sHF = 0

and if

nKn n nF < F ; D < D ⇒ F = (D 2 D ) (19a,b)max max max
b

Fig. 2 summarizes the behavior of the normal force for two
different values of b that illustrates the difference between a
brittle elastic behavior (dotted line) and a quasi-brittle behavior
[i.e., presence of softening (dashed line)]. As long as Fn $

the normal force follows the solid line. As soon as F n <nFmax

and depending on the value chosen for b, different pathsnFmax

can be followed. If b → 0 then Dmax → Dmax 1 and rupture
occurs (dotted line). If b = 2 then Dmax = Dmax 2, and before
rupture the normal force follows the dashed line.

However, a global softening may still be induced at the
macroscopic scale, whereas the local softening factor tends to
zero if the size distribution of the elements is large enough.
Thus, if there is a large distribution of radii for the elements,
according to (15) there will then be a large distribution of
maximum normal forces that will in turn introduce softening
effects (Herrmann et al. 1989). Therefore, some caution must
be exercised before using a local softening factor.

The maximum shear force can be calculated as



s n˜F = cA 1 F tan f (20)max int

where c = cohesion; and f = friction angle. If the absolute
value of the shear force is

s s s 1/2uF u = (F ?F ) (21)

which is greater than then the shear force is reducedsuF u,max

to the limiting value and written as follows:

s s s sF = F [F /uF u] (22)reduced max

Law of Motion

Newton’s laws of motion are used. To obtain the accelera-
tion ẍ of the ith element from the total unbalanced force F
applied on it

mẍ = F (23)

where m = mass of the element. The equation for rotational
motion can be written as follows:

˙M = H (24)

where Ḣ = angular momentum of the ith element; and M =
resultant moment acting on this element, which may also be
written for spherical elements as follows:

2 2M = Iv̇ = mR v̇ (25)S D5

where I = moment of inertia for the ith element; = its an-v̇
gular acceleration vector; and R = its radius.

Explicit integration of Newton’s equations for both trans-
lational and rotational motion is done by the basic ‘‘leapfrog’’
method (Allen and Tildesley 1987). The finite-difference equa-
tion for the velocity of an element is given by

(t)F(t1D t/2) (t2D t/2)ẋ = ẋ 1 Dt (26)
m

from which the displacement is obtained

(t1Dt) (t) (t1Dt/2)x = x 1 ẋ Dt (27)

and the angular velocity is given by

(t)M(t1Dt/2) (t2Dt/2)v = v 1 Dt (28)
I

where t refers to the current time step; and Dt = time step.

Macroscopic Calibration of Elastic and Strength
Properties

The calibration procedure of the model requires that the
macroscopic constitutives laws of the material be derived from
both its microscopic behavior. In the present model, the ma-
terial is assimilated to a set of discrete elements for which the
macroscopic elastic properties, denoted here as Poisson’s ratio
n and Young’s modulus E, are defined in terms of the local
stiffnesses. To determine these elastic properties, numerical
compressional tests have been run, and the values linking Pois-
son’s ratio n and Young’s modulus E to the dimensionless
values of K s/Kn were obtained. Relations fitting these values
can be expressed as

n sD̄ 0.825K 1 2.65Keq nE = K (29)S Dn sÃ 2.5K 1 Kint

where D̄eq = average distance between two discrete elements;
= its associated average interaction surface; andÃint
FIG. 3. Functions of Stiffnesses Ratio K s/K n: (a) Young’s Mod-
ulus; (b) Poisson’s Ratio

n sK 2 K
n = (30)n s2.5K 1 K

The corresponding numerical curves are shown in Fig. 3.
The dashed line corresponds to the Voigt model, the dot-
dashed line to the best-fit model (Liao et al. 1997), and the
solid line is the estimated relation fitting the numerical values,
which are represented by circles. Given the macroscopic val-
ues for the concrete samples used in the experimental proce-
dure (Toutlemonde 1995), the local parameters K n and Ks are
determined. Once these continuous properties are obtained, the
strength properties are then calibrated. To do this, uniaxial
strain tests are performed in both compression and tension
until the model reproduces rupture thresholds found in the ex-
perimental static case (Toutlemonde 1995). A good agreement
is found between the behavior of the discrete-element model
and that of samples in static experiments (Camborde et al.
1997).

SHPB EXPERIMENT

A typical SHPB experimental setup (Zhao and Gary 1996)
can be seen in Fig. 4. It consists of two long aligned metallic
bars and a short concrete specimen between them. A projectile
impacts the free end of the input bar thus leading to the de-
velopment of a compressive longitudinal incident wave εi(t).
Once it arrives at the bar-specimen interface, it splits into a
JOURNAL OF ENGINEERING MECHANICS / OCTOBER 1999 / 1157



FIG. 4. Setup for SHPB Experiment

FIG. 5. Measured Experimental Data. Solid, Dashed, and Dotted Lines Are, Respectively, Experiments ms5b (700 s21), ms3b (500 s21),
and ms2b (350 s21)
reflected wave εr(t), which travels in the input bar, and a trans-
mitted wave εt(t), which travels in the output bar. These three
waves are recorded by gauges that have been cemented on
each bar. They are then artificially shifted to record them at
the bar-specimen interfaces, so that the forces and velocities
measured on both faces of the specimen (Gary and Zhao 1996)
are given by

V (t) = C(ε (t) 2 ε (t)) (31)entrance i r

V (t) = Cε (t) (32)exit t

F (t) = S E(ε (t) 1 ε (t)) (33)entrance B i r

F (t) = S Eε (t) (34)exit B t

where C = = celerity of the medium; E = Young’s mod-E/rÏ
ulus; r = density; and SB = cross-sectional area of the bars.

Once these forces and velocities are obtained, a so-called
three-waves formula (Lindholm 1964) gives the average strain
rate and the average stress imposed on the specimen, so that

V (t) 2 V (t)exit entranceε̇ (t) = (35)s
ls

F (t) 1 F (t)entrance exit
s (t) = (36)s 2Ss

where ls and Ss denote, respectively, the length and the cross-
sectional area of the specimen.

The complete data set then consists of Fentrance, Fexit, Ventrance,
and Vexit. If the correct constitutive behavior has been used in
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a model, then given one of these pairs, the other data pair
should be obtained. In the following simulations the velocities
will be used as the input data, and the forces will thus be
computed numerically and compared with the real experi-
mental data forces.

Experimental Data Set

SHPB tests on concrete specimens have been carried out by
Gary (1990) in the framework of the ‘‘GRECO géomatériaux
project,’’ and data obtained from these different tests were
made widely available. The data set, after the applied time
shift and corrected to be representative of data gathered at the
bar-specimen interface, is shown in Fig. 5.

The concrete specimens that are used are cylinders with a
height of 0.036 m and a diameter of 0.036 m. The density is
2,500 kg/m3, and the average compressive wave velocity is
3,865 m/s (Toutlemonde 1995).

Three loading experiments, ms2b, ms3b, and ms5b at 350,
500, and 700 s21 strain rates, respectively, have been run; for
each of these runs both the entrance and exit velocities and
forces are plotted. The first thing that can be noted on these
curves is that the behavior is quite different for each loading
rate experiment. In particular, it can be seen that the primary
exit force peaks [Fig. 6(b)] in experiments ms2b and ms5b are
less than the primary entrance force peaks [Fig. 5(a)], whereas
in experiment ms3b it is the opposite case. This difference
does not seem to be representative of the loading rate. This
might be due to variable experimental conditions such as
boundary conditions or specimen material properties.



FIG. 6. Stress versus Strain Curves for Experimental Data
Set. Solid, Dashed, and Dotted Lines Are, Respectively, Experi-
ments ms5b (700 s21), ms3b (500 s21), and ms2b (350 s21).
Slopes of Curves Give Elastic Modulus

TABLE 1. Local Interaction Parameters

Parameter
(1)

Initial
interactions

(2)

Contact
interactions

(3)

g 1.4 1.0
a 1 2
b 1 1025

T (MPa) 4 0
f (degrees) 17 40
K s/K n 0.4 0.4

K n Depends on size and interactions [see Eqs. (29) and (30)]

The arrival times of the exit force and velocities as shown
in Figs. 5(b and d), respectively; and discussed next. The mea-
sured time delays between the entrance and exit signals range
from 10 ms for experiment ms3b and 7 ms for experiment
ms5b. This 3-ms difference in travel time in a medium with
an average compressive wave velocity of 3,865 m/s represents
a difference in specimen length of more than 30%.

The dynamic Young’s moduli for these experiments are
measured to range from 14.0 GPa for experiment ms3b to 25
GPa for experiment ms5b as obtained from the slopes of the
stress strain curves of Fig. 6. These moduli are much lower
than what was expected from the static value (Toutlemonde
1995), which is more than 30 GPa.

Such fluctuations in the data set are not surprising when
considering the very high strain rates at which these experi-
ments are run and may come from the error bar on the applied
correction of the travel times of the compressive waves (Gary,
personal communication, 1997) but it makes it difficult to de-
fine a precise reference material that could be used in the nu-
merical model. In the numerical model, the density and the
strength properties are kept as given by the laboratory exper-
iments, but Young’s moduli are modified so that the wave-
forms and amplitudes of the entrance and exit forces that are
computed fit those that are observed.

NUMERICAL SETUP

Up to 2 3 104 spherical discrete elements with sizes ranging
from 5 3 1024 to 5 3 1023 m have been used to build the
numerical concrete sample. These have been distributed spa-
tially with the growing technique described in Appendix I.

Two different interaction types have been defined between
elements: (1) The initial interactions, before any deformation
occurs, are defined to reproduce both the cohesive and brittle-
elastic nature of the concrete sample; and (2) following the
possible ruptures of the initial interactions during the defor-
mation process, new contact interactions may occur but with
no tensile resistance or cohesion. They are strictly frictional
interactions. Specific parameters for the two kinds of interac-
tions are given in Table 1.

Different values of a introduced in (4) were used for the
contact interactions. This factor is used to account for the ef-
fect of compaction when the material undergoes fragmenta-
tion. Note, that this parameter may be associated to a local
restitution coefficient given by e = which is indepen-1/a,Ï
dent of the relative velocity of impact (Walton 1993). The
values of T and f for the initial interactions were chosen such
that for the size distribution of the discrete elements and for
the value of g = 1.4 the macroscopic values of the tensile
strength is about 5 MPa and the internal friction angle is about
407.

In Fig. 6, the slope for experiment ms2b (350 s21) and ms5b
(700 s21) is the same whereas it differs for experiment ms3b
(500 s21), which implies that the latter has a lower elastic
modulus. It is measured to be 0.625 times that of experiments
ms2b and ms5b. This ratio was kept for the elastic moduli of
the numerical simulations where the normal local stiffness Kn

used in the model of ms3b is 0.625 times that of ms2b and
ms5b.

The experimental entrance velocity is applied to the ele-
ments that make up the entrance surface of the numerical con-
crete specimen, and the experimental exit velocity is applied
to the elements that make up its exit surface. The radial dis-
placement values are assumed to be zero on the entrance and
exit surfaces. The resulting entrance force is computed by
summing all the forces applied on the elements that make up
the entrance surface, and the resulting exit force is the sum of
all the forces applied on the elements that make up the exit
surface. Given the experimental velocity histories, at each time
step the applied entrance and exit velocities are updated lead-
ing to the computation of numerical force histories.

NUMERICAL RESULTS

The computed numerical force histories for the experiments
at 350, 500, and 700 s21 are plotted in Fig. 7. To compare
them with the experimental curves, the latter have also been
plotted for each individual strain rate.

Clearly, the numerical results fit the experimental results
quite well during the first 100 ms. In particular, the signal
waveform is satisfactorily reproduced during most of this time.
The amplitudes also fit well except in the case of experiment
ms5b (700 s21) where the numerical exit force is greater than
the experimental record. However, by looking at Fig. 5, note
that the amplitude ratio between experiments ms3b and ms2b
is 1.23 for a strain rate difference of 150 s21, whereas between
experiments ms5b and ms3b this ratio goes to 1.55 for a strain
rate difference of 200 s21. Yet, in the exit signals, the ratios
are now 1.35 and 1.20, when it was expected that the second
ratio would be higher than the first as it is in the entrance
signals. On the other hand, in the numerical results of Fig. 7
the exit ratios are 1.34 and 1.44, where the second ratio is
indeed greater than the first as expected. Thus, a question re-
mains on the recording precision in experiment ms5b.

Beyond the first 100 ms, however, the amplitudes of the
experimental data and the numerical simulations start to di-
verge, reflecting a more brittle behavior in the numerical ex-
periment than in the real data set as shown in Fig. 8. This
might be due to the distribution of the sizes of the elements
used in the present simulation.

Fig. 9 shows that the distribution interval is rather narrow
unlike the size distribution of aggregates in concrete (Schlan-
gen 1993). This means that the distribution interval of the rup-
ture thresholds will in turn be narrow as it depends directly
on the distribution of the radii as seen in (15) and (16). It is
known that as the distribution interval of rupture thresholds
JOURNAL OF ENGINEERING MECHANICS / OCTOBER 1999 / 1159



FIG. 7. Two Plots for Strain Rate Deformations of: (a) 350 s21;
(b) 500 s21; (c) 700 s21. Dotted Lines Are Original Experimental
Curves; Solid Lines Are Computed Numerical Results

narrows the more important it is that the post-peak drop tends
toward a catastrophic regime (Herrmann et al. 1989). There-
fore, to obtain a better fit during the postpeak sequence (i.e.,
to have a more ductile behavior), a wider distribution would
be required. In the present numerical simulation the use of the
softening factor b introduced in (17) slightly overcomes the
noted divergence in the postpeak behavior by making the ma-
terial a little more ductile. Nonetheless, it should become ob-
solete if a better size distribution of elements was used. Fi-
nally, the introduction of different values of a in (4) had little
effect on the postpeak fit in the absence of confinement, as is
the case here.
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DISCUSSION

Given that these numerical results seem satisfactory, the
question is then what happens in the physical model to explain
these results? One hypothesis that was proposed (Gopalarat-
nam 1996) was that the strain rate dependency could be ex-
plained by a viscoelastic behavior of the cement paste. How-
ever, in the present numerical model viscous terms were
deliberately omitted, yet the numerical data fit the real data.
Thus, in this model, an inertia based hypothesis (Janach 1976;
Bischoff and Perry 1991, 1995) might explain the strain rate
dependency. This inertial effect should imply that for a given
average stress as defined in (36), for different strain rates, the
extent of the damage will differ. Locally, the inertial effects
will tend to oppose the opening of cracks, and the time avail-
able for microcrack development depends on the loading time.
It should be seen that the higher the strain rate, the smaller
the propagation distance of the damage area. To see if this is
the case here, for a given average stress of 50 MPa, lengthwise
and radial cuts are made through the center of the specimen
for two strain rates of 350 and 700 s21. The state of the damage
is shown in Fig. 10 where the discrete elements have been
colored as a function of the ratio between the number of rup-
ture interactions and the number of initial cohesive interac-
tions. As the damage increases, the color darkens. Vin is the
entrance velocity, and Vout is the exit velocity. These velocities
are applied on the elements that have been joined by a black
line.

It is indeed seen that as the strain rate increases, the extent
of the damage lessens. It is noteworthy that this damage is not
homogeneous and tends to propagate inwardly from the lateral
free surfaces of the specimen thus forming a contact cone as
seen in real experiments (Janach 1976). Unlike quasi-static
experiments where fracturing is well localized into narrow
shear zones (Lockner and Moore 1992), here the damage area
is more diffuse, and the resilient contact cone is bigger on the
impact side. The damage pattern is comparable to the theo-
retical pattern proposed by Janach (1976), and the proposed
unloading process for SHPB tests is given in Fig. 11.

An explanation is that the compressive stress wave C in the
brittle material generates a dilation in the radial direction be-
cause of the opening of cracks. Thus, the material exhibits a
reduced unloading modulus in the radial direction that allows
the damage zone to propagate inwardly from the free surface
with an unloading velocity Cf, which can be less than the com-
pressive wave velocity. If this is the case, then the unloading
could be sufficiently slow so that the central core of the spec-
imen would not have had time to unload, which means that
this specimen will have a greater load-carrying capacity (Bis-
choff and Perry 1991). Consequently, if the displacement field
is plotted as in Fig. 12, there should be a larger displacement
where the unloading has already occurred that is near the lat-
FIG. 8. (a) 350 s21; (b) 500 s21; (c) 700 s21. Dotted Lines Are Experimental Curves; Solid Lines Are Numerical Curves



FIG. 9. Distribution of Radius Size for Discrete Elements. Ele-
ments’ Sizes Vary between 5 3 1024 and 5 3 1023 m

FIG. 10. Damage Taken at Loading of 50 MPa for: (a) 350 s21;
(b) 700 s21. Left Views Are Axial Cuts; Right Views Are Radial
Cuts through Center of Specimen

FIG. 11. Simplified Lateral Unloading Process Proposed for
Cylindrical Specimen that Fails by Brittle Fracture in SHPB
Compressional Tests

eral free surfaces [Fig. 12(a), right view]. By increasing the
strain rate, the unloading will have had even less time, and the
displacement near the lateral free surfaces will tend to be
smaller [Fig. 12(b); right view]. As the unloading is even less,
the load-carrying capacity is increased thus leading to an ap-
parent strain rate effect. This can be considered as a lateral
inertial confinement effect. Moreover, as observed on the left-
hand side of Figs. 12(a and b), the displacement in the axial
direction also decreases with an increasing strain rate that sug-
FIG. 12. Displacement Fields for: (a) 350 s21; (b) 700 s21. Ar-
rows Represents Displacement between Time t = 0 and Time
when Loading Is 50 MPa. Left Views Are Axial Cuts; Right Views
Are Radial Cuts through Center of Specimen

gests that the axial inertial effect is not negligible when con-
sidering the increased strength of the specimen.

Based on these results, the inertia hypothesis can explain
the strain rate dependency.

CONCLUSIONS

This numerical experiment has shown an increase in com-
pressive strength with increasing loading rates as observed in
the experimental data set. A good fit between the experimental
and the numerical data was obtained without requiring the use
of viscosity in the model. However, the postpeak behavior of
the numerical experiment did not adequately fit the experi-
mental data. A more ductile behavior would be required that
could be obtained by modifying the numerical model’s dis-
cretization. A better distribution interval of the elements’ sizes
should be used.

Nonetheless, the general behavior of concrete at high strain
rate compressions can be characterized. In particular, the strain
rate dependency could be attributed to inertial effects with this
kind of model. These inertial effects implied that for a given
average stress, for different strain rates, the extent of the dam-
age differed. The higher the strain rate, the less the damage
zone spread. This damage was not homogeneous and tended
to propagate inwardly from the lateral free surfaces of the
specimen thus forming a contact cone. By plotting the dis-
placement fields, a larger displacement was observed where
the unloading had already occurred. The load-carrying capac-
ity was increased thus leading to an apparent strain rate effect
that could be considered as a lateral inertial confinement effect.

New insights into the problem were gained by being able
to have access to both macroscopic information such as stress
and strain levels and local information such as the displace-
ment and rupture of the aggregates. This was made possible
by using a micromechanic model based on the DEM, which
is well adapted in the field of deformations at high strain rate
where continuous media undergo fragmentation.

APPENDIX I. GROWING TECHNIQUE

The aim of the growing technique is to be able to generate
a compact set of discrete elements of various sizes in a 3D
volume of arbitrary geometry. To do this a number of steps
are required.
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FIG. 13. Growing Technique for Discrete Elements

First, an initial set of elements, all of identical radius Rinit,
are distributed according to the most compact geometry pos-
sible [e.g., a face centered cubic lattice for the 3D problem
(triangular for 2D) as represented in Fig. 13(a)].

The second step is to redistribute the radii of the elements
according to two sizes such that Rmin < Rmax < Rinit with Rmin =
d1Rinit and Rmax = d2Rinit, where d1 < d2 < 1.

A random pick j is made between [0, 1] for each element
a such that

n a1 2 j $ Q ⇒ R = Rmaxif (37)n aH1 2 j < Q ⇒ R = Rmin

with n $ 0 and Q < 1, which are introduced to adjust the
amount of disorder wanted. n and Q are chosen for the entire
set of discrete elements.

The initial positions of the elements are slightly modified in
a random manner while avoiding the overlap of elements so
that the new modified position of element a is

aεRa a a ax = x 1 (2z 2 1) with z [ [0, 1] (38)mod
2Ï

where za is randomly selected; and ε = amplitude of the per-
turbation. For n = 1 and Q = 0.6, Fig. 13(b) is obtained with
d1 = 0.25 and d2 = 0.5.

After this disorder is introduced, the elements are not in
contact. To obtain the most compact distribution, the voids
need to be filled as much as possible. To do this, the elements
are allowed to grow in two steps. First, all elements of size
Rmax are allowed to grow, and all elements of size Rmin are kept
at a fixed position and size. The growth increment is the same
at each growth iteration. The elements continue to increase in
size until either a predefined maximum allowable size is
reached or a predefined maximum element overlap is attained.
In general, this latter criterion is limited to a few percent of
the radius. Then, if an overlap is present, the radii of the two
elements are decreased to the point where the elements are
only in contact. Once all these elements have reached either
one of these thresholds, as shown in Fig. 13(c), they are not
allowed to move while the second growth step begins. During
this step, all elements of size Ra = Rmin will start to grow. As
in the preceding step, these elements will grow until they reach
one of two thresholds: (1) The maximum allowable radius,
which is less than the maximum allowable radius of the first
growth step; or (2) the maximum overlap, which is also less
than the maximum overlap of the previous step. Once again,
in the case of an overlap, the radii of the concerned elements
are reduced until the overlap disappears. This final growth step
is illustrated in Fig. 13(d). With this method, for a 2D problem,
there will be an average of three contacts between discrete
elements and six contacts for a 3D problem. In all cases there
will always be a minimum of one contact.
1162 / JOURNAL OF ENGINEERING MECHANICS / OCTOBER 1999
This means that to have approximately the same number of
interactions as an element would have with its nearest neigh-
bors, if distributed according to the most compact lattice (e.g.,
12 in a face centered cubic), additional interactions will need
to be defined. Thus, long-range interactions are used between
elements in the model.

An alternative way to increase the number of contacts be-
tween elements would be to introduce smaller-size elements
in the remaining voids. This would increase the computational
time.

The disadvantage of this method is that it is still difficult to
adequately control the static distribution of the discrete ele-
ments’ sizes. The advantages, on the other hand, are that 3D
space is well occupied whatever the complexity of the ma-
crostructure with enough disorder that anisotropic preferential
fracturing is avoided.
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ers would also like to thank two anonymous reviewers for their helpful
comments.

APPENDIX II. REFERENCES
Allen, M. P., and Tildesley, D. J. (1987). Computer simulation of liquids.

Clarendon, Oxford, England.
Bischoff, P. H., and Perry, S. H. (1991). ‘‘Compressive behaviour of con-

crete at high strain rates.’’ Mat. and Struct., 24, 425–450.
Bischoff, P. H., and Perry, S. H. (1995). ‘‘Impact behavior of plain con-

crete loaded in uniaxial compression.’’ J. Engrg. Mech., ASCE, 121(6),
685–693.

Brace, W. F., and Jones, A. H. (1971). ‘‘Comparison of uniaxial defor-
mation in shock and static loading of three rocks.’’ J. Geophys. Res.,
76, 4913–4921.

Camborde, F., Mariotti, C., and Donzé, F. (1997). ‘‘Application de la
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APPENDIX III. NOTATION

The following symbols are used in this paper:

Ãint = average surface where interaction is defined;
C = celerity of specimen’s medium;
Cf = unloading velocity;
c = cohesion;

Da,b = D distance between centroids of two discrete ele-
ments a and b;

a,bD eq = Deq equilibrium distance between two discrete ele-
ments a and b;

a,bD correction = correction distance for unloading;
D̄eq = average equilibrium distance for all discrete elements;

Dmax = maximum interaction distance;
E = Young’s modulus;
e = local restitution coefficient;
F = interaction force vector;

Fa = total force acting on discrete element a;
Fn = normal interaction force vector;
nF max = maximum normal force;
Fs = shear interaction force vector;

sF max = maximum shear force;
sF reduced = updated shear force vector during slip;

sF rot.1 = first rotation of shear interaction force vector;
sF rot.2 = second rotation of shear interaction force vector;
Fentrance = entrance force at bar-specimen interface;

Fexit = exit force at bar-specimen interface;
Ḣ = angular momentum vector of discrete element;
I = moment of inertia of discrete element;

K n = interaction normal stiffness;
K s = interaction shear stiffness;

ak n = normal stiffness of discrete element a;
ak s = shear stiffness of discrete element a;
l = number of applied forces on discrete element;
ls = length of specimen;

Ma = M total moment vector acting on a discrete element
a;

m = mass of element;
n = unit interaction vector;
n = number of interaction forces for discrete element;

Ra = R radius of discrete element a;
Rinit = initial radius of all elements;
Rmax = maximum possible radius size;
Rmin = minimum possible radius size;

SB = cross-sectional area of bar;
Ss = cross-sectional area of specimen;
T = maximum tensile strength;

Ventrance = entrance velocity at bar-specimen interface;
Vexit = exit velocity at bar-specimen interface;

ẋ = velocity vector of discrete element;
ẍ = acceleration vector of discrete element;
xa = component of position vector of discrete element a;
xa = x position vector of discrete element a;

xa,b = vector location of interaction point between a and b;
ax mod = modified component of position vector of discrete el-

ement a;
DFs = incremental interaction shear force vector;

Dt = integration time step;
DUs = shear displacement increment vector;

a = unloading factor;
b = softening factor;
g = interaction range;
εi = strain of longitudinal incident wave;
εr = strain of longitudinal reflected wave;
ε̇s = average strain rate imposed on specimen;
εt = strain of longitudinal transmitted wave;
n = Poisson’s ratio;
r = density of specimen;

ss = average stress imposed on specimen;
f = friction angle;
v = angular velocity vector of discrete element;
v̇ = angular acceleration vector; and
v̄ = average angular velocity vector of two interacting dis-

crete elements.
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