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LOAD-BEARING CAPACITY OF TEMPERED STRUCTURAL GLASS

By Hélène Carré1 and L. Daudeville2

ABSTRACT: This paper presents a method for the failure analysis of structural glass components of buildings.
Structural glass is generally prestressed by tempering. In the method, residual stresses are first computed by
simulation of this tempering process of soda-lime-silica glass plates using the finite-element method. The model
includes both stress and structural relaxations. The edge effects of tempering are modeled. Then, the failure
strength of annealed glass is obtained by a statistical analysis of tests performed on small specimens. Loading
rate effects are also taken into account. Computational results are associated with the statistical approach for the
failure prediction of large annealed and tempered glass plates. This prediction method is validated by experi-
mental results from four-point bending tests up to failure.
INTRODUCTION

New applications of tempered glass in structural parts of
buildings (i.e., posts, beams, and shear walls) necessitate a
good knowledge of the load-carrying capacity and the lifetime
of structural glass components. The objective of this work is
the strength prediction of tempered soda-lime-silica glass
plates loaded in plane.

Tempered glass may be regarded as a prestressed material
because its thermal treatment induces a certain amount of re-
sidual stresses. As these stresses are hardly measurable at all
points of an element, simulation of the tempering process is
necessary to evaluate the transient and residual stress states.
Previous studies of tempering have been concerned with the
calculation of residual stresses in infinitely thin plates (Naray-
anaswamy and Gardon 1969; Gardon 1980; Burke et al. 1987;
Carré and Daudeville 1996). Knowledge of the 3D stress state
in the whole plate is necessary as catastrophic failure is the
consequence of the propagation of cracks originated by ma-
chining the edges of glass plates (i.e., the influence of volume
defects being neglected). Because of the present scarcity of
knowledge of the state of residual stresses near straight edges
or holes, full-scale tests are generally necessary to design tem-
pered glass elements. The 3D calculation of residual stresses
near edges has not been shown before.

In this paper, computational results of the 3D finite-element
(FE) simulation of tempering of a thick glass plate are first
presented. Because failure properties of glass during the var-
ious stages of solidification are unknown, transient stresses
have possible application only in controlling the quenching
process and the resulting residual stresses.

Then, experimental results of four-point bending (FPB) tests
performed on small annealed glass specimens are shown. The
strength distribution and static fatigue sensitivity are deter-
mined from tests under constant stress rates. The influences of
the loading rate and surface finish are investigated. Tests were
performed in usual moisture conditions (i.e., the influence of
the relative humidity was not studied).

For a reliable failure analysis of glass elements, the Weibull
(1951) model is identified from tests performed on the small
annealed specimens. The loading rate effect is included in the
Weibull model by means of fracture mechanics concepts.
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The goal of this paper is strength prediction of large struc-
tural elements. The origin of fracture in structural glass is via
mechanical damage due to machining that involves abrading
the surface. The initial size of edge scratches is between 10
and 100 mm. Their final size before catastrophic propagation
is of the same order of magnitude for annealed glass or tem-
pered glass under flexion. The stress state of tempered plates
under bending can then be considered as quasi-uniform in the
vicinity of edge cracks. The analysis is different from the prob-
lem of nonloaded tempered glass objects (notably automobile
windshields) containing clearly visible surface cracks in which
the variation of stresses along the crack must be taken into
account.

A superposition model is proposed for the strength predic-
tion of tempered glass plates. The model uses results from the
numerical simulations of tempering and data from the proba-
bilistic model of the studied glass with machined cracks. The
main assumptions can be debated, but the simplified model
must be considered as a first step. Some FPB tests were per-
formed up to failure on large annealed and tempered elements.
Experiments on annealed specimens confirm the ability of the
statistical model to describe the size effect. Another original
aspect of the paper is the use of optical measurements on large
tempered specimens that allow the identification of unknown
heat transfer parameters of the tempering process and the val-
idation of the FE model. Failure tests validate the superposi-
tion method and the Weibull model.

THERMAL TEMPERING SIMULATION

Thermal tempering of glass consists of cooling very quickly,
by air casts, a plate that has been heated to ;6207C. This treat-
ment confers a strengthening by means of a residual stress state
of tension in the core and of compression near the surface. The
goal of FE simulations of quenching is to obtain residual
stresses of thick tempered soda-lime-silica glass plates.

The present difficulty of such a problem is the correct mod-
eling of heat transfers particularly in the case of a complex
geometry (e.g., a holed plate). Obtaining reliable data of the
thorough Narayanaswamy (1978) model used in this study is
another difficulty. Available data in this paper are issued from
experimental studies carried out at Saint-Gobain Recherche,
Aubervilliers, France.

Thermomechanical Behavior of Glass

The behavior varies quickly around the transition tempera-
ture (Tg ' 5807C) between the ‘‘glass’’ and ‘‘liquid’’ states.
The presented model includes stress relaxation due to viscosity
and structural relaxation due to the actual state of structure of
glass. The viscous behavior can be neglected at 207C.

Mechanical Behavior

Temperature is first considered constant. The mechanical be-
havior of glass is described in terms of stress relaxation by



FIG. 1. Specific Volume versus Temperature and Definition of
Fictitious Temperature

means of a generalized Maxwell model (Duffrene 1994; Gy
et al. 1994). Relaxation shear and bulk moduli are described
with instantaneous and deferred moduli and expanded into
Prony’s series. The deferred shear modulus value is zero

G(t) = 2G C (t) (1)g 1

K(t) = 3K 2 (3K 2 3K )C (t) (2)e e g 2

ni t
C (t) = w exp 2 , i = 1, 2 (3)i ijO S Dtijj=1

Influence of Temperature

A relaxation function Ci(T) known at the reference tem-
perature Tref can be determined at any temperature T with a
classical time-temperature equivalence (Schwarzl and Staver-
man 1952) by means of the reduced time j defined as

C (T, t) = C (T , j), i = 1, 2 (4)i i ref

Weights and relaxation times, defined in (3), are assumed
constant with temperature. An Arrhenius relation allows a cor-
rect description of the dependency of relaxation times with
temperature (Narayanaswamy 1978; Gardon 1980)

t
H 1 1

j(t, T ) = exp 2 2 dt9 (5)E S S DDR T T(t9)ref0

Structural Relaxation

During the quenching, and for temperatures close to the
transition range, the glass structure cannot be stabilized. There
are several possible glassy states for one temperature depend-
ing on the cooling rate (Fig. 1). This is the structural relaxation
(Narayanaswamy and Gardon 1969; Narayanaswamy 1971).

The fictitious temperature Tf was introduced to account for
the structure of glass (Tool 1946). A structural relaxation vol-
ume function Mv is defined as follows (Fig. 1):

V(t) 2 V T 2 T`,2 f 2
M (t) = = (6)v

V 2 V T 2 T0,2 `,2 1 2

Its temperature dependency is taken into account with the re-
duced time j(t). The fictitious temperature Tf is defined as

t
dT(t9)

T (t) = T(t) 2 M [j(t) 2 j(t9)] dt9 (7)f vE dt90

By analogy with the viscous relaxation, the response func-
tion can be described with a Prony’s series

n
j

M (j) = C exp 2 (8)v iO S Dlii=1

Structural relaxation times li are considered to be proportional
to shear relaxation times (Guillemet et al. 1992).

The dependency of viscosity with the structure state is not
considered in the presented FE simulations because it induces
very small variations of residual stresses (Gardon 1980). How-
ever, the dependency of the structural state with the density,
which is much more significant on residual stresses, is intro-
duced by means of the thermal expansion coefficient variations
with the temperature

ε = b (T(t) 2 T (t)) 1 b (T (t) 2 T ) (9)th g f l f 0
TABLE 3. Thermal Conductivity and Specific Heat

Thermal conductivity l
(W/m ?K, T in &C)

(1)

Specific heat of liquid glass Cp, l

(J/kg ?K, T in K)
(2)

Specific heat of glass Cp,g

(J/kg ?K, T in K)
(3)

0.975 1 8.58 3 1024T 1,433 1 6.5 3 1023T 893 1 0.4T 2 1.8 3 1027/T 2

TABLE 2. Viscous and Structural Relaxations—Weights and Relaxation Times (Tref = 864 K)

i
(1)

w1iGg

(GPa)
(2)

t1i

(s)
(3)

w2iKg

(GPa)
(4)

t2i

(s)
(5)

Ci

(6)

li

(s)
(7)

1
2
3

1.5845
2.3539
3.4857

6.658 3 1025

1.197 3 1023

1.514 3 1022

0.7588
0.7650
0.9806

5.009 3 1025

9.945 3 1024

2.022 3 1023

5.523 3 1022

8.205 3 1022

1.215 3 1021

5.965 3 1024

1.077 3 1022

1.362 3 1021

4
5
6

6.5582
8.2049
6.4980

1.672 3 1021

7.497 3 1021

3.292

7.301
13.47
10.896

1.925 3 1022

1.199 3 1021

2.033

2.286 3 1021

2.860 3 1021

2.265 3 1021

1.505
6.747

29.63

TABLE 1. Thermoviscoelastic Characteristics

Young’s modulus E
(1)

Poisson ratio n
(2)

Ke /Kg

[Eq. (2)]
(3)

H /R
[Eq. (5)]

(4)

bg

[Eq. (9)]
(5)

bl

[Eq. (9)]
(6)

70 GPa 0.22 0.18 55,000 K 9 3 1026 7C21 25 3 1026 7C21
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TABLE 4. Identification of Unknown Heat Transfer Coeffi-
cients

Coefficients
(1)

Epibiascope
(2)

Babinet
compensator

(3)

Mean measurement (MPa)
Standard deviation (MPa)
Apparatus accuracy (MPa)
Identification of h1 and h2 (W/m2 ?K)

120.4
4.9

66
h1 = 135

72
3.3

61.2
h2 = 115

FIG. 2. FE Model

Glass Characteristics

The thermoviscoelastic characteristics (Duffrene 1994) are
given in Tables 1 and 2. The structural relaxation character-
istics (Guillemet et al. 1992) are in Table 2.

The thermal conductivity and the specific heat (Guillemet
et al. 1992) are characteristics varying with temperature as
shown in Table 3.

FE Analysis

Previous works investigated inner residual stresses of thin
plates (thickness of 0.61 cm) (Narayanaswamy 1978; Gardon
1980; Burke et al. 1987; Carré and Daudeville 1996). This
work concerns thick tempered glass plates of building struc-
tures loaded in plane. The origin of fracture is located on the
plate edges. Therefore, transient and residual stresses are an-
alyzed in both inner and edge zones with the FE code MARC.
All of the following results are related to large tempered plates
(2,000 3 300 3 19 mm3).

Mesh and Boundary Conditions

Although the problem does not depend on z, 3D elements
are used to account for thermal strain along this coordinate
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(Fig. 2). The mesh is refined in zones of high stress gradients,
in the plate thickness (along x) and close to the edge (along
y).

The thermal treatment is assumed to be uniform on all plate
faces. The mechanical boundary conditions are symmetry con-
ditions (i.e., only one-eighth of the plate is modeled). The
thermal boundary conditions are forced convections to model
the blowing by air casts (air temperature Text = 207C). Three
constant heat transfer coefficients h1, h2 = h3 are defined. The
plate temperature is assumed to be uniform and equal to T0

(6207C) at the beginning of cooling.
The problem to solve is a time-dependent problem because

of the viscous behavior of glass.

Identification of Heat Transfer Coefficients

The only unknown parameters of the tempering process
simulation are the two heat transfer coefficients h1 and h2.
They are identified by means of comparisons between simu-
lation results and optical measurements (Sinha 1978; Aben and
Guillemet 1993; Redner 1995) of residual stresses performed
on large tempered plates.

The ‘‘epibiascope’’ is used to obtain the surface stress (syy

= szz) in several points in the inner part of the plate. This
measurement allows the identification of h1 (Table 4).

The ‘‘Babinet compensator’’ measures the difference of the
optical path in the thickness of the plate that is proportional
to the integral in the thickness t of the difference of principal
stresses (1/t) (syy 2 szz) dx. One measurement is carried1t/2*2t/2

out close to the edge to identify h2 (Table 4, at 1.5 mm because
of the chamfer, point A of Fig. 3).

Several measures at different distances from the edge were
carried out. The comparison between measurements and nu-
merical simulations with the distance from the edge are given
in Fig. 3. The good comparison validates the FE calculations
of residual stresses.

Transient and Residual Stresses

At the beginning of cooling, the surface contracts more
quickly than the core. By equilibrium, the core is under com-
pression and the surface is under tension. The surface tension,
particularly important at the beginning of cooling at the plate
corner, may lead to the fracture of the tempered glass plate.
As the surface temperature becomes less than the transient
temperature, the surface freezes and the still liquid core con-
FIG. 3. Integral of Difference of Principal Stresses versus Distance from Edge



FIG. 4. Computed Stress Variation versus Time at Edge and in Inner Part of Plate

FIG. 5. Computed Stress Variation versus Thickness Coordinate at Edge and in Inner Part of Plate
tinues to contract. Then, the surface becomes compressed
while the core is under tension, by equilibrium (Fig. 4).

In the inner part of the plate, the residual stress syy = szz

has a parabolic shape in the plate thickness. The residual edge
stress szz is quasi-constant in the thickness and slightly less
than the inner surface stress (Fig. 5).

FRACTURE PARAMETERS IDENTIFICATION

The failure stress of a macroscopic annealed glass element
under tension is between 30 and 100 MPa, whereas the tensile
strength of a glass fiber is about 20 GPa. Griffith (1920) ex-
plained this by the presence of microcracks. The origin of
fracture is located on the machined edges. Failure is governed
on one hand by their propagation and on the other hand by
their random distribution.

Statistical Model

The Weibull (1951) model is a statistical approach for the
failure analysis of brittle materials with random defects. The
failure probability Pf of a glass plate is
m
1 s 2 su

P = 1 2 exp 2 (10)f F E S D GS s0 0S

This model accounts for the size effect and the stress concen-
tration effect. Weibull parameters depend on the material and
also on the loading rate because of the subcritical crack
growth.

For a glass plate under bending, S is the polished surface
under tension. The integration of (10) on S is then explicit. It
was verified for each test presented in the next sections that
cracking had originated on S and not below the surface (for
annealed or tempered glass specimens).

Subcritical Crack Growth

Glass strength depends on the rate and the duration of load-
ing. This phenomenon, also named static fatigue, was shown
by Grenet (1899). This is not observed in vacuum conditions,
and it is due to the effect of moisture at the crack tips (Mich-
alske and Freiman 1983).

Failure due to the propagation of cracks from the edge can
be modeled by means of the stress intensity factor (SIF) Kl of
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fracture mechanics. Glass is a brittle material, and so the frac-
ture mode can be considered as a pure mode I. The crack
velocity depends on KI (Wiederhorn 1967) because of the sub-
critical crack growth. Evans (1974) proposed the following
model:

K < K no crack propagation (11a)I Ith

da nK # K < K subcritical crack growth: = AK (11b)Ith I Ic I
dt

K # K < K crack propagation (11c)Ic I Icb

K = K crack branching (11d )I Icb

The SIF is calculated with the applied stress (far away from
the crack)

K = sY pa (12)ÏI

The shape factor can be issued from Rooke and Cartwright
(1976).

Identification Tests

Description of Tests

Small annealed specimens with polished edges were tested
under FPB with different loading rates (Fig. 6). The influences
of the loading rate and the surface finish were studied. The
first set of specimens was tested at 0.05 and 0.5 MPa/s under
displacement control. Then a second set of specimens, with a
different surface finish, was tested at 0.05, 0.5, and 5 MPa/s.

The reference surface finish is the first one because large
specimens described further were machined with this surface
finish.
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In Fig. 7, circles and triangles give, for the reference surface
finish and for all the tested specimens, the experimental cu-
mulative failure probabilities at 0.05 and 0.5 MPa/s with re-
spect to the applied stress on the tensile edge. It can be ob-
served, first, that there is a large scattering of the failure stress
justifying a statistical approach and, second, that there is an
influence of the loading rate.

Table 5 gives the experimental mean failure stress and the
two experimental stresses corresponding to failure probabili-
ties of 0.2 and 0.8. Results are very different for the two qual-
ities of machining.

Loading Rate Effect

Association of the Weibull and Evans models enables one
to account for the subcritical crack growth in the statistical
analysis. The apparent Weibull parameters (s0 and m) depend
on both the loading rate and the environment for a given sur-
face finish. Intrinsic parameters (m* and are defined from*s )0

the strength in inert medium.
Assuming su = 0 and S0 = 1, (10) gives for a FPB test in

inert medium
m*

si
P = 1 2 exp 2S (13)f F S D G*s0

Intrinsic Weibull parameters and m*) are independent of*(s0

the loading conditions. The failure probability for a constant
stress or stress rate can be written with the intrinsic parameters
and the subcritical crack growth parameters (Helfinstine 1980;
Carré 1996).

Assuming the initial defect length is small compared with
the final crack length [a(t = 0) << a(t = tf)] and that the value
of the threshold stress intensity factor is zero (KIth = 0), the
integration of (11) in time, (12) and (13) give
FIG. 7. Predictions with Weibull Model

FIG. 6. FPB Test on Small Specimens



TABLE 5. Experimental Failure Stresses of Small Specimens

Failure stress
(MPa)

(1)

(MPa/s)ṡ

0.05
(2)

0.5
(3)

5
(4)

(a) First surface finish

Pf = 0.2
Mean
Pf = 0.8

37.0
41.2
43.7

41.5
45.4
49.1

—
—
—

(b) Second surface finish

Pf = 0.2
Mean
Pf = 0.8

39.9
50.1
57.2

45.1
54.7
64.0

45.2
56.1
66.2

m
s

P = 1 2 exp 2Sf F S D Gs0

nm*/(n22) m*/(n22)
s tf= 1 2 exp 2S k(n)F S D S D G*s t*0 (14)

with

2 1 22 22n*t* = s K (15)0 Ic2n 2 2 AY

The factor k(n) depends on the loading rate

1 if ṡ = 0
m*/(n22)k(n) = (16)1H if ṡ = constS Dn 1 1

Then, the apparent Weibull parameters are

(n 1 1)m*
m = (17)

n 2 2
1/n

2(n 1 1)(n22)/(n11)*s = (s ) ṡ (18)0 0 S D2 n22(n 2 2)AY K Ic

Only the apparent Weibull stress s0 depends on the stress
rate. If the initial crack length is not neglected, the two ap-
parent Weibull parameters (m and s0) depend on the loading
rate (Carré 1996).
Determination of Weibull Parameters

Apparent Weibull parameters (m and s0)0.5 were identified
with the test results shown in Fig. 7 obtained at a stress rate
of 0.5 MPa/s. The maximum likelihood method was used for
the identification (continuous line in Fig. 7).

The apparent Weibull parameters at 0.05 MPa/s can be cal-
culated with (17) and (18). It should be noticed that the knowl-
edge of fracture mechanics parameters, A, Y, and KIc is not
necessary because the calculation of the intrinsic Weibull stress

is not carried out*s0

1/n
0.05

(m) = (m) ; (s ) = (s ) (19a,b)0.05 0.5 0 0.05 0 0.5 S D0.5

The failure prediction at 0.05 MPa/s is given by a dashed
line in Fig. 7. The correct prediction validates the association
of the subcritical crack growth model with the Weibull theory.
The only fracture mechanics parameter used in this study is
the exponent n. This material parameter is difficult to obtain
because it requires long-term observations of crack propaga-
tion. For usual moisture conditions in buildings, n was iden-
tified from double torsion tests (n = 12.76, private communi-
cation from R. Gy, Saint-Gobain Recherche, 1995).

STRENGTH PREDICTION OF TEMPERED GLASS
ELEMENTS

In one case, numerical simulations of glass tempering have
given the residual stress state of thick plates. In another case,
tests on small annealed glass samples have allowed the iden-
tification of statistical failure parameters of the studied glass.

The strength prediction of tempered glass elements will now
be proposed by associating the two previous analyses.

Superposition Method

A key point is that the crack length before failure can be
considered small compared with the lengths of stress variation.
Fig. 8 gives the residual stress parallel to the edge with respect
to the edge distance in the midplane of a large tempered plate.
The zoomed image shows that the residual stress can be con-
sidered as constant along a distance that is about one crack
length before failure (about 100 mm) (Carré 1996).

The study of a clearly visible crack would involve taking
FIG. 8. Residual Stress Parallel to Edge versus Edge Distance
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FIG. 9. Half Perspective of Experimental Setup for Large
Specimens

into account the variation of stress along the crack length
(Lawn and Marshall 1977). Here, in the studied problem, the
crack does not grow through a region of negative KI (due to
a residual stress of compression) to a region of positive KI for
a long crack length because the crack will not propagate as
long as the whole crack is in a region under compression.

The stress state (i.e., the superposition of residual and bend-
ing stresses) can be considered as uniform far away from the
crack. Then, a crack propagation will be possible when the
sum of the bending and residual stress values reaches a critical
value.

The strength prediction is based on the following two major
assumptions:

• Residual stresses due to tempering are deterministic data.
This assumption relies on the observation of a small dis-
persion shown from optical measurements of residual
stresses on several points of different glass plates tem-
pered in the same conditions (Table 4).

• The surface flaw distribution is not affected by tempering
in spite of a surface tension stress at the beginning of the
cooling process that may induce a crack propagation.

The superposition method gives (at the location of failure)

tempered glass strength (T )

= annealed glass strength (A) 1 residual stress (R) (20)

(Weibull model) (FE simulation)

Tests on Large Glass Elements

Large annealed and tempered glass plates (2,000 3 300 3
19 mm3) were tested under FPB at 0.05 MPa/s (Fig. 9). This
system prevents the plates from lateral bending. It was verified
that this system does not induce any out-of-plane bending
stresses with gauges on each face of the plate. The edges of
large and small elements were machined in the same condi-
tions (first surface finish).

Annealed Specimens

In a first step, the Weibull model is used for the failure
probability prediction of large annealed glass plates. The aim
is the verification of the size effect description. The strength
predictions for three probabilities of failure are obtained with
(14)–(19) [term A in (20)] and are given in Table 6. The size
effect is clearly shown by comparing Tables 5 and 6.
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TABLE 6. Failure Stresses of Large Annealed and Tempered
Specimens = 0.05 MPa/s)(ṡ

Failure stress
(MPa)

(1)

Annealed
glass

(2)

Tempered
glass

(3)

Average of tests
Prediction

31.3 126.8

Pf = 0.2
Mean (Pf = 0.44)
Pf = 0.8

30.7
33
35.5

126.7
129.0
141.5

According to the model, the mean experimental failure
stress sexp corresponds to a failure probability of 0.26. The
small difference (5%) between the mean experimental and pre-
dicted failure stresses may be due to the influence of n [(19)]
whose value is difficult to obtain.

Tempered Specimens

In a second step, the strength prediction of tempered glass
plates [term T in (20)] is compared with experimental results.
The minimum residual compression stress obtained on the
edge by FE calculation [term R in (20)] is 96 MPa (Fig. 5).
This stress was obtained near the chamfer. Calculated failure
stresses are given in Table 6.

The difference between the mean experimental and calculated
failure stress of tempered plates (2%) may be due to the influence
of n but also on the uncertainty in the identification of the heat
transfer coefficients (Table 4) due to the apparatus accuracy.

CONCLUSIONS

The FE simulation of thermal tempering of a soda-lime-
silica glass plate was presented. Previous studies have not con-
sidered edge effects of tempering. A 3D analysis is carried out
in the vicinity of the edge plate where optical measurements
cannot give direct accurate estimations of residual stresses. It
was proposed to identify the unknown heat transfer coeffi-
cients by means of a few optical measurements on the edge
and in the center part of the plate that give some information
on residual stresses in these regions. This approach can be
applied to more complex geometries such as holes.

Tests on small annealed glass samples allow the determi-
nation of statistical annealed glass failure parameters and
pointed out the loading rate effect. The probabilistic model of
Weibull is used in association with a subcritical crack growth
model. For a given surface finish, the model can take into
account the effects of the specimen size of the stress distri-
bution and of the rate of loading.

With the results of both previous models, the superposition
method allows the strength prediction of large tempered glass
elements. This method is validated by the comparison between
experimental and calculated failure strengths.

The extrapolation of presented results to structural glass el-
ements of buildings loaded on a long period must be validated.
Long term FPB tests are now in process at Centre Scientifique
et Technique du Bâtiment, Marne-la-Vallée, France.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

A = Evans’s parameter;
a = crack length;
Ci = weights in structural relaxation function;
Cp,g = specific heat of solid glass;
Cp,l = specific heat of liquid glass;

G = shear modulus;
Gg = instantaneous shear modulus;
H = energy of activation;
hi = heat transfer coefficients;
K = bulk modulus;

Ke = deferred bulk modulus;
Kg = instantaneous bulk modulus;
KI = SIF;

KIc = critical SIF;
KIcb = crack branching SIF;
KIth = threshold SIF;
Mv = structural relaxation volume function;
m = apparent Weibull modulus;

m* = intrinsic Weibull modulus;
n = Evans’s exponent;

Pf = failure probability;
R = perfect gas constant;
S = area of possible location of fracture;

S0 = reference area;
T = temperature;
Tf = fictitious temperature at T2;
Tg = transition temperature;

Tref = reference temperature;
T0 = initial temperature;

T1-T2 = temperature step;
t* = intrinsic time;
tf = life time;
V = instantaneous specific volume;

V0,2 = volume just after temperature change;
V`,2 = equilibrium volume at T2;
wij = weights in relaxation functions expanded into Prony se-

ries;
Y = shape factor;
b = instantaneous thermal expansion coefficient;

bg = thermal expansion coefficient of solid glass;
bl = thermal expansion coefficient of liquid glass;
j = reduced time;
l = thermal conductivity;
li = structural relaxation times;
s = applied bending stress;
si = strength in inert medium;
su = threshold stress (Pf = 0);
s0 = apparent Weibull stress;
*s0 = intrinsic Weibull stress;

ti j = relaxation times in relaxation functions expanded into
Prony series; and

Ci = relaxation functions.
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