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a b s t r a c t

Simulating concrete cracking requires nonlinear modeling applied on a refined mesh if a correct
evaluation of crack properties needs to be achieved. Therefore, it is rather costly and even sometimes
impossible when large reinforced concrete structures are considered. Alternative solutions have there-
fore to be proposed. This contribution presents a structural zooming method for the simulation of large
reinforced concrete structures with localized nonlinearities. Our method is based on static condensation
(Guyan [1]) and provides an adaptive framework for performance-oriented use of this method in
nonlinear simulations. In particular, it only simulates the behavior of nonlinear interesting zones
(detected by adapted criteria). The areas where refined modeling is not required are replaced by their
equivalent stiffnesses. The linearity criteria, depending on the chosen mechanical models, are also used
to activate new interesting zones during the simulation. This method substantially decreases the
computational cost on both presented test cases (a two-dimensional concrete beam and a three-
dimensional reinforced concrete building).

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With recent improvements in numerical and behavior models
and new features of simulation software, the complexity of models
used by physicists and engineers is rising. Scalability of models
and computations has become a key issue, as simulation of local
small-scale phenomenon on large-scale problems seems to be the
next frontier in computing. The interaction between different
scales and different physics raises new questions, such as the
localization and quantification of cracking risk (civil engineering,
aeronautics …).

In this contribution, the specific physical phenomenon to be
predicted is the cracking of large-scale concrete and reinforced
concrete structures. A damage mechanics approach is used to model
the behavior of concrete with the finite elements method. Simulating
this phenomenon requires refined nonlinear models of the behavior
of concrete (for instance, a damage mechanics approach), applied on
meshes fine enough to match the physical phenomena. Those

models are hardly applicable to large-scale civil engineering struc-
tures with a mesh fine enough to adequately represent cracking.
However, concrete cracking is a phenomenon that is localized on
large structures, and therefore, realizing a fully refined simulation of
a large structure is unnecessary to obtain data on cracking: a method
for simulating localized nonlinearities on large problems with
accurate local information is required. Several techniques bring
answers to this scalability need.

For instance, global–local analysis methods are mainly used in
multi-scale simulations where physical phenomena appear at different
scales of the problem. They allow separating the scales and therefore
limit the complexity of the global problem [2]. These methods
combine a coarse simulation at the large scale and a fine simulation
at the small scale. Boundary conditions are exchanged between both
simulations and an iterative scheme allows finding a solution satisfy-
ing both scales. Separating scales however requires the definition of a
REV (Representative Elementary Volume), small enough to be con-
sidered as representative of the material behavior seen as homoge-
nous at the large scale and large enough to represent a mean behavior
at the small scale. To our knowledge, the definition of a REV for a
cracked material is still under discussion. Also some variations on this
methodology exist [3–6], eventually combining different models but
also different numerical methods, such as Confinement-Shear-Lattice
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[7] or discrete elements [8]. A zooming method using global–local
methodology has been introduced in 2003 by Haidar et al. to simulate
cracking of concrete [9].

Another approach to solve large structural problems in limited
computation time is the use of parallel computing and domain
decomposition method, that decompose a large problem in
smaller subproblems solved independently [10,11]. Those methods
divide the computing load to take advantage of parallel architec-
tures and solve problems faster. However, they do not affect the
global computing load, and will not allow finer simulations for a
given computing power [12–14].

Model reduction methods, and zooming method which derived
from them, are used when complex phenomena operate in a
localized manner on a large dimension problem. These methods
aim to simplify at most the modeling of the areas that present no
complex phenomenon, and focus the computational effort where
it is the most necessary, to limit the global computing load [15].
One of the most widely used model reduction technique is
orthogonal decomposition, e.g. using Karhunen–Loève expansion.
It was introduced in structural mechanics by Spanos and
Ghanem, based on the method previously used in fluid [16–18].
It consists in analyzing by the method of principal component
analysis the mechanical responses depending on solicitations
and parameters to build a predictive model. Applying this techni-
que to a substructure allows to replace its model by a linearized
model and focuses the computational effort on other substructures
[19]. Possible applications include fluid mechanics, shape
optimization, nuclear structure dynamic analysis [20], and sto-
chastic structural simulation with finite elements [21]. However,
those methods require previous knowledge on the localization of
nonlinearities (and specifically the cracks in concrete) and are
unable to detect the appearance of new cracks out of the
zoomed areas.

The static condensation method, or superelements method,
was introduced by Guyan [1]. It simplifies the solving of large-
scale linear problems by eliminating a well-chosen subsystem of
degrees of freedom. Several developments have been made on the
static condensation method, such as adaptation to dynamic
problems. Dynamic condensation was introduced to reduce com-
putational cost of the dynamical analysis of large structures
[15,22]. Applications are found in various fields, such as earth-
quake engineering, or vehicle suspension-tires systems simulation
[23].

The first structural zooming method was introduced by Hirai
et al. [24,25]. It combines static condensation with the reanalysis
methods introduced by Wang and Pilkey [26] and remeshing
techniques to locally improve the quality of numerical simulation.
Starting with a relatively coarse mesh, it can be locally refined (on
a substructure) with a remeshing technique. A new stiffness is
calculated with the new mesh (and degrees of freedom) on the
substructure, which is then condensed on the coarse mesh by
Guyan reduction, and reintroduced in the global problem. Solving
the problem gives the condensed solution on the original mesh,
and the local subproblem can be solved from there. Only the
stiffness of the area of interest is then condensed in this method.
This method can also be used to combine different models at
different scales, such as beam theory with nonlinear mechanics in
aeronautical structural mechanics [27].

Several of the previously cited methods allow limiting the
computational cost on problems similar to the cracking prediction
on large concrete structures. However, all focus on obtaining the
correct global behavior for the structure. Since an accurate
simulation of the cracked areas is required, a new method has
been developed, that focuses the computational effort on the local
simulation. The proposed structural zooming method aims at
reproducing at the local scale the results of a full nonlinear

simulation for a fraction of the computation cost. This adaptive
structural zooming method is presented in Section 2. Finally, the
method is applied to a bending concrete beam and a reinforced
concrete building under pressure.

2. Structural zooming method

2.1. Guyan condensation method: general principle

This paragraph describes the first-level Guyan reduction tech-
nique used in this zooming method for structural mechanics. The
discretized problem of continuum mechanics to be solved at each
area is formulated as follows:

KU ¼ F ð1Þ
In the field of mechanics, with n degrees of freedom, K

represents the structural stiffness matrix (KAℝn;n), U the nodal
displacement (UAℝn), and F the equivalent external nodal force
vector (FAℝn). All stiffness matrices are supposed invertible, that
simplifies the formulation, and computational methods allow
bringing properly-formulated problems back to this case. In
particular, in the simulation software used in this study, Cast3M
[28], boundary conditions are treated using the double Lagrange
multiplier method: this method allows to keep invertible stiffness
matrices that contains the boundary conditions (of the form
CUi ¼Ud) if the Lagrange multiplier vectors are added to the
degrees of freedom U of the system [29].

By using two subdomains (s and m), the system becomes

F ¼
Fs
Fm

 !
; U ¼

Us

Um

 !
; K ¼

Ks;s Ks;m

Km;s Km;m

 !
ð2Þ

with Fs; UsAℝp; Fm;UmAℝq; Ks;sA ℝp;p; Ks;mAℝp;q; Km;sA ℝq;p;

Km;mAℝq;q ; n¼ pþq:
The system is rewritten to solve the equation of the m

subdomain, using the “condensed”, or “equivalent stiffness” K̂ of
both subdomains [1]

Us ¼ K �1
s;s ðFs�Ks;mUmÞ ð3Þ

K̂Um ¼ F̂ ð4Þ

K̂ ¼ Km;m�Km;sK
�1
s;s Ks;m

F̂ ¼ Fm�Km;sK
�1
s;s Fs

8<
: ð5Þ

Eq. (4) is called the condensed problem. Considered indepen-
dently, this q-dimensional condensed problem (qon) is simplified
and therefore faster to solve than the initial n-dimensional system.
It solves the problem for subdomain m, and its result allows
deducing the solution for subdomain s from Eq. (3). A term of
“equivalent loading” ð�Km;sK

�1
s;s FsÞ appears in the condensed

problem (Eq. 5). It contains the influence of the external forces
Fs applied on the s subdomain over the m subdomain: the
subdomains have therefore been decoupled in terms of degrees
of freedom but not in terms of forces and stiffnesses.

2.2. Proposed approach

This method provides a framework for an adaptive, local-scale
oriented use of a two-level Guyan condensation method when
solving nonlinear structural problems. It follows several steps.
Fig. 1 describes the different steps of the method applied to a 2D
plate problem decomposed in 6 areas. It illustrates the general
principle of the method on a small academic problem. Two phases
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can be distinguished: a pre-computing phase and an adaptive
zooming phase, which takes place during the simulation.

2.2.1. Pre-computing and zoom initiation
2.2.1.1. Partitioning of the problem. The structural problem is first
partitioned in N subdomains: each of these areas will either be
zoomed or condensed depending on the expected behavior. The
problem decomposition in subproblems is the most critical
parameter for the structural zooming method's performance. It has
no impact on the results of the simulation, but it is critical for the
computational load. This decomposition defines directly the
dimension of the problem solved at each increment: the number
and shape of the areas define which part of the model is zoomed
during the simulation. The closer the area decomposition matches
the nonlinearities localization and their evolution in the structure,
the most efficient the zooming method will be. For instance, with
only one area, the full structure is systematically zoomed: this
implies a null gain in computational load compared to a standard
simulation. On the other hand, a model dividing the nonlinear areas
in a very large number of substructures would require more updates
when nonlinearities would spread, hence a large computation cost
during the adaptive zooming phase. The decomposition must then
be the result of a compromise between model size and update
frequency, and match as close as possible the areas where nonlinear
behavior is expected.

This approach, with fixed subdomains has been chosen instead
of flexible areas following nonlinearities and dynamically reshap-
ing (as in other methods of structural zooming) because it
presents several advantages

� The equivalent stiffness of each zone only needs to be com-
puted once: the cost of computing and inverting stiffness
matrices is then reduced.

� The interface between the areas only needs to be determined
once, before the simulation.

However, its main drawback is the dependency of the compu-
tational performance on the area decomposition: the method will

be as efficient to reduce computational load as the shape of the
zoomed areas is able to match the damaged part of the structure
through the loading.

2.2.1.2. Condensation of each area on its boundaries. Using the
Guyan reduction technique described, each area is condensed on
its boundaries: the equivalent stiffness and equivalent loading are
calculated (and will be useful during the simulation). It is to be
noted that the equivalent stiffness of each area takes into account
the material stiffnesses, the additional stiffnesses (multi-material
adhesion, etc.), and the boundary conditions applied to the area. It
is to be noted that only force-formulated loadings are also
condensed on the same masternodes. Displacement-formulated
loadings are not condensed (modeling the usually small areas
where they are applied appears to be a simpler implementation).

2.2.1.3. Linear pre-calculus and determination of the initial zoomed
areas. A linear pre-calculus determines which areas are activated
(or zoomed) at the start of the simulation, and which areas are
condensed: areas with expected nonlinear behavior are zoomed,
while areas with expected linear behavior will be condensed
(Fig. 2). This pre-calculus is the linear resolution of the complete
(uncondensed) structure, and has two objectives

� Determine the first area to be zoomed (localization of the first
appearance of nonlinear regime).

� Compute the time (loading increment) t1 when this area first
obeys nonlinear behavior.

The pre-calculus consists in a linear resolution of the full
(uncondensed) simulation. After the solution is obtained, it com-
putes the value of the nonlinearity outbreak criterion on each area
for the given loading (with a nonlocal treatment if the simulation
is nonlocal). This value determines both where and when non-
linearities will first occur, and therefore the starting nonlinear
problem, which is why the zooming criteria and their zooming
threshold have to be well suited to the problem and the models
used (criteria are detailed in Section 2.3). The initial zoomed and
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Fig. 1. Structural zooming method applied to a plate problem with 6 areas.
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condensed areas are then obtained. The computational cost of this
pre-calculus is equivalent to a linear iteration on the full structure,
and becomes negligible in the case of a nonlinear simulation as the
number of steps and iterations becomes large. Another approach
would be to use the first-level condensed problem to solve the
structure and then apply the criteria on each area independently.
This would be more computational-efficient on large-scale pro-
blems, especially if a single iteration is time-consuming.

2.2.1.4. Second-level condensation. All subproblem associated to the
condensed areas are combined, using assembly stiffness matrices. For
the sake of clarity, only one condensed area will be considered. A
second level of static condensation is then performed on the
condensed problem. The masternodes of this second-level conden-
sation are the masternodes of the first-level condensation on the
interface with the zoomed areas (Fig. 3).

The domain formed by the masternodes (m) can be partitioned
again in two subdomains M and E, corresponding to the second-
level masternodes and the eliminated masternodes

Fm�Km;sK
�1
s;s Fs ¼

FE
FM

 !

Um ¼
UE

UM

 !

Km;m�Km;sK
�1
s;s Ks;m ¼

KE;E KE;M

KM;E KM;M

 !

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

with FE; UEAℝr ; FM ;UMAℝs; KE;EA ℝr;r ; KE;MAℝr;s; KM;EA ℝs;r ;

KE;EAℝs;s ; q¼ rþs:
The system is condensed again to eliminate the displacement

variables UE . A system condensed on the second-level master-
nodes is obtained. The system size is then reduced to s (number of
second-level masternodes), compared to the q-dimensional sys-
tem (4)

ðKM;M�KM;EK
�1
E;E KE;MÞUM ¼ FM�KM;EK

�1
E;E FE ð7Þ

This system is still equivalent to Eqs. (1) and (4). Its stiffness
matrix is called the second-level equivalent stiffness. It can then be
combined with the problem modeling the zoomed areas (Fig. 1),
using assembly matrices. The combination of those problems
forms the full condensed problem.

2.2.2. Adaptive zooming
2.2.2.1. Principle. The principle of this zooming method raises the
question of the propagation of zoomed zones but also of the
apparition of new zones. Zooming on new areas includes changes
in the model (mesh, behavior, properties, etc.) but also in the
definition of the mechanical state of these new zoomed zones. In
particular, this implies to modify the formulation of the problem
when a new nonlinear behavior is detected. In our approach, when
an adapted criterion is fulfilled, identified condensed areas are
replaced by explicitly modeled areas. A change in the zoomed zones
also implies a change in the applied equivalent stiffness, as the
second-level masternodes change: the second-level condensation
must be recalculated. However, the equivalent stiffness of each
condensed area is never recalculated.

Fig. 4 describes the simulation of the 2D plate problemwith the
adaptive zooming method, starting with only one zoomed area,
and expanding the zoom to other areas when nonlinearities
appear or propagate.

In order to obtain a condensed problem that is both correct and
light to solve, new areas must be detected and zoomed as soon as
nonlinearities occur in their behavior. Therefore a set of criteria
(and the associated zooming thresholds) has to be defined to
identify the linear and nonlinear areas.

The zooming criteria are defined as follows and detailed in
Section 2.3:

� The outbreak criterion detects the end of the linear phase of the
behavior in an area: for instance multiple cracks in a structure
under loading. This criterion applies to the condensed areas
(and requires computing those areas).

Full problem: Calculation of the 
outbreak criterion

Determination of the first 
zoomed area

Fig. 2. Principle of the pre-calculus.

Full problem Condensed areas
Second-level equivalent 

stiffness
Combination with the 

zoomed area

Fig. 3. Principle of the second-level Guyan condensation.
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� The propagation criterion detects the nonlinearity propagation
from a nearby area: for instance crack propagation in a fragile
material or damage propagation alongside rebars in reinforced
concrete. This criterion applies to the already zoomed areas
(and requires no additional operations).

The zooming criteria depend on the nonlinear model chosen.
The only common assumption is the presence of an elastic phase
in the material models. It is to be noted that the zooming
operation is currently irreversible: an area that has been zoomed
is not condensed again (irreversible phenomena appear at the
material level, such as permanent strain or changes in its mechan-
ical properties).

2.2.2.2. Just-in-time zooming method. The zooming method is
adapted to nonlinear problems approximated by numerical methods
(such as FEM), discretized in time and solved incrementally, using an
iterative method (such as the Newton–Raphson algorithm) at each
loading increment [28]. The complete nonlinear problem is then
considered as a large set of time steps problems solved sequentially.
The full condensed problem is solved at each step, providing the
solution of the nonlinear part of the full problem.

At the end of each loading step, the propagation zooming
criterion is checked for all condensed areas and those areas can be
zoomed if the criterion is met.

Since it is computationally more expensive (especially in
damage mechanics simulations using nonlocal models), the out-
break criterion is usually checked less regularly. To guarantee that
the condensation is valid, the condensed areas must stay in their
linear phase between two criterion checks.

A first approach could consist in zooming slightly before the end
of the linear phase (by lowering the zooming threshold on the
outbreak criterion), to prevent nonlinearities from appearing
between two checks. However, this method would need more
empirically chosen parameters for the outbreak threshold and might
be too conservative: because of the margin taken, areas may be
zoomed although it would not be absolutely necessary.

The “just-in-time zooming method” introduces a principle of
retroactivity in the zooming method, by checking the zooming
criteria after solving the full condensed problem on a step. Fig. 5
describes the solving of a time step with the just-in-time zooming
method. The criteria then behave differently

� The propagation criterion (immediate checking) directly causes
zooming on the concerned areas.

� The outbreak criterion (postponed checking) causes a return to the
last verified step if needed, and zooming on the concerned areas.

This method runs on a hypothesis: it is assumed that a
nonlinearity outbreak between steps ðnþ1Þ and ðnþpÞ will cause

the outbreak criterion to match his threshold at step ðnþpÞ. This
particularly implies that outbreak criterion checks must remain
regular (p low). Choosing the value of this checking frequency p
then becomes a compromise between the cost of solving several
time steps twice and the cost of solving the condensed subpro-
blems. If the major part of the structure is condensed, strongly
nonlinear simulations might be faster with lower values of p (even
p¼ 1) because the cost of solving steps would be high, whereas
“almost linear” simulations might be faster with higher values of p,
as the steps would be solved at low cost. Also, if nonlinearities are
likely to appear in several distinct areas, lower values of p should
be used to detect those nonlinearities quickly. On the contrary, if
nonlinearities are unlikely to appear in different areas, higher
values of p would increase computational performance.

This approach has been chosen because it eliminates the need
to take margins on the zooming thresholds and compromise
between computational efficiency (small margins) and safety on
the linearity hypotheses (high margins). The major drawback of
this approach is due to its retroactive framework: increments that
lead to the outbreak of nonlinearities in condensed areas need to
be computed again. This can cause higher computational cost: the
frequency of outbreak criterion check must therefore be wisely
chosen. Based on the cases presented in this contribution and
other tests of concrete and reinforced concrete structures, values
of p chosen between 1 (strongly nonlinear problems) and 10
(weakly nonlinear problems) provide a good compromise.

Full problem
Starting full condensed 

problem
Outbreak of zoom: new 
full condensed problem

Propagation of zoom: new 
full condensed problem

Fig. 4. Adaptive zooming on the plate problem.

Fig. 5. Principle of a nonlinear simulation step with the just-in-time zooming
method.
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2.3. Zooming criteria and parameters for reinforced concrete
structures

2.3.1. Outbreak criterion
The outbreak criterion is a direct application of the model

definition on condensed areas. Solving the linear subproblems of
those areas and obtaining displacements of their internal degrees
of freedom allows applying the numerical model on it (Fig. 6). For
instance on concrete mechanics modeled with the Mazars model
[30], the criterion would be the equivalent strain εeq, with the yield
limit ε0

εeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1h i2þ þ ε2h i2þ þ ε3h i2þ

q
ð8Þ

where 〈εi〉þ are the principal positive values of the strain.
The outbreak zooming criterion is matched if the equivalent

strain exceeds the elastic limit. If the simulation uses a nonlocal
integral method (such as [31,32]), the zooming criterion shall be
nonlocal (with the Mazars model, nonlocal equivalent strain). In this
case, all the condensed subproblems are solved independently, giving
the displacement and strain values, and eventually applying the
model to compute additional variables, such as the equivalent strain.
A nonlocal domain is then built, by reducing the global nonlocal
domain (and connectivity matrices) of the full problem to its
condensed part (which contains all condensed areas). Therefore,
the nonlocal domain is not fractioned along the interface between
two condensed areas (Fig. 6): this avoids creating nonphysical strain
localization on the interfaces (and therefore over-estimating the
outbreak criterion [33,34]). The regularized variable (such as nonlocal
equivalent strain) can then be calculated using the previously
obtained values of the strain, and applying the regularization func-
tion on the nonlocal domain.

The purpose of this computation is solely to determine whether
the elastic criterion is fulfilled. Thus, a linear computation is

performed for the deformations. If the elastic criterion based on
the nonlocal equivalent strain is met, the solution is acceptable, if
not the zone is zoomed in.

The linear solving and model integration can easily be paralle-
lized to speed up the simulation. However, solving the subproblems,
applying the model and the nonlocal treatment can become
computationally time-consuming operations on large problems,
and that criterion must therefore be used parsimoniously.

2.3.2. Propagation criterion
The propagation criterion is applied directly on the already zoomed

areas. “Interface bands” are considered in the zoomed areas around
each interface with a condensed area. The propagation criterion is
measured on those bands and allows zooming on the condensed areas
whose interface bands match the criterion (Fig. 7). The interface bands
are defined by a thickness L, and include all nodes whose distance to a
zoomed-condensed interface is smaller than L. If a nonlocal method is
used with an internal length lC0, the value of L can be chosen
depending on lC0. This avoids disequilibrium in the regularization
domain near damaged areas, as nonlocal methods are known to be
less accurate around the borders of the nonlocal domain. If no
regularization technique is used, a value can be chosen depending
on the mesh size. The propagation criterion applied in those interface
bands then depends on the model. In the case of concrete modeled
with the Mazars model, a good choice is the damage variable D, with a
null threshold. As this criterion is applied on already zoomed areas,
and therefore on already computed variables, it has almost no
computational cost, and can be applied very regularly.

3. Application cases

The following examples illustrate the principle of the method
and its usage on typical concrete and reinforced concrete structures.

Full problem
partitioned in 6 areas Condensed problem

Condensed areas: 
independent 
subproblems

Nonlocal domain of the 
outbreak criterion

Fig. 6. Calculation of the outbreak criterion.

Full problem partitioned 
in 6 areas

Condensed problem
Interface bands for the

propagation criterion

Fig. 7. Calculation of the propagation criterion.
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They show that the results of a full simulation are reproduced. The
processor time (reflecting global computing load) is compared
between simulations using the zooming method and reference
simulations. The obtained speed-ups do not represent the point of
the method, which is to allow access to finer simulations of large

problems with limited computation resources. However, they
provide a proof of concept for the structural zooming method,
which has still to be optimized in order to obtain the best
performance.

3.1. Three-point bending concrete beam

3.1.1. Problem description
Fig. 8 presents the finite element mesh of a notched plain

concrete beam undergoing three-point bending, on which both
reference simulations and experimental results are available. Both
the experimental results, simulation hypotheses and model para-
meters are obtained from previous work published in work by
Dufour et al. [35]. All simulations are run with Cast3M [28].

The beam is 40 cm long and 10 cm high (Fig. 8). It is modeled in
two dimensions under the hypothesis of plane stresses (the
experimental beam is 5 cm wide). A notch is included at mid-
span along the bottom of the beam, it is 2 mm large and 20 mm
high (Fig. 8). A regular quadrilateral mesh of size 2.5 mm is used
with bilinear finite elements (6464 elements).

The material is modeled with the Mazars isotropic damage
model [29], using the same parameters as in [34]. Those para-
meters give a compressive strength at 28 days f c equal to 41.4 MPa
and a tensile strength f t equal to 3.03 MPa. To avoid mesh
dependency, a nonlocal method is used: the stress-based regular-
ization method [32], with the internal length lC0¼7.5 mm has been
chosen to limit the spreading of nonlocal damage and get the right
damage location initiation at the notch tip. The stress-based
weighting function writes

ϕðx�sÞ ¼ exp � 2‖x�s‖
lcρðx; σðsÞÞ

� �2
 !

ð9Þ

The loading is applied at a point of a small area on the top of the
beam (Fig. 9). This small triangle-shaped area (2.5 mm�12 mm)
avoids the stress concentration around the loading point. At each
support point, a similar rectangular-shaped elastic area (2.5 mm�
10 mm) is added to avoid geometrical singularities (Fig. 9). Vertical
displacement is blocked at each support point. The loading is an
increasing vertical displacement up to 2�10�4 m. Horizontal dis-
placement is free (except at the loading point).

3.1.2. Zooming method and criteria
The just-in-time structural zooming method is applied to this test

case: the mesh of the beam is divided in 16 areas of equivalent
dimension (Fig. 10). An additional substructure is constituted with the
elastic loading area. It is modeled from the start of the simulation, to
support the displacement-driven loading. Although displacement-
driven loadings are applied on the Lagrange multipliers, and could
theoretically be condensed as displacement boundary conditions [29],
it appears to be much simpler in terms of implementation (and has
negligible computational cost) to model the loading area. On the
contrary, the support areas are considered zoomable or condensable
areas and associated to the adjacent zoomable zone. Boundary
conditions are included in the equivalent structural stiffness.

20 mm

2 mm

10 cm

40 cm

Fig. 8. (a) Mesh of the 2D notched beam (40�10 cm2), with boundary and loading conditions. (b) Mesh of the notch area (20�2 mm2).

2,5 mm

2,5 mm

Fig. 9. (a) Elastic loading area (yellow) (b) Elastic boundary-conditions area
(yellow). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article)

Fig. 10. Decomposition of the beam mesh in 17 areas.
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For the propagation criterion, a new adjacent zone is zoomed
when damage is non-null in any element included (totally or
partially) in a band 1.5 lC0 thick from the boundary (numerical
damage tolerance of 0.01, to avoid over-zooming when areas are
small). For the outbreak criterion, if the nonlocal Mazars equiva-
lent strain reaches ε0 in a condensed zone, it will be zoomed. The
outbreak criterion, which implies a costly computation on the
condensed areas, is checked every four loading increments (p¼4),
while the damage propagation criterion evaluation, which has
negligible computing cost, is done at the end of every increment.

3.1.3. Comparison of the global behavior
Fig. 11 presents the load–deflection evolutions obtained with

the zooming method and with the reference simulation (run with
the same data but without the zooming method). The deflection
corresponds to the displacement of the central point of the beam.

Both curves follow the same evolution

� At point 1, damage initiates at the center of the beam.
� At point 2, the load peak is reached.
� Point 3 is the last loading increment (and end of the

simulations).

Fig. 12 presents the Load–CMOD evolutions of our simulations
(with the zoomed method), the experimental measures, and the
simulation made in [35] with the same model and parameters
(Fig. 12). The CMOD is numerically calculated as the relative lateral
displacement of the two points at the mouth of the notch.

The Load–CMOD evolution shows that our simulation repro-
duces the experimental results quite correctly. Our simulation
gives results closer to the experiment than [35]: this effect is due
to the use of the stress-based regularization method, which allows
better modeling of the behavior around the notch than the
Gaussian regularization method.

3.1.4. Comparison of the local behavior
Fig. 13 presents the damage profile evolutions for the reference

simulation and the simulation using just-in-time zooming. For a
given time step, both damage profiles are identical, with in both
cases and evolution of the damage from the crack to the top of the
beam. Some nonlinearities also appear near the supports. The
structural zooming method models correctly the reference

behavior of both condensed and zoomed area, including at the
local scale.

3.1.5. Numerical efficiency
The computation times are also compared between the full

simulation and the zoomed simulation. To observe the effect of the
decomposition of the problem in zones, another zoomed simulation
using the same dataset has been run, this time with the problem
decomposed in 64 zoomable areas. All have been run on the same
computer (a standard dual-core workstation) with Cast3M. Table 1
presents the processor times for all three simulations.

These processor times show an economy of respectively 26%,
35% and 52% when using the just-in-time zooming method with
16, 32 and 64 zoomable areas (Table 1). The better results obtained
with the 64 areas configuration can be explained by the shape and
localization of the damage in the structure, leading the 64 areas
simulation to run with a lower part of the beam modeled (Fig. 14).
This clearly demonstrates the interest of this area-condensation
approach. Although the absolute speed-up values may seem low
compared to other zooming or model reduction methods, it must
be kept in mind that the results are identical to those of the full
simulation.

Even with better optimization of the method and its para-
meters, what appears from the damage profiles (Fig. 14) is that the
shape of the zoomed area matches the damage distribution in the
beam. With the finest decomposition (64 areas), the speed-up is
therefore limited only by the distribution of damage in the
structure. The ratio of zoomed to condensed areas is expected to
be much higher on large structures since the damaged areas are
supposed to be small. The economy in computational load, and
thus the ability to access more refined simulation with given
computational power, is expected to scale.

3.2. Reinforced concrete structure under internal pressure

3.2.1. Problem description
This test case aims to evaluate the applicability of the method to a

structurewhich represents a reinforced concrete containment building
mock-up. The structure is a reinforced concrete cylinder with a
hemispherical dome. The displacements at the bottom of the cylinder
are blocked and the structure undergoes an internal pressure loading.

Point 1 Point 2 Point 3

Fig. 13. Damage profiles at points 1 (appearance of damage), 2 (load peak), and 3 (end) for the reference simulation and the simulation with just-in-time zooming.

Table 1
Processor times for the simulation of the notched concrete beam (actual duration of the simulations are smaller than those since the processor used is dual-core).

Simulation Full simulation
(reference)

Just-in-time zoomed simulation 16
areas

Just-in-time zoomed simulation 32
areas

Just-in-time zoomed simulation 64
areas

Processor time (s) 8590 6378 5578 4117
Gain 26% 35% 52%
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Fig. 15 presents the mesh and geometry of the reinforced
concrete structure. Table 2 presents its dimensions.

The concrete cylinder is meshed with rectangle parallelepipeds
(50 cm�50 cm�40 cm, one element in the thickness), and the dome
with prismatic elements, both with tri-linear finite elements. The steel
rebars are modeled with truss finite elements (50 cm). Those truss
elements have an equivalent section S¼8.04 cm2 (corresponding to a
steel diameter of 32 mm). All 12 horizontal circular rebars are inserted

at 17.5 cm thickness (from inside) in the cylinder, 40 vertical rebars are
inserted at 22.5 cm thickness in the cylinder, and 80 in the dome. The
link between rebars and the concrete volume is ensured by kinematic
relations on nodal displacement.

The concrete is modeled using the Mazars isotropic damage
model, with the parameters given in Table 3. For a mean Young's
modulus of EM ¼ 30 GPa, this gives a compressive strength at 28
days f c of 26.9 MPa and a tensile strength f t of 3.0 MPa. A random

Point 1 Point 2 Point 3

Fig. 14. Damage profiles for the zoomed simulation with 16 areas and the zoomed simulation with 64 areas.

Fig. 15. Mesh of the simplified containment building. (a) Mesh of the concrete, (b): Mesh of the steel rebars, (c): Zoomable areas of the structure, and (d): Distribution of the
random Young's modulus of concrete.

Table 2
Dimensions of the reinforced concrete.

Cylinder height Cylinder external radius Cylinder thickness Dome external radius Dome thickness

13.3 m 7.3 m 40 cm 7.3 m 40 cm

Table 3
Parameters of the Mazars model for the cylinder's concrete.

Young's modulus Poisson coefficient Damage threshold A (compression) B (compression) A (tension) B (tension) Shear coefficient

EM ν ε0 Ac Bc AT BT β

30 GPa 0.2 1�10�4 1.15 1900 0.95 12,000 1.06

Table 4
Parameters of the plasticity model for the cylinder's steel rebars.

Young's modulus Yield strain Yield stress Maximum strain Maximum strength Section

E εy σy εm σm S
200 GPa 2�10�3 400 MPa 5�10�2 600 MPa 8.04 cm2
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auto-correlated field is used to represent heterogeneity in the
concrete Young's modulus at the structural scale. Although
it is not technically required for this analysis, this random field
modeling has two functions: firstly, it gives a closer representation
of the physics of a nuclear containment building, where
mechanical properties are known to vary spatially [36]; secondly,
using heterogeneous properties allows to break the problem's
rotational invariance, and creates weaker points where
damage can localize. The distribution follows a Gaussian law with
a mean value EM equal to 30 GPa and a standard deviation
Eσ equal to 3.0 GPa (Fig. 15). The chosen spatial autocorrelation
function is arbitrarily Gaussian with an autocorrelation length
li ¼ 1 m. The steel rebars are modeled using the Von Mises
plasticity model with linear hardening (see parameters given in
Table 4).

To avoid mesh dependency, a nonlocal method is used: the
stress-based regularization method [32], with the internal length
lC0¼0.5 m has been chosen to limit the spreading of nonlocal
damage. The loading is a uniform pressure applied on the internal
surface of the cylinder and the dome, up to 1.73�105 Pa.

3.2.2. Zooming method and criteria
The structural zooming method is applied on this simulation:

the mesh of the structure is divided in 6 zoomable areas of

equivalent dimension (Fig. 15). All boundary conditions applicable
are condensed in the equivalent stiffness. The applied loading is also
condensed when necessary.

The zooming criteria used on the concrete model are the same
as the plain concrete beam case, since the same mechanical model
is used. No zooming criterion is applied for the steel model since its
degrees of freedom are kinematically linked to the concrete nodes,
and its mechanical model will allow larger values of strain in the
linear-elastic phase: therefore, the steel will be zoomed or con-
densed following the concrete of the area.

3.2.3. Results
Fig. 16 presents pressure–displacement evolutions for the

reference and zoomed simulations. In both cases, the same field
is considered for the concrete Young's modulus.

Fig. 16 shows a total agreement between both simulations. This
confirms the results on the concrete beam, and the applicability of
the method to a tridimensional problem with reinforcement bars
(and therefore, multiple mechanical models).

The damage profiles (Fig. 17) at the last step also show a total
agreement between the zoomed simulation and the reference simula-
tion, on both localization and values of the damage variable. The
results of the reference simulation are then correctly reproduced by
the simulation using the structural zooming method. The computation
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Fig. 16. Pressure–displacement evolution, and its nonlinear phase.

Table 5
Processor times for the simulation of the simplified reinforced concrete containment building.

Simulation Full simulation (reference) Zoomed simulation/6 areas

Processor time (s) 1838 922

Fig. 17. Final damage distribution for the reference simulation and zoomed simulation.
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times are compared. Both simulations have been run on the same
computer (a 16-core computing node).

Those processor times show an economy induced by the use of
the zooming method of 50% (Table 5). Zooming method's applic-
ability and usefulness is therefore confirmed on that type of simula-
tions. The observation of the simulation's evolution reveals that the
outbreak criterion is matched only once. However, given the small
number of steps effectively computed (27 steps), higher values of p
would most likely induce a lower performance, as a large part of the
simulation would be computed twice. However, with finer meshes,
new problem decompositions could be proposed to keep the
computational cost low while refining the simulation.

4. Conclusions

An adaptive condensation method for the nonlinear simulation
of large structures has been presented. It uses Guyan degree of
freedom elimination to reduce the dimension of a large problem
with localized nonlinear behavior. When the system evolves during
the loading, our method allows an evolution of the zoomed areas
(propagation or outbreak). This method can be applied to any
model and material with suitable zooming criteria. The more
localized the nonlinearities are, the more efficient the method
will be.

This method has been applied on two computational test cases.
The first case is a plain concrete notched beam under a three-point
bending. On this case the method can reproduce the results of a
reference simulation with accuracy and provides a speed-up
greater than 2 in computation time with standard and non-
optimized parameters. The performance is expected to be higher
with optimal parameters (initial zone decomposition especially)
and an optimized implementation. The second test case is a
reinforced concrete structure model whose geometry corresponds
to the simplified shape and dimensions of a nuclear confinement
building mock-up. On this case, the zooming method can also
reproduce the reference computation with accuracy. An economy
of 50% computation time is observed, thus confirming the effi-
ciency of the method.

However, the computational efficiency of the method can only
be measured for given test cases, since it is highly dependent on the
subproblems decomposition, and most of all, on the localization of
nonlinearities on a small area. The structural zooming method
reduces the size of the problem solved to that of the sole nonlinear
area (and not of the full problem): for a given size of nonlinear area,
the efficiency of the method will increase with the size of the
problem. Small- and intermediate-scale problems are therefore
intrinsically unfavorable to the method. On strongly localized non-
linear problems, such as concrete cracking in large structures
including several heterogeneities, a higher performance is expected,
giving access to the solution of larger problems.

Ongoing research will focus on a method to condense again the
damaged areas in which the stiffness does not evolve anymore due
to damage saturation and parametric studies on both the problem
decomposition and the criterion checking frequency in order to
find some optimal values for the method parameters.
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