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This study is the first of two companions papers that present a finite element (FE) model of timber-frame
structures. It introduces a versatile hysteretic constitutive law developed for various joints with steel fas-
teners commonly used in timber structures (nails, screws, staples, bracket-type 3D connectors, punched
plates). Relative to previous models available in the literature, the proposed model improves numerical
robustness and represents a step forward by taking into account the damage of joints with metal fasten-
ers. More than 300 experimental tests are carried out on joints and used to calibrate the constitutive law
for nails and bracket-type 3D connectors. An average calibration method is presented to take into account
the experimental variability. 14 experimental tests are performed on different configurations of shear
walls and are used to validate the proposed FE model. Both monotonic and reversed cyclic loadings
are used in these quasi-static tests. The FE model predictions are in good agreement with the experimen-
tal results. The second paper will present dynamic experiments and numerical predictions of the tests, as
well as the development and validation of a computationally efficient simplified modelling of timber-
frame structures based on a simplified finite element model for shear walls.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is motivated by two facts. First, timber-frame con-
struction is an increasingly common building system in Europe,
primarily for residential single or two-story houses. These struc-
tures present many qualities, including good earthquake resistance
due to the excellent strength-to-density ratio of timber and to the
ductility of joints with metal fasteners, providing limited inertia
forces and good energy dissipation, respectively. Second, the most
recent European code for the design of earthquake-resistant build-
ings (Eurocode 8 [15]) has been accompanied by a new seismic
hazard map in some countries. Generally, based on these revised
maps, earthquake resistance calculations are now mandatory in a
lot more cases and the design ground accelerations are greater
than previously. Therefore, the seismic behaviour of timber-frame
structures must be studied, to better understand their global and
local behaviours. This study focuses on shear walls, as they contrib-
ute the most to the energy dissipation of structures.

The work presented in these papers is based on a coupled
experimental/FE modelling approach. One should note that the
behaviour of shear walls can also be estimated through an analyt-
ical approach [26,21], but such a method would not allow the anal-
ysis of both the global and local behaviour of a timber-framed
structure. Therefore, in this study, quasi-static experimental tests
on metal fasteners (nails, bracket-type 3D connectors and punched
plates) are performed to calibrate their hysteretic constitutive
behaviour. Quasi-static and dynamic tests on shear walls are car-
ried out to validate the numerical model for shear walls. Because
nonlinear dissipative phenomena in timber-frame structures are
mainly concentrated in joints, simplified force–displacement mod-
els for joints can be derived from refined analytical or FE models
[7,10,1,32,35] or by fitting the results of tests performed on joints
[30]. The proposed approach is based on a multi-scale concept, as
proposed previously by various authors [38,18,42,36]. Such an ap-
proach requires a behaviour law to represent the force–displace-
ment evolution on each scale. Numerous constitutive laws have
been developed over the years, from the nonlinear laws for mono-
tonic loads [20,22,27] to hysteretic models of various complexities
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[8,39,28,40,6,11,17,43,33]. Henceforth, only the hysteretic laws
capturing a damage process are discussed. Richard et al. [38] pro-
posed a strength reduction based on a cumulative factor calculated
in one direction in respect to the previously achieved strength in
the opposite direction. Collins et al. [9] defined a quite similar
damage process. Although most of these constitutive laws use
exponential functions for the pre-peak backbone curve and hyster-
esis loops, the model of Ayoub [3] is defined with trilinear func-
tions, in this model the damage process is described in detail and
can be divided into four degradation phenomena: strength reduc-
tion, unloading stiffness decrease, accelerated stiffness decrease
and cap degradation. The evolutionary parameter hysteretic model
(EPHM) proposed by Pang et al. [37] is only defined by exponential
functions (pre and post-peak backbone, unloading and loading
hysteretic loops) and damage is not cumulative. The latest version
of the Bouc-Wen-Baber-Noory (BWBN) model has been presented
by Xu and Dolan [42]. The BWBN model is analytical and phenom-
enological. Its history-dependent stiffness and strength degrada-
tion provide accurate fitting of reversed-cyclic experimental tests
on nailed connections and shear walls, but the BWBN does not rely
on physical parameters such as displacements, forces and stiffness-
es. A new model, developed by Humbert [23], can be considered an
improvement of the Richard et al. [38] and Yasumura et al. [43]
models and fulfils the following needs:

� Richard’s behaviour law shows that for some sets of parameters
(e.g. for a metal punched plate), an exponential function does
not provide a strict analytical continuity at one end of the
branch leading to numerical issues [23]. This issue is shared
by all models using the exponential functions originally intro-
duced by Foschi [20].
� The law should model asymmetric behaviour, such as that of

punched metal plates for roof trusses and bracket-type 3D con-
nectors. To the best of our knowledge, all of the aforementioned
behaviour laws would require new developments to meet this
need.
� For the reliability analysis of structures, it is convenient to

develop a robust model defined by physical parameters such
as displacements, forces, and stiffnesses, whose variabilities
Fig. 1. Proposed force–displacem
can be identified. Although most of the models already meet
this condition, the BWBN model does not.

It is important to notice that the hysteretic behaviour of nailed
wood joints governs the response of many wood systems when
subjected to lateral loadings; the force–displacement backbone
and hysteresis curves of shear walls and joints are then similar in
shape. Thus, a common feature to all the abovementioned force–
displacement models is that they can be used to describe the con-
stitutive behaviour of joints as well as the global shear wall re-
sponse to lateral forces.

In this study, a new hysteretic constitutive behaviour law for
joints and timber-frame structures is proposed, and its application
to the modelling of oriented strand board (OSB) and particleboard
sheathed shear walls is presented. More than 260 tests on nailed
joints and 50 tests on connections made with bracket-type 3D con-
nectors are performed. The calibration of the law at the joint scale
is detailed, and particular emphasis is given on how to take into ac-
count the variability of the experimental results. Tests performed
on 7 different configurations (combining different specimens and
vertical loadings) of shear walls are described. The development
of the numerical model of shear walls is then explained. To assess
its capability to predict the behaviour of different configurations of
shear walls, its predictions are compared to the experimental re-
sults of the 14 tests under quasi-static loading. Experimental tests
present a certain variability and the large sample size allows its
quantification. Then, when comparing the deterministic predic-
tions of the model to the experimental results, the experimental
variability can be considered. Moreover, tests on different configu-
rations are designed to estimate the model versatility.

2. Force–displacement hysteretic constitutive law

The one-dimensional constitutive law is shown in Fig. 1.
The following notations are used to describe the asymmetric

feature of the modelled systems and the notion of force sign. The
�
þ direction corresponds to the first direction of loading in the

case of reverse loading (�� refers to the opposite direction). In
the absence of a superscript, the parameters refer to both sides
ent constitutive law [23].



Table 1
Model parameters governing the constitutive behaviour under monotonic loading.

Parameter Unit Description

K0 N/m Initial elastic stiffness
dy m Yield limit
d1 m Displacement at peak force
F1 N Peak force
K1 N/m Pre-peak tangent stiffness
d2 m Intermediate displacement limit
F2 N Force at intermediate limit d2

du m Ultimate displacement
Fu N Force at ultimate displacement

Table 2
Model parameters governing the shape of hysteresis loops.

Parameter Unit Controls

C1 – Unloading stiffness
C2 – Reloading stiffness
C3 – Tangent stiffness at F ¼ 0
C4 – Residual displacement

Table 3
Parameters governing the damage indicator calculation.

Parameter Unit Description

Bc – Linear coefficient of the DLF
Br – Power term of the DLF
g % Damage proportion at constant amplitude cycles
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of loading. A bullet superscript �� is used to refer to the side op-
posed to the implied one. For example, a ¼ b� implies that
a� ¼ bþ and aþ ¼ b�. The branches of the force-displacement mod-
el are grouped into two distinct categories and numbered from (0)
to (5). A first group, formed by branches (0) to (3), describes the
behaviour under monotonic loading. The initial linear branch (0)
ranges from the zero displacement up to the yield displacement
dy. The corresponding elastic stiffness is K0. This branch is followed
by branch (1), which models the nonlinear phenomena in the joint
up to the force peak at (d1; F1). After the force peak, branches (2)
and (3) model up to the ultimate displacement du at force Fu asso-
ciated with the collapse of the joint. Fu is generally chosen to be
null to ensure a correct continuity of forces and prevent numerical
issues. This first set of 9 parameters is summarised in Table 1.
These parameters are similar to those proposed by Richard et al.
[38]. Branch (1) is defined using a rational quadratic Bézier curve,
replacing the original exponential function introduced by Foschi
[20] and providing a strict analytical continuity of forces.

A second group of branches describes the hysteresis loops typ-
ically observed when the joint undergoes a reversed loading. To de-
scribe these branches, the �max subscript is defined, which
corresponds to the absolute maximum value reached over the past
loading history up to the current time step. Additionally, the �pk

subscript corresponds to the value at the last loop peak. Starting
from a previously reached loop peak (upk; Fpk), branch (4) models
the nonlinear elastic unloading down to a null force. A residual dis-
placement dc–0 is commonly observed due to prior plastic defor-
mations. The unloading stiffness K4 is either (a) proportional to
the elastic stiffness K0 of the joint or (b) proportional to the secant
stiffness Fpk=upk when modelling a stiffness decrease with displace-
ments of increasing amplitude. Examples of (a) and (b) include
cases in which the overall behaviour of the joint is dominated by
the embedment of wood dominating and by the pulling-out of
the fastener from the timber members and/or the plastic yielding
of the fastener, respectively. Following this unloading, loading in
the opposite direction is modelled with branch (5). The stiffness
at dc between branches (4) and (5) is denoted by Kc and is used
as a tangent for both branches for the sake of continuity. Branch
(5) eventually reaches the previous loop peak (u�pk; F

�
pk) in the oppo-

site loading direction. Like the unloading stiffness K4, the reloading
stiffness K5 is proportional to the elastic stiffness K0 or the secant
stiffness Fpk=upk. A second set of 4 control parameters Ci¼1;...;4 gov-
erns the shape of the hysteresis loops, allowing the modelling of
several mechanical behaviours, e.g., the adjustment of the thick-
ness of the pinching area. Parameters C1 and C2 control the unload-
ing stiffness K4 and reloading stiffness K5, respectively. Parameter
C3 controls the tangent stiffness Kc at location (dc;0). Values of C3

greater than 1 model a thick pinching area, while values less than 1
model a thin pinching area. A physical limitation is also imposed so
that Kc cannot exceed the initial elastic stiffness K0. Finally, param-
eter C4 controls the value of the residual displacement dc after the
nonlinear elastic unloading. Based on observations from experi-
mental tests, this displacement can be related to the fictive
residual displacement u0 ¼ upk � Fpk=K4 after a hypothetical linear
elastic unloading with stiffness K4 from (upk; Fpk). Alternatively,
for some other cases, dc is related to the residual displacement
after a linear elastic unloading with a stiffness j C4 j �K4 propor-
tional to the secant stiffness. These control parameters Ci¼1;...;4 (Ta-
ble 2) mainly depend on the phenomena involved, and therefore on
the configuration of the modelled system. They are constant for a
given configuration.

Lastly, a third set of 3 parameters controls the damage process
of the model. The word damage refers here to the decrease in
strength under cyclic loading. It is based on the hypothesis that
the hysteresis loops are bound by the backbone curve, which mod-
els the force-displacement evolution of the joint under monotonic
loading. During the first loading, the peak (upk; Fpk) is located on the
backbone curve. The damage process defines the evolution of the
ratio (1-D) between the ‘‘nondamaged load’’ Fmono and the ‘‘dam-
aged load’’ Fpk. The scalar damage indicator D ranges from 0 to 1,
where D ¼ 0 corresponds to a nondamaged mechanical system
and D ¼ 1 corresponds to a fully collapsed mechanical system. D
is increased by DD at each change of the force sign ((4) to (5) in
Fig. 1). To ensure the damage stabilisation after a few cycles of con-
stant amplitude occurs as experimentally observed, the increment
DD is defined as DD ¼ gðD1 � DÞ, where g defines the proportion of
damage at constant amplitude cycles and D1 is an upper limit of D
for the displacement dmax. This limit is constant for a given maxi-
mum displacement dmax. D1 is defined by Eq. (1) as a function of
dmax using a power law. This function is referred to as the ‘‘damage
limit function (DLF)’’. A power term Br > 1 ensures that the damage
remains moderate before the force peak and becomes severe after
the peak. This model is consistent with experimental observations.
Table 3 summarises the three damage parameters.

D1 ¼ Bc dmax=d1ð ÞBr ð1Þ
3. Scale 1: Joints with metal fasteners

In this section, quasi-static experimental tests carried out on
joints with metal fasteners are presented. Then, the calibration of
the parameters of the constitutive law of joints is described.

3.1. Experimental tests

Experimental tests on joints with metal fasteners (scale #1) are
conducted to provide input data for the numerical model of the
shear wall (scale #2). There are three different steel joints in a
shear wall:

� Panel-to-frame (P2F) joint: In this study, these joints are made
with nails. Fig. 2a shows a nail after a shear wall test. Only ring
shank and square masonry nails are used, as it is common in



Fig. 2. Photographs of the three joints with metal fasteners used in a shear wall.
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France. Their dimensions ranges from 2:1 mm to 3:1 mm in
diameter and 45 mm to 90 mm in length. Electrogalvanization and
hot-dip galvanizing coatings, as well as stainless steel are used.
� Frame-to-frame nail (F2F nail): The joints between the top/sill

plate and the studs are composed of 3 to 5 nails. Their usual
length is approximately 90 mm for a diameter of 3:1 mm.
Fig. 2b presents such a connection after a pull-out test.
� Frame-to-frame bracket (F2F bracket): At both ends of the shear

wall, the F2F connections must be strengthened to prevent
uplift of the exterior studs. Thus, an additional bracket-type
3D connector is used. Fig. 2c displays a F2F bracket joint at
the end of a shear wall test. The 3D connector is connected by
an anchor or bolt to the foundation or the lower story.

Thirty-three configurations of P2F nail connections are tested, 3
of which are used in the 3 tested configurations of shear walls
Fig. 3. Experimental tests on
considered in this study: 9 and 12 mm OSB with 2:1� 45 mm nails
and 16 mm particleboard with 2:5� 50 mm nails, respectively
named OSB9, OSB12 and P16. The wood member dimensions are
45� 115� 250 mm. Fig. 3a shows the principle of these tests,
which consists of a shear test, first under a monotonic loading
and then under reversed-cyclic loading (EN 12512 [13]). The grain
orientation of the wood member and the orientation of the panel
are not variable parameters of the tests, based on the results pre-
sented by [19] for parallel and perpendicular to grain tests on nail
joints. The high number of configurations and the repeated tests
per configuration led to a total of 263 tests for P2F nail joints.
F2F nail joints were not tested and the results of tests achieved
by Richard et al. [38] are used instead. These tests (Fig. 3b) consist
of a cyclic pull-out load on a joint. The same tests are performed on
F2F joints made of bracket-type 3D connectors only (Fig. 3c). In
that case, wood member dimensions are 45� 140� 400 mm. For
metal fastened joints.
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each configuration, the tests were repeated twice for monotonic
loading and 5 times for reversed cyclic loading, which led to a total
of 56 quasi-static tests.

Although it is not the main concern of this paper, some results
of the experimental tests are provided herein. For each monotonic
test, the yield displacement Vy, the ultimate displacement Vu (from
which the ductility is derived Ds ¼ Vu=Vy), the maximal force Fmax

are calculated according to the Equivalent Energy Elastic–Plastic
(EEEP) method [2].

For the nail connections, the failure mode according to Johan-
sen’s theory [24] (only one or two plastic hinges, because no wood
crushing modes were observed) and the ultimate failure mode
(withdrawal of the nail shank or pulling through of the nail head)
are also provided. Three monotonic tests are performed for each
configuration of nail joint and Table A.5 presents the average re-
sults. The EEEP method provides consistency in the Vy calculation
method but, as it has been show by Munoz et al. [34] and con-
firmed by Malo et al. [31], is hardly satisfying for some tests re-
sults. Moreover, the values of Vy greatly affects the static
ductility Ds and explain why it reaches unexpected values, such
as 43 for configuration N15. Under monotonic loading the domi-
nant mode of failure is the pulling through of the nail head. With-
drawal of the nail shank is also observed, it is generally partial and
becomes a failure mode for smaller nails dimensions. As expected,
it is observed that smaller diameters tends to fail with two plastic
hinges, indeed this failure mode only happens for diameter equal
or inferior to 2:3 mm. It is also confirmed that the two plastic
hinges failure mode leads to greater values of ductilities. The
Fig. 4a shows a typical force–displacement evolution of a nail con-
nection. It is obvious that damages due to the cyclic loading re-
duces the maximal force Fmax (by 20% in average) and the
ultimate displacement Vy.

For the bracket connections, the failure modes are complex as
they include the nails behaviour under shearing and strict with-
drawal loading, the bracket folding or unfolding and wood crush-
ing. For that reason, the results of the 3D bracket tests presented
in Table A.6 are limited to the values of Vy; Vu; Ds and Fmax. The
Fig. 4b displays a typical force–displacement evolution of a single
bracket specimen in the Y direction. In that case, the joint is stiffer
in Y� as it corresponds to the wood compression, while Yþ only
correspond to the unfolding of the bracket. In average, the maximal
force Fmax under cyclic loading is 15% smaller than under mono-
tonic loading, and the ductility is reduced by 32%.

3.2. Calibration of the force–displacement model

The results of the tests achieved on P2F nails are used to cali-
brate the constitutive model. Two levels of calibration are
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distinguished: the first level is a direct calibration, which consists
of reproducing one particular test, and the second level is an aver-
age calibration, which consists of calibrating the parameters to
reproduce the average behaviour observed in several experiments.
The hysteretic model is based on three types of parameters: back-
bone curve (Table 1), pinching (Table 2), and damage (Table 3).
Fig. 5a presents a direct calibration of parameters for a P2F nail
joint. This calibration is achieved by calculating the backbone
curve parameters from a single test under monotonic loading
and calibrating the pinching and damage parameters by successive
simulations. The average calibration is based on the observation
that backbone curve parameters display some variability, while
the pinching parameters do not. Using the direct calibration as a
starting point, the backbone curve and damage parameters are
re-calibrated so that the simulation now reproduces the average
envelope curve of all available cyclic tests. Fig. 5b presents the
average envelope curve and the calibrated model. This process pro-
vides the joint models used in the subsequent shear wall
modelling.

It is worth noticing that, in Fig. 5a, the force–displacement curve
under reversed cyclic loading is asymmetric. The resistant forces
are greater in compression (when the panel moves downward,
see Fig. 3a). It is believed that the asymmetry of the timber assem-
bly and slight misalignments of the test machine induce more fric-
tion in compression. This phenomenon was also observed by
Fonseca et al. [19] and Li et al. [29], who present experimental tests
on similar connections (panel to stud with only one nail). Li et al.
[29] explain this behaviour by the fact that wood and metal dam-
ages on one side also affect the strength on the other side. However,
although the tests described in this study were conducted by load-
ing first in traction and then in compression, the forces were great-
er in compression, not in traction. It is then believed that the
phenomenon described by Li et al. [29] does not have a significant
effect relative to the friction phenomenon we described. This point
is further discussed later in this study for tests on shear walls. As
the loading conditions of the joint tested are not strictly similar
to the conditions for P2F connections in the full size shear wall, nei-
ther in compression nor in traction, the calibration is achieved on
the average behaviour between compression and traction.

Fig. 6a shows the numerical behaviour of a F2F nail joint in pull-
out and compression. The compression (contact between the two
timber elements) is linear and the stiffness is calculated according
to the material characteristics and the dimensions of the section in
contact. The pull-out behaviour is bilinear, and the parameters are
estimated from tests carried out by Richard et al. [38]. The shear
behaviour is linear and symmetric. The stiffness is calculated
according to Eurocode 5 [14]. Note that for all joints (P2F and
F2F), no rotational stiffness is implemented. For F2F joints, it is
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Fig. 5. Calibration of the hysteretic model for a 2:1 mm � 45 mm P2F nail in a 9 mm
OSB panel.
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justified by the fact that their rotational stiffness is insignificant
compared to the stiffness provided by the sheathing panels.

Fig. 6b shows the numerical behaviour of a F2F bracket joint
with an E5� bracket-type 3D connector in pull-out and compres-
sion. This combination behaves the same in compression as the
F2F nail joints. Experimental tests were carried out on E5� connec-
tors in shear and pull-out. In contrast, the behaviour of joints made
with AH connectors was estimated based on the connector proper-
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Fig. 6. Behaviour law for F
ties and set as bilinear. Shear behaviour is linear and symmetric.
The E5� pull-out behaviour parameters are calibrated using the
same method as P2F connections.
4. Scale 2: Shear wall

In this section, quasi-static experimental tests carried out on
shear walls are presented. Then, numerical modelling of timber
framed shear walls is detailed. Finally, the predictions of the FE
model of shear wall are confronted to the experimental results.
4.1. Experimental tests

The shear walls studied in this study correspond to structural
elements found in conventional timber-framed houses in Europe,
which are quite similar to typical North American shear walls, ex-
cept for the nail diameter of the P2F joints. The diameter of these
nails rarely exceeds 3 mm in France (common dimensions are be-
tween 2:1 mm and 2:5 mm) while it is generally greater than 3 mm
in America. Fig. 7 describes the shear wall technology and its
dimensions. The frame is made of C24 timber (strength class
according to the European standard EN 338 [16]). To provide
shearing resistance, wood-based panels are nailed to the frame.
These panels are usually OSB, particleboard or plywood. In this
study, OSB-3 panels and P5 particleboards are used (panels
classification according to EN 12369-1 [12]). The P2F joints can
be formed with nails, screws, or staples. The spacing between
two P2F joints along the perimeter of the panel is set to 150 mm
(sext) and 300 mm (sint) along intermediate studs. The connections
between horizontal frame elements (sill or top plates) and
vertical frame elements (studs) are formed with long nails
(3:1 mm � 90 mm in this study). The anchorage of the shear walls
– on the foundation or the lower story – is achieved with bolts.
Current anchorages refer to regularly settled bolts, one in every
span between two studs. Their purpose is to transfer the shearing
load. Exterior anchorages refer to the addition of a 3D connector af-
fixed to the exterior stud and a bolt. Their purpose is to transfer the
vertical uplifting loads. Two 3D bracket-type connectors are used,
both provided by Simpson Strong-Tie�: E5� standard and
AH2950/2� reinforced connectors (referred to as AH). AH brackets
are specifically designed to withstand high uplifting loads.

The experimental tests on shear walls are detailed in Boudaud
et al. [4]. Fig. 7 displays the principle and protocol (EN 12512
[13]) of the tests. OSB9, OSB12, and P16 configurations of shear
walls are tested. One push-over and two reversed-cyclic tests were
achieved for each configuration tested. Maximal forces for cyclic
tests can be seen on Table 4.
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Fig. 7. Shear wall description and principle of reversed cyclic tests.

Table 4
Experimental and numerical comparison for reversed-cyclic loading.

Configuration Results

Panel F2F Angle P2F Vertical Fmax (kN) Ref.

(£� L) load (kN) Exp Num D ð%Þ

OSB9 E5 2:1� 45 0 12.0 11.7 +2.5 SW1
12.2 +4.1 SW2

5.5 11.9 11.3 +5.3 SW3
12.7 +3.4 SW4

OSB12 E5 2:1� 45 0 12.1 11.8 +2.2 SW5
6 13.2 13.0 +1.7 SW6

AH 2:5� 50 3 12.4 13.7 �10 SW7
14.0 +1.5 SW8

P16 E5 2:5� 50 6 14.2a 14.8a �3.7a SW9
18.7 18.8 �0.38 SW10

AH 0 23.2 20.9 +10 SW11
23.4 +11 SW12

3 22.0 20.8 +5.4 SW13
22.9 +8.9 SW14

a For this shear wall sext ¼ 300 mm along the central stud (instead of 150 mm).

Fig. 8. Finite element modelling of a shear wall.
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4.2. Numerical modelling

The finite element modelling of shear walls was conducted
using beam, plate, and two-node spring-like finite elements. The
constitutive behaviour presented previously was implemented
using the free software Code_Aster.1 Fig. 8 presents a schematic
view of the finite element model of a shear wall. Euler beam ele-
ments model the frame, and their elastic modulus and density are
the mean values corresponding to C24 timber according to EN 338
[16] provisions. Four-node plane stress elements model the panels,
and their material properties are isotropic and correspond to OSB-
3 or P5 according to EN 12369-1 [12] provisions. Each two-node
spring-like element models a metal fastener joint whose properties
are given by the previous calibration. The resulting mesh is com-
posed of 108 P2F, 8 F2F nail and 2 F2F angle elements. The F2F joints
have different behaviours in shear and pull-out/compression: there-
fore, each behaviour law is affected to the corresponding transla-
tional degree of freedom (DOF). For each P2F connection, a local
basis is oriented according to the relative displacement direction,
and the constitutive law is affected to both translational DOF in this
basis. Richard et al. [38] showed that this direction is globally con-
stant over the calculation. Judd [25] developed an oriented spring
pair model based on this observation. As the drift direction is not
1 All documentation available at www.code-aster.org.
strictly constant, its change over the calculation has been quantified
by calculating the ratio Fy=Fx (Fx and Fy are the forces associated
with the translational DOFs of the element in the local basis). This
ratio is less than 0:3 for 80–90% of the P2F connections. As a result,

http://www.code-aster.org
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Fig. 9. Dissipated energy and peak forces: comparison between the experimental results and FE model predictions.
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the effect of the overestimation of the resistance of the joints is
insignificant at the scale of the wall.

The sill plate is considered to be embedded because insignifi-
cant displacements are recorded in tests. The top plate and the
highest node of each external stud undergo an imposed displace-
ment. To comply with the experimental set-up, as the actuator
pushes a metal plate attached to the wood top plate and the top
of the external studs. Experimentally, a vertical load is applied to
the shear wall in approximately half of the tests (6 kN on each
stud). The global responses show very limited influence of the ver-
tical load. Nevertheless, the uplift of the external studs is affected
by the vertical load. With loading, no uplift is observed. Without
loading, the uplift of exterior studs is significant, and the 3D con-
nectors are strained beyond their yield limit. Numerically, a verti-
cal load can be applied to the model. In that case, the load is
uniformly distributed along the plate.

4.3. FE model predictions vs. experimental results

The model predictions are compared to 14 experimental results
obtained from quasi-static tests under reversed-cyclic loading.
Thus, the numerical predictions can be compared to several config-
urations of shear walls (different nails, sheathing panels and verti-
cal loading conditions). Moreover, two tests are performed for each
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Fig. 10. Force–displacement curves of shear walls: compari
configuration, which limits the effects of the variability when com-
paring the experimental behaviour to the numerical predictions.
Table 4 presents the results in terms of peak forces. It shows that
the peak forces predicted by the numerical model are in good
agreement with the experimental results.

To assess the quality of the model predictions, the dissipated
energy is often used [5,9,37,41]. This approach consists of calculat-
ing the areas inside the hysteresis loops, but similar values do not
necessarily mean that both force–displacement evolutions are
equivalent. As a result, the area and peak force of each half-cycle
should be compared simultaneously to assess the similarity be-
tween experimental and numerical hysteresis loops. Fig. 9 presents
such a comparison for one of the tests (OSB12 C2), showing that
the detailed FE model is able to predict the peak force and the area
inside the hysteresis loops, and therefore their shapes, fairly accu-
rately. It also shows that the errors of the FE model predictions are
more significant for the last few cycles. Nevertheless, authors point
out that the same observations can be made from the force–dis-
placement comparison presented in Fig. 10a, for the same test.
Fig. 10b compares the experimental and calculated force–displace-
ment curves for the OSB9 shear wall. From the two examples of
predictions presented in Fig. 10, and the results presented in Ta-
ble 4, it can be seen that the model predictions are in good agree-
ment with the experimental behaviour. Indeed, the pinching and
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peak forces of the hysteresis loops are in accordance with the
experimental data. Fig. 9a and b also show that the last cycle in
the negative side is over predicted. Experimentally, this cycle is
clearly asymmetric in terms of force, which is explained by the fact
that the failure of the wall occurs during this cycle. Therefore, these
over predictions are not considered to be an issue, because the
model is ‘‘only’’ intended to predict the behaviour up to the failure.

One should note that the error estimation between experimen-
tal and numerical hysteretic curves equally concerns the
constitutive law calibration at scale 1 and the detailed FE model
predictions at scale 2 presented herein. In this study, errors quan-
tification has not been used, as the quality of the numerical predic-
tions (Table 4) were considered to be satisfactory.

Like nails, shear walls present a strength asymmetry. For nails,
this behaviour is believed to be due to the asymmetry of the wood
assembly. This cannot be the case for shear walls because they are,
like the test machine, symmetric. Moreover, a comparison of the nail
and shear wall results (Figs. 5a and 10, respectively) show that the
behaviours are quite different. For nails, the asymmetry is significant
at all magnitudes, whereas it appears to increase with the cycle mag-
nitude in the case of shear walls. This can be explained by the phe-
nomenon described by Li et al. [29] (page 12). In conclusion, it is
believed that the two phenomena can induce a strength asymmetry.
For tests on asymmetric joints, the effect of friction is dominant,
while the effect of damage prevails for tests on symmetric elements.

5. Conclusion

This study is dedicated to the development of a versatile hyster-
etic constitutive behaviour law for timber joints made of metal fas-
teners. The main features of the model are its ability to accurately
Table A.5
Experimental results on nail joints (Fig. 3a) for monotonic loading.

No. Configuration Re

£� L Shape Mat Panel Vy

N1 2:1� 38 RSN SS OSB9 0.
N2 OSB12 1.
N3 OSB15 0.
N18 2:5� 60 OSB9 2.
N19 OSB12 2.
N20 OSB15 1.
N25 3:1� 85 OSB9 2.
N26 OSB12 2.
N27 OSB15 2.
N4 2:1� 45 EG OSB9 1.
N5 OSB12 2.
N16 2:5� 50 P10 2.
N17 P16 1.
N6 2:1� 45 OSB9 1.
N7 OSB15 0.
N21 2:8� 80 OSB9 2.
N22 OSB15 1.
N8 2:3� 60 HdG OSB9 1.
N9 OSB15 3.
N30 3:1� 90 OSB9 1.
N31 OSB15 1.
N14 2:3� 60 SMN SS OSB9 1.
N15 OSB15 0.
N28 3:1� 85 OSB9 0.
N29 OSB15 1.
N12 2:3� 60 HdG OSB9 1.
N13 OSB15 0.
N23 3:1� 75 OSB9 1.
N24 OSB15 1.
N10 2:3� 60 RSN P10 2.
N11 P16 2.
N32 3:1� 90 P10 1.
N33 P16 2.

£� L: Nail diameter and length in mm. Mat: Nail material. Vy and Vu in mm. Fmax in N. M
Masonry Nail. SS: Stainless Steel. EG: Electrogalvanization. HdG: Hot-dip Galvanising. W
describe the hysteretic behaviour, notably by considering the dam-
age effects (strength reduction), and its numerical robustness com-
pared to existing models using exponential functions.

In the second part of this study, the results of more than 300
tests performed on timber joints with metal fasteners show a sig-
nificant variability. An average calibration method is thus devel-
oped for the identification of the model parameters. Using these
calibrated models of joints, a FE model of a shear wall is developed.
The frame is modelled by Euler beams elements, the panels by
four-node plates elements, and every joint by a two-node spring-
like element. The FE model predictions are compared to the results
of 14 experimental quasi-static tests for validation. These compar-
isons show that the FE model accurately predicts the experimental
behaviour of different configurations of shear walls.

In part II of these two companions papers, dynamic experimen-
tal tests and numerical calculations are addressed, and a simplified
FE model of shear wall is presented. This simplified model is used
to build a FE model of the structure.
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Appendix A. Experimental data

Tables A.5 and A.6.
sults

Vu Ds Fmax Mode Hinge

8 21.7 28.2 962 W 2
3 21.9 22.1 934 W+P 2
6 15.0 26.6 734 W 2
1 17.5 8.4 1626 P 1
5 21.8 8.7 1470 P 1
6 21.8 14.0 1142 P 1
2 17.5 8.1 1913 P 1
6 22.9 9.0 1661 P 1
7 23.3 9.0 1293 P 1
2 15.5 15.3 855 P 1
3 21.1 9.9 1005 P 1
8 24.1 8.8 1577 W 1
1 23.2 20.9 1276 W 1
6 15.3 9.5 925 P 1
7 17.3 29.2 1001 W+P 2
1 15.7 7.9 1525 P 1
3 21.6 16.9 1962 W+P 1
4 13.9 10.7 1153 P 1
4 24.2 7.4 1247 W+P 1
6 14.3 9.3 1244 P 1
8 18.1 10.3 1871 P 1
1 26.0 32.4 1013 P 2
8 29.6 43.0 965 W 2
6 14.7 23.2 1797 P 1
0 30.1 34.8 1329 P 1
4 13.9 10.3 1279 P 1
9 19.2 21.4 1629 P 2
2 15.9 20.8 2073 P 1
0 18.2 18.0 1864 P 1
2 24.3 11.3 2208 P 1
7 32.9 12.5 1583 W 2
6 20.5 13.9 2015 P 1
0 23.3 12.4 2187 P 1

ode: Mode of failure. Hinge: Number of hinges. RSN: Ring Shank Nail. SMN: Square
: Nail withdrawal. P: Nail pulling through the panel.



Table A.6
Experimental results on bracket joints (Figs. 3c and 4b) for monotonic loading.

No. Configuration Results

Type Dir. Support # Vy Vu Ds Fmax

B1 E5 X Wood 4 4.5 35.9 8.1 32.9
B2 Steel 4 3.1 31.7 10.1 19.4
B3 Y Wood 1 �2.8 �41.4 14.9 �9.8

3.8 10.9 2.7 5.8
B4 2 3.7 26.5 7.5 14.7
B5 Steel 1 �3.2 �28.0 8.7 �14.2

1.3 10.6 9.0 4.5
B6 2 �2.1 �28.5 13.9 �15.1
B7 Z Wood 2 1.8 9.0 5.0 7.3
B8 Steel 2 3.2 19.4 6.3 18.9
B9 XY Wood 1 �12.3 �50.4 4.1 �11.6

5.5 23.0 4.2 5.5
B10 Steel 1 �11.3 �49.8 4.4 �12.3

5.9 23.3 3.9 9.2
B11 2 11.1 42.1 4.5 18.4
B12 E14 X Wood 4 6.1 32.6 5.3 29.0
B13 Steel 2 5.1 42.0 8.3 17.2
B14 Y Wood 1 �4.6 �26.0 5.7 �10.8

3.2 13.5 4.2 4.9
B15 Steel 1 �7.2 �22.4 5.4 �16.3

1.4 15.5 11.0 6.4
B16 Z Wood 2 1.3 5.7 4.3 6.5
B17 Steel 1 3.6 23.6 6.6 18.8
B18 XY Wood 1 �11.3 �38.6 3.4 �9.2

5.6 19.1 3.4 4.9
B19 Steel 1 �20 �50 2.5 �16.5

6.8 24.3 3.6 9.9
B20 2 �21.5 �38.7 1.8 �26.6

Vy and Vu in mm. Fmax in kN. Dir.: Direction. #: Number of brackets in the joint.
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