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ORIGINAL ARTICLE1

2 Probabilistic analysis of a pull-out test

3 J. Humbert J. Baroth L. Daudeville

4 Received: 22 February 2008 / Accepted: 10 March 2009
5 � RILEM 2009

6 Abstract This paper presents a sensitivity analysis of

7 the pull-out strength of reinforcement embedded in

8 concrete. Considering both European and French

9 design codes, this failure strength depends on the

10 variability of uncertain parameters such as Young’s

11 modulus of concrete and yield stresses of materials

12 (concrete and steel); moreover, two failure modes

13 can be observed in the studied experimental test.

14 A methodology allowing the characterization of the

15 sensitivity of the pull-out strength to these uncertain

16 parameters is derived. These parameters are modeled

17 by Lognormal random variables. Results show the

18 evolution of the pull-out strength for different anchor-

19 age lengths. Probability density functions of the

20 random variable modeling the failure strength are

21 computed using probabilisticmethods.Afinite element

22 model is also built to quantify uncertainties concerning

23 failure modes, computing 95% confidence intervals.

24 Keywords Pull-out test � Failure modes �

25 Stochastic finite element method �

26 Monte Carlo simulation � Probabilistic

27 sensitivity analysis � Nonlinear damage mechanics

28

29301 Introduction

31The pull-out strength of reinforcement embedded in

32concrete depends mainly on material and geometrical

33characteristics of the assembly. Both French [1] and

34European [2] design codes in reinforced concrete

35construction consider that this strength depends on

36the variability of the Young’s modulus of concrete

37and yield stresses of materials (concrete and steel).

38Different failure modes also depend on these param-

39eters. Design codes [1, 2] take into account

40uncertainties on material characteristics using safety

41factors and characteristic values. This semi-probabi-

42listic approach uses 5% fractile of the uncertain

43parameters as input data for failure strength calcula-

44tion. But uncertainties on modes failure should be

45quantified too.

46This study aims at taking into account uncertain-

47ties on materials and on failure modes in the analysis

48of a pull-out test.

49Thus this work completes others studies charac-

50terising the mechanical failure: pull-out strength [3],

51crack propagation [3, 4], and influence of anchor

52shape [5]. A FE model is often used herein due to the

53complexity of this problem, as reflected by the

54nonlinearity of constitutive laws [6–9] and issues

55dealing with modelling of the steel-concrete interface

56[7, 10–14]. Nevertheless, only one study of a pull-out

57test by means of both a non linear damage model and

58a probabilistic approach was found [8]. Spatial

59variability of concrete is taken into account, but only
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60 one failure mode is considered and no probability

61 density function of the peak load has been evaluated.

62 By taking into account the statistical variability of

63 uncertain mechanical parameters, stochastic finite

64 element methods (SFEM) [15, 16] have been devel-

65 oped over the past 30 years and provide an

66 alternative to the well-known Monte Carlo simula-

67 tions [17]. Featuring a greatly reduced computation

68 time, these approaches may be applied to complex

69 finite element (FE) models. A so-called ‘‘non-intru-

70 sive’’ group of SFEM refers to methods that do not

71 modify the actual FE model, and these would include

72 response surface methods. This category of methods

73 has inspired research work using Hermite polynomi-

74 als [18, 19]. Other efforts [20, 21] have shown that a

75 Lagrange polynomial basis may be more precise and

76 less time-consuming in seeking to obtain statistical

77 moments (mean, variance, etc.) and probability

78 density functions (PDF). This ‘‘Lagrange method’’

79 has recently been applied to a steel connection with

80 material and geometric nonlinearities [22] and

81 entailed evaluating first-order moments of some of

82 the mechanical response parameters.

83 This paper serves as complementary research on

84 both a non linear modelling of pull-out tests with a

85 basis in probabilistic tools. Two probabilistic meth-

86 ods will be used: common Monte Carlo simulations;

87 and the Lagrange method, which for the first time will

88 be applied to a composite connection at failure, for

89 the purpose of evaluating the first-order moments and

90 probability density functions (PDF) of failure

91 strength. The evolution in failure strength will be

92 characterised for various anchoring lengths, in con-

93 sidering the variability of input mechanical

94 parameters, such as Young’s modulus of concrete

95 and yield stresses of both concrete and steel.

96 Probabilistic methods for sensitivity analyses are

97 introduced first along with the FE model of the

98 described pull-out test. A deterministic evolution of

99 failure strength is then computed, with two failure

100 modes being examined; numerical results agree with

101 experimental findings. Next, Monte Carlo simulations

102 and Lagrange method are applied to the FE model,

103 while material behaviour remains elastic. Results

104 from both methods are in good agreement with one

105 another, and the Lagrange method is eventually used

106 to study failure modes. The variability in failure

107 strength for various anchoring lengths is characterised

108 using coefficients of variation and a 95% confidence

109interval. The paper will conclude with comparisons

110involving experimental results and design codes

111(French BAEL91 [1] and European EC2 [2]).

1122 Failure strength obtained by means

113of a pull-out test

1142.1 Presentation of the test

115Experimental pull-out tests studied below, concern

116two different configurations where the variable

117parameter is the anchorage length. A steel reinforce-

118ment is embedded in a concrete sample. These pull-

119out tests are realized with 8 and 32 cm of embedding

120length. Material parameters are summarised in

121Table 1 and correspond to those identified by some

122available experimental tests (concrete compressive

123tests or steel tensile tests) or given by French design

124codes [1]. Two failure modes can be observed. In the

125first case of 8 cm of embedding, the steel is sliding

126out of the concrete (mode 1, Fig. 1). On the contrary,

127the 32 cm of embedding steel reach the maximal

128strength and breaks (mode 2, Fig. 2). The steel

129reinforced bar is pulled out applying a vertical force.

130Ten pull-out tests are available, experimental means

131and coefficients of variation of failure strength are

132given in Table 2 for both of these modes.

1332.2 Failure modes from design codes

134Considering both failure modes 1 and 2, French

135design code for reinforced concrete structures [1]

Table 1 Mechanical parameters of the finite element model

Parameter Mean value Description

Eb 30 GPa Young’s modulus of concrete

mb 0.2 Poisson’s ratio of concrete

qb 2.300 kg/

m3
Concrete density

fc28 30 MPa Concrete compressive yield strength

Es 210 GPa Young’s modulus of steel

ms 0.3 Poisson’s ratio of steel

qs 7.850 kg/

m3
Steel density

fy 500 MPa Steel yield strength

Hs 21 GPa Steel hardening modulus (Es 9 10%)
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136 stipulates respective values of failure strength F = F1

137 or F = F2.

F ¼ min
F1 ¼ p� LS � /� ð0:6þ ð0:06� fc28ÞÞ

F2 ¼ p� /2 � fy=4

(

ð1Þ

139139 where / is the diameter of the reinforced steel bar,

140 fc28 and fy the material yield stresses (respectively

141 concrete steel). If the anchorage length Ls is greater

142 than 10 cm, the European design code [2] gives

143 similar values. From these simple formulas, it seems

144 useful to study the sensitivity of F to the variability of

145 fc28 and fy.

146 2.3 Presentation of the finite element model

147 A finite element (FE) model is built from available

148 pull-out tests, in order to illustrate the following

149 probabilistic methodology. In this work, the strategy

150 is thus to combine this model to a probabilistic

151 approach. It is why a compromise between refine-

152 ment of the model and its ability to reproduce

153 experimental tests has to be found. In other words,

154 the FE model has to be as simple as possible, in order

155 to allow a statistical treatment.

156 A two-dimensional axisymmetric model will be

157 considered stemming from the problem geometry

158 (see Figs. 2, 3). The computation is performed in

159 large displacements (an actualized Lagrangian).

160Boundary conditions are imposed longitudinally at

161the base of the concrete specimen and then radially

162along the axis of symmetry. A displacement is

163prescribed on the free edge of the steel bar. Various

164analyses based on non linear modelling of concrete

165have shown their ability to model the pull-out test

166[6–9]. In this work, the concrete constitutive model is

167based on an elastic law with damage (Mazars’ model

168[23]). The parameters characterising this law have

169been chosen in order to reproduce model mechanical

170characteristics of concrete given in Table 2. The steel

171bar constitutive model is elasto-plastic with harden-

172ing. A simplified model without any bond stress

173versus the slip relation at the steel-concrete interface

174is thus obtained. Indeed, because of the use of

175reinforced steel bars, damage due to micro-cracking

176of concrete is not taken into account, that has already

177been deemed equivalent to a perfect bond law model

178[7]. Eventually, the refinement of the mesh has been

179chosen as simple as possible, in order to achieve

180agreement with experimental results and to allow a

181statistical treatment.

182With this objective, numerical criteria denoted Di

183and �s are proposed: Di = 0 represents a structurally-

184sound concrete, while Di = 1 depicts a damaged

185concrete; �s is a deformation limit set for steel equal

186to 10% [1]. Figures 4–6 show respectively the

187evolution in maximum steel strain �s, evolution in

188steel-concrete interface damage Di, and evolution in

189failure strength F for various anchoring lengths

190(2 B Ls B 32 cm). These evolution patterns can be

191broken down into three parts:

z~

100

n
=Α

n
zsup
~n

zinf
~

Z
p~

Fig. 1 Evolution of the probability density function of random

variable and n% confidence interval ½~zninf ; ~z
n
inf �

Fig. 2 Finite element

model mesh of the steel-

concrete half-connection

(*102–103 elements)

Table 2 Experimental results: means and standard deviations

of the r.v. modelling the failure strength for anchoring lengths

Ls = 8 cm and Ls = 32 cm

F (Ls = 8 cm) F (Ls = 32 cm)

Mean 22 kN 33 kN

Standard deviation 2 kN 1 kN

Coefficient of variation 7% 3%
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192 • if Ls\ 9 cm, Di values nearly equal 1 and failure

193 occurs for small steel strain �s values (i.e. less than

194 0.8%). Failure strength F increases linearly with

195 anchoring length Ls (see Fig. 5). This part char-

196 acterises the concrete damage and bond failure;

197 • if Ls[ 15 cm, steel strain �s values nearly equal

198 1% and Di is decreasing. Failure strength F is

199 constant and equal to the steel strength (see

200 Fig. 4). This part characterises the steel ‘‘failure’’

201 (plastic yielding); and

202 • if 9 cm\ Ls\ 15 cm, failure occurs for constant

203 values of failure strength F, which is equal to the

204 steel strength (see Fig. 6). This part therefore

205 would seem to correspond with failure mode 2

206 (plastic yielding). Yet uncertainty is still obvi-

207 ously present on the failure mode, due to Di

208 values nearly equalling 1.

209In order to characterise this uncertainty, we will

210attempt in the following discussion to quantify the

211sensitivity of failure strength evolution to the vari-

212ability of three input parameters: the failure stress of

213concrete fc28 and the yield stress of steel fy and also

214the Young’s modulus of concrete Eb.

2153 Sensitivity analysis of the pull-out test

2163.1 Probabilistic sensitivity approach

217Let’s consider the uncertain parameters of a mechan-

218ical system, as modelled by random input variables

219(r.v.) Y = {Y1,…,YE} with known probability distri-

220butions. The mechanical system is called f, such that

221Z = f(Y) is a vector output r.v. Z = {Z1,…,ZS} to be

Fig. 3 Failure modes—

Mode 1: Bond failure at the

steel/concrete interface (a),

Mode 2: Steel bar

decomposition (b)

Fig. 4 Evolution in

maximum steel strain �s for
various anchoring lengths

(2 B Ls B 32 cm)
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222 characterised. For the sake of simplicity, we will

223 focus on the special case of scalar input and output

224 variables, i.e. Y = Y1 = Y and Z = Z1 = Z.

225 If the mechanical function is simple (analytical

226 function or linear finite element model), Monte Carlo

227 methods can be used. These methods [17] are based

228 on the same principle, which consists in selecting K

229 values for input r.v. Y and then independently

230 computing for each value yi the mechanical response

231 zi = f(yi) of the system. But if f represents a

232 numerical model, even time consuming, some alter-

233 natives like stochastic finite element methods

234 (SFEM) are preferred. In this work, A probabilistic

235method based on Lagrange polynomials is chosen

236(see Appendix).

237Statistical moments (mean, variance), probability

238density function (PDF) and n% confidence interval In
239are estimated. The curve of the estimated PDF,

240denoted pZ,est, of the r.v. Z, is often truncated on an

241interval I defined by Eq. 2.

I ¼ ½~zinf ; ~zsup� ð2Þ

243243where boundaries can be expressed as:

~zsup=inf ¼ l ~Z � a � r ~Z ð3Þ

245245In practical terms, a ranges from 4 to 5.

Fig. 5 Evolution in steel-

concrete interface damage

Di for various anchoring

lengths (2 B Ls B 32 cm)

Fig. 6 Evolution in failure

strength F for various

anchoring lengths

(2 B Ls B 32 cm)

Materials and Structures

Journal : Medium 11527 Dispatch : 13-3-2009 Pages : 11

Article No. : 9493 h LE h TYPESET

MS Code : MAAS3535 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

246 3.1.1 Approximation of n% fractile z* and n%

247 confidence interval In

248 A n% confidence interval In is an interval defined by:

Pðz 2 InÞ�
n

100
ð4Þ

250250 where P is the probability for a value z of the r.v. Z to

251 be in In, such that:

Pðz2 InÞ¼Pðzninf�z�znsupÞ¼FZðz
n
supÞ�FZðz

n
infÞ ð5Þ

253253 with FZ being the cumulative distribution function of

254 the r.v. Z, defined as follows:

FZðz
n
infÞ ¼ Pðz� zninfÞ ¼

Z

zn
inf

�1

pZðzÞdz ð6Þ

255256 The n% fractile z* is defined by:

z� ¼ F�1
Z ðn=100Þ ð7Þ

257258 The approximated confidence interval can be

259 written as:

~In ¼ ½~zninf ; ~z
n
sup� , FZð~z

n
supÞ � FZð~z

n
infÞ�

n

100

,

Z

~znsup

~zn
inf

pZ;estðzÞdz�
n

100
ð8Þ

260261 Numerical approximations of the bounds ~zninf and

262 ~znsupand the fractile z* are ultimately computed.

263 3.2 Application to the composite connection

264 (elastic behaviour)

265 A scalar lognormal input r.v. Y is considered and

266 serves to model variability in the Young’s modulus of

267 concrete Eb, with a mean l = 3.1010 Pa and a

268 coefficient of variation Cv = 10% (i.e. the standard

269 deviation over mean). The output r.v. Z modelling the

270 variability of maximum strength Fmax is obtained as a

271 1-lm displacement and applied to the free edge of the

272 steel bar.

273 We will now focus on comparing Monte Carlo

274 simulations and the Lagrange method.

275 3.2.1 Monte Carlo simulations

276 Different simulations have been performed for both

277 modes and for an increasing number of samples

278(103\K\ 105), with each sample corresponding to

279a mechanical FE computation. Because of the high

280computational cost associated with this simulation, a

281maximum of 105 samples have been computed.

282Let’s now consider the 105 sample simulation

283estimations as the target results: the means of Z for

284both mode 1 (Ls = 8 cm) and mode 2 (Ls = 32 cm)

285are approximated by the estimations denoted l̂1Z ,

286equal to 35.0906 N, and l̂2Z , 35.5984 N, respectively;

287moreover, the standard deviations of Z are approx-

288imated by the estimations denoted r̂1Z , equal to

2890.1741 N, and r̂2Z , 0.1345 N, respectively.

290For other quantities of samples (K\ 105), rela-

291tive errors (in percentage terms) with respect to the

292above target results may be identified: Tables 2, 3

293shows the numerical convergence of these relative

294errors, for the two failure modes, as the number of

295samples K increases. Given this convergence, the

296target results are assumed to be sufficiently

297accurate.

2983.2.2 Comparison with the Lagrange method

299Statistical moments and PDF approximations will

300now be compared with target results for the failure

301modes. The Lagrange method approximations are

302obtained for various integration points (3 B N B 7).

303Relative errors on the expected values lie below

3040.01%, regardless of the number of integration points

305N for both modes. As for the standard deviation,

306errors tend to decrease as the number of integration

307points N increases, while remaining below 4% (mode

3081) and 2% (mode 2).

309The PDF of response Z can be studied by

310examining Fig. 7, which shows the estimated PDFs

311of the r.v. Z. These PDFs have been obtained by

312Monte Carlo simulations of the approximated

313response ~Z (7) and are denoted. Lagrange method

314approximations ~Z are derived for various integration

315points (3 B N B 7). In Fig. 7, PDF curves are shown

316only for N = 3 and N = 7, in mode 1, with the other

317curves (N = 4, 5, 6, mode 2) being almost superim-

318posed. In comparing these approximated PDFs with

319the PDF estimated by direct Monte Carlo simulation

320in the deterministic FE model (target simulation,

321K = 105), a good level of agreement seems to be

322observed between the target PDF and the approxi-

323mated ones.
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324 3.2.3 Conclusion

325 A number N = 4 integration points is considered

326 sufficient to obtain good results on PDF and statistical

327 moments, in comparison with a Monte Carlo method

328 using 105 calls. The Monte Carlo method is not

329 feasible for failure analysis due to time-consuming

330 computations inherent in the pull-out FE model (from

331 a few minutes to several hours). A 4-point Lagrange

332 method will therefore be used in the following for the

333 pull-out test failure analysis.

334 The validity of the SFEM for n-dimensional cases

335 was demonstrated in [18], with n limited to 4 or 5 for

336 practical reasons. [18] showed that the validity in

337 a one-dimensional case can be extended to the

338 n-dimensional case while random variables remain

339 independent, as it will be the case in the following.

340 3.3 Application to the failure analysis

341 The first set of failure computations is conducted with

342 one or two input r.v. modelling the variability of

343mechanical parameters, such as Young’s modulus of

344concrete Eb, failure stress of concrete fc28 and yield

345stress of steel fy. The output r.v. serves to model the

346failure strength F. Let Cv(fc28), Cv(fy) and Cv(F)

347denote the coefficients of variation of r.v.s. modelling

348the variabilities of fc28, fy and F, respectively.

349Figure 8 depicts the evolution of Cv(F) for

350different values of Cv(fc28) and Cv(fy); this figure

351shows the sensitivity of F to the variability of r.v.

352modelling fy in mode 2. A similar figure has been

Table 3 Relative errors on the mean and standard deviation target estimations ðl̂1Z ; l̂
2
Z ; r̂

1
Z ; r̂

2
ZÞ, obtained for K = 105 Monte Carlo

simulations (elastic behaviour, failure modes 1 and 2)

Relative mean errors (910-3%) Relative standard deviation errors (%)

K Mode 1 Mode 2 Mode 1 Mode 2

103 10.0 7.5 3.2 3.2

5 9 103 5.1 3.8 1.3 1.3

104 2.4 1.9 1.1 1.1

5 9 104 0.6 0.4 0.2 0.2

105 l̂1Z = 35.0906 N l̂2Z = 35.5984 N r̂1Z = 0.1741 N r̂2Z = 0.1345 In

Fig. 7 Evolution in the

probability density function

p ~Z of the r.v. ~Z, with both

Monte Carlo simulation

(105 FE model runs) and

Lagrange method (3 and 7

runs), mode 1, elastic

behaviour

Fig. 8 Evolution in the coefficient of variation Cv(F) of

failure strength F, with increasing coefficients of variation for

material yield stresses (concrete: fc28 and steel: fy), failure

mode 2, anchoring length Ls = 32 cm
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353 generated, revealing the sensitivity of F to the

354 variability of r.v. modelling fc28 in mode 1.

355 The same analysis has then been performed for Ls
356 ranging between 2 and 32 cm, in the aim of

357 characterising failure modes. Three analyses were

358 carried out, one for each uncertain parameter Eb, fc28
359 and fy, considering arbitrarly coefficients of variation

360 Cv(Eb), Cv(fc28) and Cv(fy) equal to 10%. Figure 9

361 presents the failure strength F evolution for various

362 anchoring lengths Ls. For each value of Ls, a

363 dispersion interval has been computed that corre-

364 sponds to the maximum variability of the three

365 parameters with a ± 1 standard deviation, which

366 once again leads to three areas:

367 • The first, in which F increases linearly with

368 anchoring length Ls, corresponds to concrete

369 damage and bond failure; this area is associated

370 with small values of Ls (\10 cm) and dispersion

371 intervals here are due solely to Eb and fc28
372 variabilities.

373 • The second area, in which F remains constant and

374 equal to steel strength, corresponds to plastic

375 yielding of the steel bar; this area is associated

376 with high values of Ls, namely Ls[ 13.5 cm, and

377 dispersion intervals here are due solely to fy
378 variability.

379 • The intermediate area (10\Ls\ 13.5 cm)

380 reflects an uncertainty on the failure mode

381 resulting from variability of all three input

382parameters, corresponding to the ±1 standard

383deviation intervals; this area would tend to

384increase for higher dispersion intervals.

385This study remains indicative as long as a confi-

386dence interval has not been associated with these

387variation intervals. This condition requires knowing

388the PDF of the mechanical response Z at each

389computation point, a step that can be achieved by

390applying a Monte Carlo method on the analytical

391approximation ~Z of the response Z given by the

392Lagrange method (7).

393Figure 10 shows failure strength F evolutions for

394each anchoring length. The failure strength values F,

395as stipulated by design codes [1] and [2], are also

396provided along with all mean SFEM computations.

397These values reach those of the design code, which is

398necessary yet not enough to assess whether or not

399these codes are safe: confidence intervals would also

400be required. For this reason, PDFs p ~Z of the r.v. ~Z are

401performed. For anchoring lengths Ls = 8, 10 cm, the

402PDFp ~Z is obtained by considering the uncertain

403parameter fc28. For anchoring length Ls = 24 cm,

404the PDFp ~Z is obtained by considering the uncertain

405parameter fy. The PDFs are truncated only on the 95%

406confidence intervals. It is shown herein that the

407confidence interval of these design codes exceeds

40895%. Such a probabilistic analysis therefore seems to

409indicate differing safety levels between failure modes

4101 and 2. The apparently greater safety margin for

Fig. 9 Evolution in failure

strength for various

anchoring lengths

(2 B Ls B 32 cm), as

obtained by finite element

computation—Sensitivity to

mechanical parameters:

Young’s modulus of

concrete Eb, material yield

stresses (concrete: fc28 and

steel: fy)—A 1-standard

deviation interval is

associated with each mean

failure strength
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411 concrete failure has however been justified by more

412 uncertain characteristics of the concrete and steel-

413 concrete interface. A reliability analysis and refined

414 FE model would certainly yield a critical approach

415 towards the design codes, and ongoing research is

416 currently addressing this issue.

417 4 Conclusion

418 Uncertainties on the parameters of a system can lead

419 to the use of probabilistic methods as a means of

420 evaluating their effect on system responses. Such

421 methods however prove to be time-consuming. One

422 solution to this issue has been obtained by employing

423 stochastic finite element methods (SFEM). Unlike

424 some time-consuming methods, such as Monte Carlo

425 simulations, SFEM may be feasible for conducting

426 failure computations. This approach has been illus-

427 trated here by setting up a recent SFEM method based

428 on Lagrange polynomials. A probabilistic study of the

429 pull-out test of a steel bar anchored into concrete is

430 indeed original and offers a complementary analysis

431 to other deterministic studies of this mechanically

432 nonlinear problem (once again using a recent SFEM).

433 Various sensitivity indicators have been presented:

434 means, standard deviations, coefficients of variation,

435 and probability density functions, for the different

436 failure modes. This sensitivity analysis has been

437conducted with regard to failure strength versus

438variability of this system’s mechanical parameters:

439Young’s modulus of concrete, yield stresses of both

440materials. The FE model has been built to be in

441agreement with failure modes observed during exper-

442imental tests. The variation in this strength versus

443anchoring length has also been computed, and a

444dispersion interval associated with this evolution

445allows characterising the uncertainty on failure

446strength and modes. The SFEM approximation of

447the mechanical response constitutes an analytical

448estimation, on which a Monte Carlo method has been

449applied. An approximation of the PDF of the r.v.

450modelling failure strength has thus been computed,

451and this has confirmed the potential of associating a

452confidence interval with failure strength variability.

453Moreover, extending such a sensitivity analysis, in

454association with a reliability analysis, would lead to a

455critical analysis of the design codes.

456Appendix: probabilistic methods for sensitivity

457analysis

458Monte Carlo simulations

459Different Monte Carlo methods [17] are based on the

460same principle, which consists of selecting K values

461for input r.v. Y and then independently computing for

Fig. 10 Probability density

functions p ~Z of the r.v. ~Z for

anchoring lengths Ls = 8,

10 cm (uncertain

parameter: fc28) and

Ls = 24 cm (uncertain

parameter: fy)—PDF are

only truncated on the 95%

confidence intervals—

Failure strength limits

extracted from design codes

(Eurocode 2 [2] and

BAEL91 [1])
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462 each value yi the mechanical response zi = f(yi) of the

463 system. It is possible to estimate the statistical

464 moments of output r.v. Z, whose mean lZ and

465 variance rZ
2 are approximated such that:

lZ � ~lZ ¼
1

K

X

K

i¼1

zi ð9Þ

467467
r2Z � ~r2Z ¼

1

K

X

K

i¼1

z2i � ~l2Z ð10Þ

469469 where rZ is the standard deviation of Z.

470 Expressions (9) and (10) can be generalised to E

471 input r.v. and S output r.v., and the approximations

472 improve as K increases. Practically speaking however,

473 the number of mechanical computations K should

474 range from 104 to 107 in order to produce accurate

475 approximations of statistical moments or probability

476 density functions (PDF). This slow convergence rate

477 prevents the use of Monte Carlo simulations for

478 nonlinear computing that lasts more than a few hours.

479 To prevent this situation from arising, stochastic

480 finite element methods (SFEM) have been developed

481 over the past 30 years [15, 16]. SFEM allow

482 approximating statistical moments and PDF, as well

483 as sensitivity indices of output r.v. with a reduced

484 number of mechanical model iterations. One recent

485 model will be considered herein: the Lagrange

486 method [20, 21].

487 Lagrange method

488 Let N be a nonzero integer and (xi)1BiBN a set of N real

489 numbers (collocation points). The basic idea here is to

490 approximate the mechanical response f, which is a real

491 function of real value x, by projecting it onto the

492 truncated basis {Li}i=1…N of Lagrange polynomials

f ðxÞ � ~f ðxÞ ¼
X

N

i¼1

ai �
Y

N

k ¼ 1

k 6¼ i

x� xk

xi � xk
¼

X

N

i¼1

ai � LiðxÞ

ð11Þ

494494 where ai is the weight associated with polynomial Li
495 such as

8 i 2 1 ;Nf g ai ¼ f ðxiÞ ð12Þ

497497 By substituting (4) into (3), the approximation ~f of f

498 becomes:

499

~f ðxÞ ¼
X

N

i¼1

f ðxiÞ � LiðxÞ ð13Þ

501501Now, let g be the composite function f 	 T of the

502mechanical response f binding Z to a continuous r.v.

503Y with known PDF, and the function T binding Y with

504a standard r.v. (i.e. with a mean of 0 and standard

505deviation of 1) (s.r.v.) X (Gaussian normalisation)

506[16].

507Combining the expression of ~f obtained in (5), the

508r.v. Z is approximated by r.v. ~Z, such that:

~Z ¼ ~gðXÞ ¼
X

N

i¼1

gðxiÞ � LiðXÞ ð14Þ

510510where (xi)1BiBN are collocation points, as roots of the

511Hermite polynomials available in [18].

512Approximation of statistical moments

513The mean of the scalar r.v. modelling the mechanical

514response Z = g(X) is approximated by:

lZ � l ~Z ¼
X

N

i¼1

pXðxiÞ � gðxiÞ ¼
X

N

i¼1

xi � gðxiÞ ð15Þ

516516where (xi)1BiBN are the weights associated with

517collocation points (xi)1BiBN.

518The approximation r ~Z of the standard deviation rZ
519of Z can then be expressed as:

r2Z � r2~Z ¼
X

N

i¼1

ðgðxiÞÞ
2 � xi � ðl ~ZÞ

2 ð16Þ

521521Approximation of the probability density function

522The PDF of the r.v. Z, denoted pZ, can be approx-

523imated by the PDF p ~Z of the r.v. ~Z, which is an

524analytical response surface (7). It is thus possible to

525obtain an estimation of the PDF using Monte Carlo

526simulations. The curve of p ~Z is often truncated on an

527interval I ¼ ½~zinf ; ~zsup�, where ~zsup=inf ¼ l ~Z � a � r ~Z . In

528practical terms, a ranges between 3 and 4.

529Approximation of an n% confidence interval In

530The approximated confidence interval for the approx-

531imation ~Z of the r.v. Z, which writes:
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532

~In ¼ ½~zninf ; ~z
n
sup� ,

Z

~znsup

~zn
inf

p ~ZðzÞdz�
n

100
ð17Þ

534534 A numerical approximation of the bounds ~zninf and ~z
n
sup

535 can ultimately be computed; this approximation

536 delimits the area A on Fig. 1, which displays the

537 evolution of the PDF of the r.v. ~Z.

538 In practice, only a small number E of input r.v.

539 may be considered, namely 4–5, since the number K

540 of times the mechanical response function f is called

541 increases exponentially with E for a given number N

542 of integration points:

K ¼ NE ð18Þ

544544
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