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Abstract

Designing efficient numerical methods for the solution of stochastic partial differential equations with random inputs or random coef-
ficients is meeting growing interest. So far, the stochastic Galerkin method has been successfully used for various problems with small
number of independent random variables. The drawback of this method lies in its difficulty of implementation for nonlinear problems. In
this paper we propose a high-order stochastic collocation method to solve nonlinear mechanical systems whose uncertain parameters can
be modeled as random variables. Similar to the stochastic Galerkin methods, fast convergence can be achieved when the solution in ran-
dom space is smooth. However, the numerical implementation of stochastic collocation method is as easy as the Monte-Carlo method
since it only requires repetitive runs of an existing deterministic solver. We illustrate the efficiency of this method on two nonlinear
mechanical problems in which the random parameters are modeled as correlated lognormal random variables.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In structural engineering, the use of the finite element
method to simulate complex mechanical problems has
reached some degree of maturity. Many sources of errors
arising in computer simulations can be controlled and
reduced using a posteriori error estimation and mesh adap-
tivity. All this has increased the accuracy in numerical pre-
diction. While those methods have become increasingly
robust and accurate, their reliance on exact data, e.g. mate-
rial parameters, boundary and initial conditions, geometri-
cal uncertainty, etc., is becoming a bottleneck for the
accurate representation of complex problems. In this
paper, we strive to design and test an efficient method to
compute solutions and their associated sensitivities, assum-
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ing that certain properties of the problem are random.
There exists two main families of techniques for addressing
such problems: sampling methods and non-sampling
methods.

One of the most popular sampling methods is probably
Monte-Carlo simulations [9,17] or some of its refinements
[1,5,6]. In that case, one runs a deterministic code a large
number of times and computes the statistics of interest
from an ensemble of solutions. The advantage of this
approach is its simplicity, however it is difficult to obtain
accurate solutions due to its slow rate of convergence
OðN�1=2Þ for the mean, where N is the number of samples.
Other alternatives exist, such as the quadrature method [2]
based on quadrature points and weights, or the SFE
method of Baroth et al. [3] (see [20] also, for an extensive
comparisons of various methods). However each of those
approaches present some drawbacks, for example with
the quadrature method, it may be difficult to get an accu-
rate representation of the probability density function.
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Historically, perturbation methods [8] have been one of
the first non-sampling methods to be introduced. However,
they only work well for mildly nonlinear problems with
random inputs and outputs having small variations.
Recently, there has been a growing interest for non-sam-
pling methods, where no repetitive deterministic solvers
are employed. Some of them are based on the homoge-
neous chaos theory of Wiener [22]. In its original form, a
spectral expansion was employed based on the Hermite
orthogonal polynomials in terms of Gaussian random vari-
ables. This idea was used fifty years later by Ghanem et al.
[11,10] to solve various stochastic problems in mechanics
and those methods are usually referred as Stochastic Finite
Element Methods (SFEM). Later, other families of polyno-
mials were used to model uncertainty in flow simulations
[24], and ideas borrowed from domain decomposition tech-
niques were also applied in [21]. In general, these methods
exhibit fast convergence rates with increasing order of the
expansions in the random space, provided that the solu-
tions are smooth enough. These methods usually lead to
a set of coupled equations that can become very compli-
cated to solve, especially if the underlying differential equa-
tions have a nonlinear form.

In this paper, we present and test a stochastic colloca-
tion method which combines the strength of non-sampling
methods and the ease of implementation of sampling meth-
ods. Like some non-sampling methods such as the SFEM,
fast convergence can be achieved for smooth solutions in
the random space. And similarly to sampling methods,
the implementation is straightforward as it only requires
solutions of the corresponding problem at each interpola-
tion point. The stochastic collocation method has recently
received great attention and was first tested on some test
problems in [25]. Then, its efficiency was further demon-
strated on more complex problems in electromagnetic [7].
The strong connection between the stochastic collocation
method and the pseudo spectral method (see [16], for exam-
ple) led Babuška et al. [4] to provide rigorous convergence
analysis and demonstrate exponential convergence in the
probability space for an elliptic partial differential equation
with random input. It should be noted that the dimension
of the approximating random space grows exponentially
with the number of random variables, when tensor product
are used to represent it. Therefore, the stochastic colloca-
tion method (like the SFEM) will suffer from the so-called
curse of dimensionality and this is why the examples of this
paper are limited to a maximum of four random variables.

This paper is organized as follow: in Section 2, we start
from a general stochastic partial differential equation and
we show how it can be discretized using the SFEM (here
we give a general description of the technique and we refer
it as ‘stochastic Galerkin method’). Next, the stochastic
collocation method is introduced and the SFE method of
[3] is also described. Then, we show how to compute statis-
tics from the representation of the solution and compare
with the quadrature method. In Section 3, the method is
applied for nonlinear mechanical systems with uncertain
parameter and results are compared with the SFE method
of Baroth et al. [3]. Finally, in Section 4 we draw conclu-
sions and offer some suggestions for continued research
in this direction.
2. Presentation of the method

2.1. Problem setting

In the following, ðX;F;PÞ denotes a probability space,
where X is a sample space, F a r-algebra of parts of X, and
P a probability on F. We assume that the model problem
to be solved has the general form

LðY; x; uðY; xÞÞ ¼ f ðY; xÞ; x 2 D; ð1Þ

where D is some bounded domain of Rd ðd ¼ 1; 2; 3Þ with
boundary oD, x is the generic point of D , L is a nonlinear
functional, Y ¼ ðY 1; . . . ; Y HÞ, H P 1, is a RH -valued r.v.
defined on ðX;F;PÞ, and f and u are two functions from
RH � Rd into R.

In this formulation, the r.v. Y and the function f are
given and the unknown is the R-valued random field
uðY; �Þ ¼ ðuðY; xÞ; x 2 DÞ indexed on D and defined on
ðX;F;PÞ (i.e. 8x 2 D, the mapping x! uðYðxÞ; xÞ is a
real r.v. on ðX;F;PÞ). The problem is then to find the ran-
dom function uðY; �Þ, such that, for P-almost everywhere
in X, the equation

LðYðxÞ; x; uðYðxÞ; xÞÞ ¼ f ðYðxÞ; xÞ; x 2 D; ð2Þ

is satisfied, subject to boundary conditions on oD. We as-
sume that the source terms f and the conditions on the
boundary oD are regular enough so that the problem is well
posed. We also assume that the coordinates Y 1; . . . ; Y H of
the r.v. Y are mutually independent and that the probabil-
ity distribution of Y is absolutely continuous with respect
to the Lebesgue’s measure on RH . As a result, the probabil-
ity density function (pdf) q of Y writes, 8y ¼ ðy1; . . . ; yH Þ 2
RH , qðyÞ ¼ PH

i¼1qiðyiÞ, where qi is the pdf of the random
coordinate Yi. Note that the hypothesis of independence
introduced here is not a loss of generality; indeed, it is al-
ways possible to construct a change of variable that allows
to come down to this situation. Finally, we denote by
C ¼ YðXÞ the image of Y, such that C ¼ PH

i¼1C
i and

Ci ¼ Y iðXÞ. With these notations, the general stochastic
problem (1) can be rewritten under the following equiva-
lent form: characterize the random field uðY; �Þ ¼
ðuðY; xÞ; x 2 DÞ, where the real function u ¼ ðuðy; xÞ;
ðy; xÞ 2 C� DÞ is the solution of the deterministic equation

Lðy; x; uðy; xÞÞ ¼ f ðy; xÞ; ðy; xÞ 2 C� D; ð3Þ

with some boundary conditions on oD. The above equation
can be solved with standard discretization techniques. As is
usually done in deterministic problems, we seek the numer-
ical solution uhðy; xÞ in a finite-dimensional subspace
V h � L2

qðCÞ that satisfies the weak equation
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Z
C
Lðy; x; uhðy; xÞÞ/hðyÞqðyÞdy

¼
Z

C
f ðy; xÞ/hðyÞqðyÞdy; 8/h 2 V h: ð4Þ

In this paper, we decide to choose Vh as being the subspace
of polynomials of degree P at most. Depending on the con-
struction of the subspace Vh, Eq. (4) will lead to different
numerical schemes which are discussed below. In the fol-
lowing, for the sake of simplicity, the r.v. Y will be assumed
to be scalar (i.e. H = 1), the extension to higher dimen-
sional spaces by tensor product being trivial. However,
for the examples of Section 3 we shall take H = 2 and
H = 4.
2.1.1. Stochastic Galerkin methods

In that case, we choose to span Vh by a set of orthonor-
mal polynomials with respect to the weight function qðyÞ,
i.e. we have V h ¼ spanf/mðyÞg06m6P where /mðyÞ are
degree P polynomials satisfyingZ

C
/mðyÞ/nðyÞqðyÞdy ¼ dmn; m; n ¼ 0; . . . ; P : ð5Þ

For Gaussian distributions, those are known as Hermite
polynomials whereas for uniform distributions they are
Legendre polynomials (see [23] for a complete description
of different families of polynomials). However, it should
be noted that one can choose any family of polynomials
as long as f/mðyÞg06m6P form a complete basis. Neverthe-
less, if the stochastic solution stemming from Eq. (4) has
a probability density close to qðyÞ, we can expect faster
convergence of the numerical solution by taking orthonor-
mal polynomials with respect to the weight function qðyÞ.
We seek the numerical solution of Eq. (4) under the form

uhðy; xÞ ¼
XP

i¼0

ui
hðxÞ/iðyÞ: ð6Þ

This is known as a modal representation of uhðy; xÞ, where
ui

hðxÞ are the modes that need to be computed. This is done
by inserting the expression (6) into (4) to obtainZ

C
L y; x;

XP

i¼0

ui
hðxÞ/iðyÞ

 !
/jðyÞqðyÞdy

¼
Z

C
f ðy; xÞ/jðyÞqðyÞdy; j ¼ 0; . . . ; P : ð7Þ

In the above equation, the integrals can be computed with
numerical quadrature rules, however we see that if L is a
nonlinear operator, all modes ui

hðxÞ are coupled and this
leads to a very complicated system that need to be solved.
This approach was used in many stochastic problems in
mechanics by Ghanem [11] and the expression (6) is usually
referred as polynomial Chaos expansion. Many other
methods can be designed around the same ideas, by choos-
ing different basis functions in (6), for example. In the next
subsection, we will show that other choices of basis can
lead to uncoupled systems, even if L is a nonlinear
operator.

2.1.2. Stochastic collocation methods

We now choose to span Vh by a set of Lagrange interpo-
lating polynomials of degree P, i.e. V h ¼ spanfLmðyÞg06m6P ,
where the Lagrange polynomials are based on the interpo-
lating points fymg06m6P . We will see that a particularly con-
venient choice of points that will considerably simplify
equations consists in choosing the quadrature points of
the formulaZ

C
f ðyÞqðyÞdy ¼

XP

i¼0

wif ðyiÞ: ð8Þ

The points yi and weights wi are built such that the formula
(8) is exact for all polynomials of degrees up to ð2P þ 1Þ.
They can be obtained by solving a nonlinear system with
Newton’s method (see [15] for example). We now seek
the numerical solution of (4) under the form

uhðy; xÞ ¼
XP

i¼0

ui
hðxÞLiðyÞ; ð9Þ

and this is known as a nodal representation of uhðy; xÞ,
where ui

hðxÞ ¼ uhðyi; xÞ is the solution of (4) at node yi (this
is also referred as ‘surface response’ in the mechanical field,
see [20]). To compute ui

hðxÞ, we insert the expression (9)
into (4) and use the quadrature rule (8) to evaluate the
integrals:XP

k¼0

wkL yk; x;
XP

i¼0

ui
hðxÞLiðykÞ

 !
LjðykÞ

¼
XP

k¼0

wkf ðyk; xÞLjðykÞ; j ¼ 0; . . . ; P : ð10Þ

An important property of Lagrange polynomials that
will considerably simplify the expression above is that
LjðykÞ ¼ djk, so we get

Lðyj; x; uj
hðxÞÞ ¼ f ðyj; xÞ; j ¼ 0; . . . ; P : ð11Þ

Therefore, the coefficients fuj
hðxÞg06j6P of (9) are simply

computed by solving ðP þ 1Þ decoupled Eq. (11) similar
to the original one (1), with ðP þ 1Þ realizations corre-
sponding to fyjg06j6P , just like a Monte-Carlo simulation.
A comparison of the Galerkin method and the collocation
method [7] shows that for smooth problems, both should
exhibit fast convergence rates. It is only for problems with
very low regularity that the stochastic Galerkin method
might be more attractive.

2.1.3. The SFE method of Baroth et al. [3]

In the next section, we shall compare numerical results
using the stochastic collocation method with those
obtained with the method of Baroth et al. presented in
[3]. We briefly recall the elements of this technique, which
borrows ideas from the stochastic collocation method
and the stochastic Galerkin method. First, a piecewise
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polynomial approximation of uðy; xÞ is constructed by col-
location to represent the stochastic solution euhðy; xÞ:

euhðy; xÞ ¼
XM

i¼0

eui
hðxÞSiðyÞ; ð12Þ

where SiðyÞ are cubic B-splines. This approximation is then
projected on to the orthonormal polynomial basis
f/iðyÞg06i6P defined in Section 2.1.1

uhðy; xÞ ¼
XP

i¼0

ui
hðxÞ/iðyÞ; ð13Þ

where, the coefficients ui
hðxÞ are given by

ui
hðxÞ ¼

Z
C
euhðy; xÞ/iðyÞqðyÞdy: ð14Þ

This last projection was done in order to facilitate the com-
putation of statistics and reconstruct the probability den-
sity function of the stochastic solution by performing a
Monte-Carlo simulation from (13). Note that the final
solution (13) is given under the same form as Eq. (6), with-
out having to solve a large problem which coupled coeffi-
cients ui

hðxÞ as would have happened with the stochastic
Galerkin method. On the other hand, this double projec-
tion (first with cubic B-splines and then on an orthogonal
polynomial basis) might be harmful for the accuracy of
the solution, as we shall see on numerical examples.

2.2. Computation of statistics and probability density

function

Let uhðY ; �Þ ¼ ðuhðY ; xÞ; x 2 DÞ be the approximate sto-
chastic solution stemming from (6) or (9). In practice,
one is often interested in the first two moments i.e. the
mean value and the variance. Using the orthonormality
of the polynomials f/iðyÞg06i6P , it is easy to show [7] from
(6) or (13) that the mean value of the r.v. uhðY ; xÞ is simply
the first mode in the expansion, i.e. huhðY ; xÞi ¼ u0

hðxÞ and
the variance is

varðuhðY ; xÞÞ ¼
XP

i¼1

ðui
hðxÞÞ

2
: ð15Þ

When the deterministic solution is given under the form
(9), using the property of Lagrange polynomials
LjðykÞ ¼ djk and the quadrature formula (8), we can show
[7] that

huhðY ; xÞi ¼
XP

i¼0

ui
hðxÞ

Z
C

LiðyÞqðyÞdy ¼
XP

i¼0

wiui
hðxÞ ð16Þ

and

huhðY ; xÞ2i ¼
XP

i;j¼0

ui
hðxÞu

j
hðxÞ

Z
C

LiðyÞLjðyÞqðyÞdy

¼
XP

i¼0

wiðui
hðxÞÞ

2
: ð17Þ
For the applications of Section 3, we are also interested in
the skewness and the kurtosis. Therefore, we need similar
formula for higher order moments. There is no quadrature
error for the evaluation of the first two moments (16) and
(17) since the quadrature formula (8) is exact for polynomi-
als up to order ð2P þ 1Þ and we integrate polynomials of
order P and 2P, respectively. For higher order moments,
we need more accurate quadrature formulas to ensure ex-
act integration. In that case, the moments of order k

ðk > 2Þ, are given by

huhðY ; xÞki ¼
XP

i1...ik¼0

ui1
h ðxÞ . . . uik

h ðxÞ
XM

l¼0

wlLi1ðylÞ . . . Lik ðylÞ;

ð18Þ

where M is the integer part of ðkP=2Þ, so that the quadra-
ture points and weights ðyl;wlÞ06l6M ensure exact integra-
tion. It should be noted that computing any moment of
order k with the quadrature formula (8) would give

huhðY ; xÞki ¼
XP

i¼0

wiðui
hðxÞÞ

k
: ð19Þ

Although this expression has the advantage of simplicity,
we are integrating a polynomial of degree kP with a quad-
rature formula exact up to polynomial degrees ð2P þ 1Þ
and therefore, as k increases, the computation of
huhðY ; xÞki will become less and less accurate.

One particularly interesting feature of the methods pre-
sented in that section is that accurate probability density
functions can be obtained at low cost by doing Monte-
Carlo simulations from (6) or (9).

2.3. Comparison with the quadrature method

In this subsection, we show that there are strong connec-
tions between the stochastic collocation method and the
quadrature method presented in [2]. Let us first briefly
recall the principle of this method. The idea is to use quad-
rature formula to compute moments of different orders of
the response quantities. Assuming that the joint probability
density of a random variable Y is q, and that we are inter-
ested in the response uhðY ; xÞ, Baldeweck [2] (see also [14])
was approximating the moments of uhðY ; xÞ using the same
formula (19), i.e.

huhðY ; xÞki ¼
XP

i¼0

wiðuhðx; yiÞÞk; ð20Þ

where ðyi;wiÞ06i6P are the integration points and weights
associated with q. The first four moments were computed
and a probability density function of the response was con-
structed from those moments using Johnson’s method, for
example (see [12,2] for details). We see that the computa-
tion of the first two moments gives strictly identical results
for the quadrature method and the stochastic collocation
method. For higher order moments, Eq. (18) will be more
accurate since it integrates exactly the moments of any or-
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der of the response given under the form (9). Another
drawback of the quadrature method lies in the difficulty
to construct accurate probability density functions of the
response from its statistical moments, when P is small.
3. Applications

In this section, we illustrate the efficiency of the pro-
posed method for two nonlinear mechanical problems.
For the first example (sphere under internal pressure), there
is no variation of the solution in the physical space, i.e.
there is no x variable in Eq. (1). The second example (Hertz
contact problem) is a nonlinear problem for which a dis-
cretization is performed both in the physical space and in
the probability space. The uncertain parameters are mod-
eled as lognormal random variables which are correlated.
The quadrature points and weights for the lognormal law
can be computed from those of the standard normal law
ðyi;wiÞ by a simple change of variable, and it can be easily
shown that they are ðeyi

;wiÞ. From an implementation
point of view, two equivalent approaches can be adopted.
We can keep the lognormal r.v. in the equations and use
the quadrature points and weights ðeyi

;wiÞ associated with
the lognormal law. Alternatively, we can transform the log-
normal r.v. into standard Gaussian ones in the equations
and use the quadrature points and weights ðyi;wiÞ associ-
ated with the normal law. In this paper, we have adopted
this last procedure.
3.1. Sphere under internal pressure

3.1.1. Presentation of the problem

We consider a hollow sphere under internal pressure (see
Fig. 1) and we assume that the constituent material is elas-
tic perfectly plastic. The geometrical and mechanical
parameters of the model are the internal and external
radius a and b, the Young modulus E, the Poisson ratio
m, the yield stress fe and the internal pressure p. For
this first problem, we assume that the two random param-
eters are the Young modulus E and the Poisson ratio m,
afterwards denoted by z1 and z2. They are modeled as
a bidimensional lognormal r.v. Z ¼ ðZ1; Z2Þ with mean
a
b

p

Fig. 1. Sphere under internal pressure.
ðlZ1
; lZ2
Þ ¼ ð2� 1011 Pa; 0:3Þ and standard deviation

ðrZ1
; rZ2
Þ ¼ ðlZ1

aZ1
; lZ2

aZ2
Þ. In order to illustrate the

robustness of the method with regard to the scattering of
the input variables, we choose the coefficients of variation
of Z equal to ðaZ1

; aZ2
Þ ¼ ð0:3; 0:1Þ: The coefficient of

correlation qZ1Z2
between Z1 and Z2 is chosen equal to 0:8

and the elements of the covariance matrix are given by
CZiZj ¼ rZirZjqZiZj

, with qZ1Z1
¼ qZ2Z2

¼ 1. The other
parameters of this academic example are assumed to be
deterministic and equal to a ¼ 10�3 m, b ¼ 2� 10�3 m,
fe ¼ 3� 108 Pa and p ¼ 3:589� 108 Pa. We are interested
here in the radial plastic displacement u at any point of
the internal outline. The deterministic solution of this prob-
lem is known [13]. In the random case, the solution is a sca-
lar r.v. U given by

U ¼ F ðZÞ; ð21Þ

where F is a mapping from R�þ � Rþ into R, such that,
8z ¼ ðz1; z2Þ 2 R�þ � Rþ

u¼F ðzÞ¼ afe½ð1� z2Þa3þ2ð2z2�1ÞðlnðaÞþð1=3Þð1�b3ÞÞ�
z1

;

ð22Þ

with

a ¼ c
a

and b ¼ c
b
: ð23Þ

The c constant above is obtained by solving the equation

p ¼ 2fe ln aþ 1

3
ð1� b3Þ

� �
: ð24Þ

Outcomes ðz1; z2Þ of the bidimensional lognormal random
vector Z can be generated from outcomes ðy1; y2Þ of a bidi-
mensional standard Gaussian random vector Y ¼ ðY 1; Y 2Þ
as follows:

z1 ¼
lY 1ffiffiffiffiffiffiffiffiffi
1þa2

Y 1

p expðl11y1Þ;

z2 ¼
lY 2ffiffiffiffiffiffiffiffiffi
1þa2

Y 2

p expðl21y1 þ l22y2Þ;

8><>: ð25Þ

where the coefficients l11, l21 and l22 are given in the Appen-
dix A of [3]. The expression (22) is now a function of
ðy1; y2Þ and we can write F ðz1; z2Þ ¼ uðy1; y2Þ. For this prob-
lem, the algorithm of the stochastic collocation method de-
scribed in the previous section is summarized below.

• Generate ðP þ 1Þ quadrature points and weights ðyi;wiÞ
associated with the standard Gaussian law.

• Compute the ðP þ 1Þ2 outcomes uij ¼ uðyi
1; y

j
2Þ for

0 6 i; j 6 P :
• The numerical solution (or surface response) writes

uhðy1; y2Þ ¼
XP

i¼0

XP

j¼0

uijLiðy1ÞLjðy2Þ; ð26Þ

where LiðyÞ are Lagrange polynomials of degree P based
on points fyig06i6P .
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• The first two moments of the approximate stochastic
solution uhðY 1; Y 2Þ are huhðY 1; Y 2Þi ¼

PP
i¼0

PP
j¼0wiwjuij

and hðuhðY 1; Y 2ÞÞ2i ¼
PP

i¼0

PP
j¼0wiwjðuijÞ2: Higher order

integration formulas have to be used for moments of
order greater than two (see Eq. (18)).

• The probability density function can be estimated from
(26) by using a Monte-Carlo approach.
N

lo
g(

er
ro

r)
fo

r

10 20 30

-7

-6

-5

Fig. 3. Representation of the logarithm of the error as a function of N for
the variance. Results for the SFE method of Baroth et al. [3] and the
stochastic collocation method are shown for the sphere problem.
3.1.2. Convergence of statistical moments

We compare the moments of the solution (21) with three
different methods: the SFE method presented in [3], the
quadrature method [2] and the stochastic collocation
method introduced in the previous section. We are inter-
ested in the convergence of the mean, the variance, the
skewness and the kurtosis of the response U. We plot the
logarithm of the error for those moments, as a function
of the number of calls N of the function F defined by Eq.
(22). For the SFE method N is the number interpolation
points for a two-dimensional problem, i.e. N ¼ N 2

I , where
NI is the number of B-spline interpolation points in each
dimension (see [3] for details). Similarly, for the quadrature
method and the stochastic collocation method with
Lagrange polynomials, we have N ¼ ðP þ 1Þ2 where
ðP þ 1Þ is the number of quadrature or collocation points
in each direction. The reference solution used to compute
the relative errors was obtained with the stochastic colloca-
tion method by taking N = 196.

Figs. 2 and 3 represent the error on the mean and the
variance as N increases. We can see that exponential con-
vergence is achieved with the stochastic collocation
method, up to machine’s precision. On the other hand,
the convergence of the SFE method [3] is much slower.
Note that for those two moments, the quadrature method
gives results identical to the stochastic collocation method,
as explained in the previous section.
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Fig. 2. Representation of the logarithm of the error as a function of N for
the mean. Results for the SFE method of Baroth et al. [3] and the
stochastic collocation method are shown for the sphere problem.
The convergence of the solution for the skewness and
the kurtosis is shown in Figs. 4 and 5. We see that both
the quadrature method and the stochastic collocation
method exhibit fast convergence. However, as we integrate
higher order moments, the stochastic collocation becomes
more accurate.
3.1.3. Comparison of the probability density function

We now compare the pdf given by four different methods:
the SFE method [3], the quadrature method, the collocation
method using Lagrange polynomials and finally the Monte-
Carlo method. For the Monte-Carlo method, we use 105

samples to construct the pdf. The quadrature method
only gives moments of any order of the response U.
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Fig. 4. Representation of the logarithm of the error as a function of N for
the skewness. Results for the SFE method of Baroth et al. [3], the
quadrature method and the stochastic collocation method are shown for
the sphere problem.
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Fig. 5. Representation of the logarithm of the error as a function of N for
the kurtosis. Results for the SFE method of Baroth et al. [3], the
quadrature method and the stochastic collocation method are shown for
the sphere problem.
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Fig. 7. Representation of the pdf for the sphere problem using four
different methods for N = 16.
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Therefore, the pdf has to be constructed from this infor-
mation only, and this is done using Johnson’s method
based on the first four moments (see [2] for details). For
the SFE method, the pdf is constructed by doing a Monte-
Carlo simulation from the solution written under the form
(6). This procedure is efficient since evaluating samples solu-
tions from (6) is an inexpensive computation. For the sto-
chastic collocation method, the same procedure is applied,
but using the expression (9). In both cases, the pdf is con-
structed using 107 samples.

Fig. 6 shows the pdf obtained with a small value of N. In
that case, the stochastic collocation method is the only one
which gives a pdf close to the exact one. This result were
obtained with only four calls ðN ¼ 4Þ to the response func-
tion F given by (22).
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Fig. 6. Representation of the pdf for the sphere problem using four
different methods for N = 4.
When N is increased up to N = 16 in Fig. 7, we see that
with the exception of the SFE method [3], all methods give
good results. Finally, for N = 36, all methods have con-
verged and give similar results (see Fig. 8).
3.2. Elasto-plastic cylinder

3.2.1. Presentation of the problem

As a second example, we consider a Hertz contact prob-
lem between an infinitely long cylinder and a fixed rigid
horizontal plane. The cylinder is compressed by a vertical
uniform load along its axis and we are interested in the
vertical displacements (ui) of the section S (1 ¼ ð0; 2RÞ,
2 ¼ ð0; 3

2
RÞ, 3 ¼ ð0;RÞ, 4 ¼ ð0; 2

3
RÞ, 5 ¼ ð0; 1

3
RÞ) (see

Fig. 9). These displacements are gathered in a vector u.
The behaviour of the material is supposed to be isotropic
bilinear elasto-plastic. Plane strain assumption is made,
so the analysis can be reduced to a two-dimensional
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Fig. 8. Representation of the pdf for the sphere problem using four
different methods for N = 36.
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Fig. 9. Geometry of the Hertz contact problem.

Fig. 10. Finite element mesh for the Hertz contact problem.
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Fig. 11. Representation of the logarithm of the error as a function of N

for the mean. Results for the SFE method of Baroth et al. [3] and the
stochastic collocation method are shown for the cylinder problem.
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Fig. 12. Representation of the logarithm of the error as a function of N

for the variance. Results for the SFE method of Baroth et al. [3] and the
stochastic collocation method are shown for the cylinder problem.
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problem. Thanks to the problem symmetry, only half
section of the cylinder is discretized, using linear plain
strain Finite Elements (see Fig. 10). Contact is taken into
account using a mesh of contact FE, linking the basis of
the cylinder and the portion of the plane that may be in
contact.

This mechanical problem is nonlinear and the FE
resolution is incremental and iterative. Parameters of the
deterministic model, namely the Poisson’s ratio m, the half-
loading intensity Fl, the radius R and the yield limit stress
fe, are equal to m ¼ 0:3; F l ¼ 5� 103 N; R ¼ 5� 10�2 m
and fe ¼ 3� 107 Pa. The uncertain parameters of this model
is the Young modulus E and the plastic modulus Ep, denoted
afterwards z1 and z2 respectively. As before, the couple
ðz1; z2Þ is modeled as a two-dimensional lognormal r.v.
Z ¼ ðZ1; Z2Þ, with characteristics ðlZ1

; lZ2
Þ ¼ ð3� 1010 Pa;

9� 109 PaÞ; aZ1
¼ aZ2

¼ 0:1 and qZ1Z2
¼ 0:9: As a result,

the vector displacements u is a vector r.v. that we shall denote
by U ¼ ðU 1; . . . ;U 5Þ. In the sequel, we will show results for
the random variable U5, obtained after the final load Fl.
3.2.2. Convergence of statistical moments

Figs. 11–14 show the convergence of the mean, the var-
iance, the skewness and the kurtosis, respectively, as a
function of the number of calls N to the finite element
model, which is directly related to the CPU time. Here
again, the reference solution used to compute the errors
was obtained with the stochastic collocation method by
taking N = 196.

For a fixed value of N, both the quadrature method and
the stochastic collocation method give better results than
the method of Baroth et al. However, we observe that
the convergence is not as fast as in the previous example.
A possible reason is that the total error comes not only
from the discretization in the probability space but also
from the discretization in the physical space. From
N ¼ 16; no significant improvement of the accuracy can
be observe by increasing the value of N because the error
coming from the finite element discretization in the physi-
cal space becomes predominant.
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Fig. 13. Representation of the logarithm of the error as a function of N

for the skewness. Results for the SFE method of Baroth et al. [3], the
quadrature method and the stochastic collocation method are shown for
the cylinder problem.
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Fig. 14. Representation of the logarithm of the error as a function of N

for the kurtosis. Results for the SFE method of Baroth et al. [3], the
quadrature method and the stochastic collocation method are shown for
the cylinder problem.
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Fig. 15. Representation of the pdf for the cylinder problem using four
different methods for N = 4.
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Fig. 16. Representation of the pdf for the cylinder problem using four
different methods for N = 16.
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Fig. 17. Representation of the pdf for the cylinder problem using four
different methods for N = 36.
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3.2.3. Comparison of the probability density function

Similarly to the sphere problem, Figs. 15–17 show the
pdf given by the SFE method [3], the quadrature method
and the stochastic collocation for different levels of discret-
ization in the probability space. The pdf given by the
Monte-Carlo method using 103 samples is also shown on
those three figures. We observe that even at a low level of
discretization ðN ¼ 4Þ, the stochastic collocation method
gives very good results. For N = 36, all methods have con-
verged with the exception to the method of Baroth et al.

Those results suggest that it is possible to use the sto-
chastic collocation method efficiently, even for problems
with more than two random variables. This is what we
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do in the next subsection, where the Hertz problem is
solved in the case of four random variables.

3.2.4. Numerical test with four random variables

We now solve the Hertz contact problem with four ran-
dom variables ðZ1; Z2; Z3; Z4Þ where Z1 and Z2 are the same
as before; Z3 and Z4 are two independent r.v. used to
model the uncertainty of the radius R of the cylinder and
the half-loading intensity Fl, respectively. All the determin-
istic parameters are the same as before and for the random
variables, we take ðlZ1

; lZ2
; lZ3

; lZ4
Þ ¼ ð3� 1010 Pa; 9�

109 Pa; 0:05 m; 3� 105 NÞ, aZ1
¼ aZ2

¼ aZ3
¼ aZ4

¼ 0:1 and
qZ1Z2

¼ 0:9:
Fig. 18 shows the pdf of the vertical displacements u5 of

the cylinder for three levels of discretization in the proba-
bility space. In each of the four directions, 2, 3 and then
4 collocations points are used, leading to a number of calls
N to the mechanical function equal to 24, 34 and 44, respec-
tively. We see that even at a low level of discretization
ðN ¼ 24Þ, the pdf is already very close to the converged
solution. No distinction can be made between the solution
obtained with N ¼ 34 and N ¼ 44, suggesting that very
accurate solutions can be obtained with only three points
of collocation in each direction.

4. Conclusion

In this paper, we have proposed an efficient SFE method
based on Lagrange interpolating polynomials. The method
was tested and compared with other techniques for the res-
olution of two nonlinear stochastic mechanical problems.
Its formulation is very attractive since it is similar to that
of a Monte-Carlo method, where a deterministic equation
is solved repetitively at each discrete point in the random
space. We have shown that fast convergence can be
achieved for the moments and accurate pdf could be com-
puted. For a given number of collocations points, the
method compares favourably with the others tested meth-
ods. Throughout this paper, dimensions of the random
parameter up to four were tested. For more general prob-
lems of dimension H, the cost of this method would be pro-
portional to HPþ1. Even if good accuracy can be obtained
with low values of P (typically, P = 3 was shown to be suf-
ficient), this method (like the stochastic Galerkin method)
will suffer from the curse of dimensionality. Therefore,
we should not realistically expect it to be efficient for ran-
dom parameters of dimension larger than five or six. For
larger dimensions of the random parameter, high-dimen-
sional integration formulas [18,19] might be a good alterna-
tive and this is ongoing research.
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