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Abstract

We propose a stochastic finite element method for nonlinear mechanical systems whose uncertain parameters can be modeled as ran-
dom variables. This method is based on a Gaussian standardization of the problem and on an Hilbertian approximation of the nonlinear
mechanical function using Hermite polynomials. The coefficients of the approximation are obtained using a cubic B-spline interpolation
of the response function. It provides simple expressions of the response moments. Some of its possibilities are illustrated through four
numerical examples concerning one linear problem and three nonlinear problems (elasto-plastic behaviors and contact problem) in which
the random parameters are modeled as correlated lognormal random variables. The numerical results obtained attest the relevance of
this approach.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays it is a common practice in structural engineering to use the finite element method to analyze complex
mechanical problems. Particularly, nonlinear models are often built even for large industrial problems, whatever the non-
linearity type (material, geometrical, etc.). Nevertheless, the number of parameters of these models and therefore the var-
iability and the uncertainty in the determination of their values require the development of new modeling techniques taking
into account this random context. The uncertain parameters can be modeled either by random variables (r.v.) or by sto-
chastic fields (elastic modulus of a soil for example). In this work, we only consider vector r.v. without loss of generality
because the discretization of random fields always leads to vector r.v.

Using this approach, two kinds of results are expected: either the computation of a reliability index or the achievement
of some sensitivity indicators. For both kinds, we often have to estimate statistic moments of the mechanical response. The
Monte Carlo simulation methods have first been used [10,23]. Even if these methods have strong advantages (their simplic-
ity, their robustness, their regular improvements [2,4,5]), they usually become time-consuming as the complexity and the
size of the embedded deterministic models increase. In order to find an alternative to Monte Carlo simulations, successive
probabilistic approaches based on the Finite Element Method (FEM) have been developed for 20 years. These different
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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approaches have been called Stochastic Finite Element (SFE) Methods [15,19,27]. For example, we can find some pertur-
bation methods [6], the quadrature method [3,27]—based on an extension of the Gauss integrating schemes—or the
response surface methods, first used for optimization needs and then in a reliability context [11]. Several methods are based
on the discretization of random fields, modeling entry parameters, for example the Spectral Stochastic Finite Element
Method [14] or the Weighted Integral Method [8] or others perturbation methods [19,27]. These last SFE Methods are
sometimes combined with Monte Carlo simulations [26] and provide an interesting alternative to Monte Carlo simulations
for mechanically linear problems. But they cannot be easily extended to the analysis of nonlinear problems. Some studies,
for example [1], give interesting results, but only in restricted applications fields. However, the methods where the finite
element model is not modified seem to be more promising because the nonlinear deterministic FE calculations are well
mastered.

The work presented in this paper is a contribution to the development of SFE Methods to mechanically nonlinear prob-
lems. The proposed method can be viewed as a response surface approach. In a reliability context, the approximation of the
limit-state function by a polynomial surface is only made around its design point [9,21]. However, when statistical moments
have to be computed, it is necessary to approximate the mechanical response in its whole definition domain. This response
surface, written in terms of standard Gaussian variables, is an approximation of the mechanical response projection on a
finite dimension Hilbert space, which is spanned by an orthogonal Hermite polynomials basis. Such a basis has been widely
used for 20 years [12,16]. A difficulty lies in the fact that multiple integrals have to be computed to evaluate the approx-
imation coefficients (see, for example, [13,16,20]). In this paper, we propose a strategy that consists in making a cubic B-
spline interpolation of the mechanical response so as to calculate the expansion coefficients. The response surface is then
used to compute the approximated statistical moments and to estimate the probability distribution of the response.

The first part of this paper deals with the principle of the method. Then, some possibilities of the approach are inves-
tigated through four simple problems: the randomness of the entry parameters is described by one or two correlated log-
normal random variables. The first problem is mechanically linear and the three others are nonlinear (elasto-plastic
material and contact problem in the fourth application). The quality of approximations is evaluated by comparisons with
reference solutions obtained by analytical models, or by Monte Carlo simulations. The influence of the dimension of the
projection space and of the interpolation refinement on the calculated moments are eventually studied.
2. Presentation of the method

2.1. Statement of the problem

The study presented in this paper concerns the following problem:

1. We consider a mechanical system whose behavior is nonlinear and described by a finite element model (‘‘black-box’’
type model).

2. Some scalar parameters y1, . . . , yk of the model, gathered in a vector y ¼ ðy1; . . . ; ykÞ 2 Rk; k 2 N�, are uncertain.
3. We are interested in a scalar observation z (displacement, strain, stress, etc.) of the response system, linked to y via a

relationship of the form:

z ¼ f ðyÞ; ð1Þ
where f is a measurable function from Rk into R completely determined by the finite element model.

4. We want to quantify the effect of the random variability of y on z.
5. With this object in view, we assume that y can be suitably modeled as a Rk-valued random variable (r.v.)

Y = (Y1, . . . , Yk) with given absolutely continuous probability distribution PY such that Supp(PY) � def(f), where
Supp(PY) and def(f) denote respectively the support of PY and the definition domain of f.

6. In these conditions, f being measurable and R-valued, z is a scalar r.v. denoted by Z, such that

Z ¼ f ðY Þ. ð2Þ
7. In accordance with point 4, then we seek to characterize the r.v. Z, given the couple (f, Y), where Y is defined by its

probability distribution PY and f by the considered finite element model.

The proposed approach is based on the construction of an Hilbertian approximation of f that allows us to estimate the
statistical moments of the r.v. Z; in particular, its two first moments (mean and variance) will allow us to quantify the effect
of the random variability of Y on the second order random variability (i.e. the scattering) of Z. It goes without saying that
the full characterization of Z is its probability distribution. On the one hand, considering the specificity of the problem (f is
nonlinear and not defined by an explicit analytical expression, k is not necessarily small, and Y is a priori not Gaussian),
estimation of this function by using Monte Carlo simulation of the FE model would be very time consuming. On the other
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hand, simulation of the Hilbertian approximation will be very cheap, so this approach may be considered in order to build
an approximation of the probability distribution.

The first step of this approach consists in rewriting the problem in terms of standardized Gaussian r.v.’s.

2.2. Gaussian standardization

Under little constraining assumptions, that we take as satisfied here, it can be shown that there exists a measurable
function T from Rk into Rk and a Rk-valued standard Gaussian r.v. X such that

Y ¼ T ðX Þ; ð3Þ
where the equality in Eq. (3) must be interpreted as an equality of probability distributions. Inserting Eq. (3) in Eq. (2)
yields

Z ¼ gðX Þ; ð4Þ
where g is a measurable function from Rk into R such that

g ¼ f � T . ð5Þ
Eq. (4), that expresses Z as a function of standardized Gaussian r.v.’s, defines the working formulation on which the
proposed method is based.

Appendix A gives the expression of T when X is lognormal, which is the case in the present work (see applications in
Section 3). The general expression of T is given in reference [22].

2.3. Fundamental assumption on g

Let mk be the standard Gaussian probability distribution on Rk and let uk be its density with respect to the Lebesgue
measure dx = dx1 � � � dxk on Rk. We have, 8x ¼ ðx1; . . . ; xkÞ 2 Rk,

mkðdxÞ ¼ ukðxÞdx; ukðxÞ ¼ ð2pÞ�
k
2 exp �kxk

2

2

 !
; ð6Þ

where k � k denotes the canonical Euclidean norm on Rk. In the following, we will assume that g is square integrable with
respect to mk, that is to say that the condition:Z

Rk
g2ðxÞmkðdxÞ ¼

Z
Rk

g2ðxÞukðxÞdx < þ1 ð7Þ

is satisfied. The above integrability requirement is usually satisfied in physical systems.

2.4. Hilbertian approximation of g

Let L2ðRk; mkÞ be the Hilbert space of the mk-square integrable functions from Rk into R, equipped with the inner product
((Æ , Æ)) and the associated norm kj � jk, such that, 8f1; f2 2 L2ðRk; mkÞ,

ððf1; f2ÞÞ ¼
Z

Rk
f1ðxÞf2ðxÞmkðdxÞ ¼

Z
Rk

f1ðxÞf2ðxÞukðxÞdx; ð8Þ

kjf1jk ¼ ððf1; f1ÞÞ
1
2. ð9Þ

Let ðH aðxÞ; a 2 NkÞ be the family of Hermite polynomials on Rk and let ðhaðxÞ; a 2 NkÞ be the associated standardized fam-
ily, such that, 8x 2 Rk and 8a 2 Nk, haðxÞ ¼ ða!Þ�

1
2H aðxÞ (see Appendix B), where a ¼ ða1; . . . ; akÞ 2 Nk; k 2 N�, is a k-order

multi-index with length jaj = a1 + � � � + ak.
Given that ðhaðxÞ; a 2 NkÞ forms an orthonormal basis of L2ðRk; mkÞ and considering that, from Eq. (7), the function g

belongs to this space, we can write, 8x 2 Rk,

gðxÞ ¼
Xþ1
jaj¼0

GahaðxÞ ¼
Xþ1
jaj¼0

gaH aðxÞ; ð10Þ

where

Ga ¼ ððg; haÞÞ ¼
Z

Rk
gðxÞhaðxÞukðxÞdx ð11Þ
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and

ga ¼
1

a!
ððg;H aÞÞ ¼

1

a!

Z
Rk

gðxÞH aðxÞukðxÞdx. ð12Þ

A M-order Hilbertian approximation gM of g is then obtained by truncating the expansion (10) at a fixed order M 2 N�:

gMðxÞ ¼
XM

jaj¼0

gaH aðxÞ. ð13Þ

Recall that Ha(x) is given by (see Appendix B):

H aðxÞ ¼
Yk

i¼1

H aiðxiÞ; ð14Þ

where x ¼ ðx1; . . . ; xkÞ 2 Rk and, "i 2 {1, . . . , k}, H aiðxiÞ is the ai-order Hermite polynomial on R.
Thus, determining a M-order Hilbertian approximation of g reduces to estimate the coefficients (ga, jaj = 0, . . . , M)

given by Eq. (12), which can be rewritten:

ga ¼
1

a!
hgðX ÞH aðX Þi; ð15Þ

where h Æ i denotes the mathematical expectation. In the following, M will be called ‘‘approximation order’’.

2.5. Calculating the approximation coefficients

Calculating the coefficients ga given by Eqs. (12)–(15) represents the most important and most delicate step of the
method. We could have used Monte Carlo, quasi Monte Carlo or Modified Monte Carlo methods [2,4,5,10,23] to carry
out this calculation. This strategy would have required much calls to function g and has been excluded for practical rea-
sons. Other methods [13,16] could also be used, but again, they do not seem to realize the best compromise between the
quality of the approximation and its cost. This is the reason why we have chosen another approach. It consists in replacing
g in Eqs. (12)–(15) with a piecewise polynomial approximation constructed from a cubic B-spline interpolation [7].

Let us suppose that this approximation, denoted by S, has been constructed. Then, according to Eqs. (12)–(15), the coef-
ficients ga are approximated by

ga ’ ~ga ¼
1

a!
hSðX ÞH aðX Þi ¼

1

a!

Z
Rk

SðxÞH aðxÞukðxÞdx; ð16Þ

and gM(x) in (13) is approximated by

gMðxÞ ’ ~gMðxÞ ¼
XM

jaj¼0

~gaH aðxÞ. ð17Þ

The obvious interest of this approach is that, once the approximation S has been obtained, calling g is not required to cal-
culate the coefficients ~ga. Consequently, any numerical method (Monte Carlo, quadrature, etc.) can be used. For example,
for small values of the problem dimension, a Gauss–Legendre integration scheme could be used.

The determination of S constitutes the main cost of this strategy. The graph of such an approximation is composed of nk

hyper-arcs, that is of nk hyper-surfaces restricted to bounded hypercubes of Rk, where n is the number of interpolation arcs
in each space direction and k the number of input r.v. For the sake of simplicity, only uniformly distributed interpolation
points are considered in this first work. Determining S requires to define NI = (n + 1)k interpolation points and therefore to
call NI times the function g (see Appendix C). Even if we optimize the location of these interpolation points, the number of
deterministic computations increase exponentially with the number of input r.v., as long as a tensor-product quadrature
formula is used. This is the main reason why the proposed approach is limited to problems involving a small number
of uncertain parameters, which represent however a large field of engineering problems. The use of integration schemes
more suitable for high dimensional integrals calculations, as Smolyak quadrature [25], would probably allow to consider
problems involving a larger number of r.v. However, it seems unrealistic to apply such a method (like other surface
response methods) to situations where stochastic fields are to be considered.

2.6. Approximation of moments of Z

The coefficients ~ga being calculated, let us introduce the scalar r.v. ~ZM such that

~ZM ¼ ~gMðX Þ ¼
XM

jaj¼0

~gaH aðX Þ ð18Þ
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whose N-order moment, for any N in N�, is given by

~lM ;N ¼ h~ZN
Mi ¼

XM

ja1j¼0

� � �
XM

jaN j¼0

~ga1 � � � ~gaN

YN
j¼1

H ajðX Þ
* +

; ð19Þ

where, "j 2 {1, . . . , N}, aj ¼ ðaj
1; . . . ; aj

kÞ 2 Nk is a k-order multi-index. For any N in N�, the corresponding moment
lN = hZNi of the r.v. Z defined by Eq. (4) can then be approximated by ~lM ;N :

lN ’ ~lM ;N . ð20Þ
Using the orthogonality properties of Hermite polynomials, the formula (19) can be easily computed. As an example, for
N = 1 and N = 2, we obtain

l1 ¼ hZi ’ ~lM ;1 ¼
XM

jaj¼0

~gada;0 ¼ ~g0; ð21Þ

l2 ¼ hZ2i ’ ~lM ;2 ¼
XM

ja1j¼0

XM

ja2j¼0

~ga1 ~ga2a1!da1;a2 . ð22Þ

Let us suppose now that more than one scalar observation of the response is considered (see for example application in
Section 3.4) and let be l the number of these observations: Z is then a vector r.v. Z = (Zi, . . . , Zl). The covariance of a cou-
ple (ZI,ZJ) is given by

CovðZI ; ZJÞ ’
XM

ja1j¼0

XM

ja2j¼0

~gI
a1 ~gJ

a2a1!da1;a2 ; ð23Þ

where ZI ’ ~ZM ;I ¼
PM
jaj¼0 ~gI

aH aðX Þ, ZJ ’ ~ZM ;J ¼
PM
jaj¼0 ~gJ

aH aðX Þ.
Let be P the effective number of terms in the expansion (13) or (17); P is always greater than M (for k = 1, P = M + 1,

for k = 2, P ¼ ðMþ1ÞðMþ2Þ
2

, . . .) and is called ‘‘truncation order’’. For computational purposes, each Hermite polynomial on
Rk involved in (13) or (17) can be associated to an integer index j such that 0 6 j 6 P � 1. So (18) can also be written:

~ZM ¼
XP�1

j¼0

~gjHjðX Þ ð24Þ

and, remembering that hZi ’ ~g0 (see Eq. (21)), an approximation of any centered N-order moment of Z can be

hZ � hZiiN ¼ �lN ’ h~ZM � ~g0iN ¼ ~�lM ;N ¼
XP�1

j¼1

~gjH jðX Þ
 !N

. ð25Þ

After some algebra, it can be written that

~�lM ;N ¼
XN

i1¼0

Xi1

i2¼0
. . .
XiP�3

iP�2¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P�2 sums

Ai1i2���iP�2;N H ðN�i1Þ
1 H ði1�i2Þ

2 � � �H ðiP�3�iP�2Þ
P�2 H ðiP�2Þ

P�1

D E
; ð26Þ

where

Ai1i2���iP�2;N ¼
N

i1

� �
i1

i2

� �
� � �

iP�3

iP�2

� �
� ~gðN�i1Þ

1 ~gði1�i2Þ
2 . . . ~gðiP�3�iP�2Þ

P�2 ~gðiP�2Þ
P�1

and with
i
j

� �
¼ i!

j!ði�jÞ! the binomial coefficient.

So the computation of (26) leads to the evaluation of the following kind of expectations:

YP�1

j¼1

ðH jðX ÞÞbj

* +
¼
Yk

i¼1

YP�1

j¼1

ðH aj;iðX iÞÞbj

* +
; ð27Þ

where H jðX Þ ¼
Qk

i¼1H aj;iðX iÞ, with Hj Hermite polynomial on Rk and H aj;i associated Hermite polynomials on R.
A set of Fortran subroutines has been developed in order to compute exactly these statistical moments,1 whatever the

order N and the dimension k. Thus, we can reach our goal, which was to obtain numerical approximations of the statistical
1 In practice, it is especially interesting to evaluate the well-known skewness (b1) and kurtosis (b2), respectively defined as: b1 ¼ �l3

r3, b2 ¼ �l4

r4, where r, �l3

and �l4 are the standard deviation and the 3-order and 4-order centered moments.
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moments at a low cost. The knowledge of these approximated statistical moments could be used to approximate the prob-
ability density function of the r.v. Z. In practice, we preferred to estimate this function by performing Monte Carlo sim-
ulations of the M-order approximation ~gM of g (17) (see applications).

To finish, consider the scalar r.v.:

ZM ¼ gMðX Þ ¼
XM

jaj¼0

gaH aðX Þ ð28Þ

which differs from ~ZM in that, according to Eq. (16), the coefficients of the ~ZM -expansion (18) are approximations of those
of the expansion (28). Then, it can be shown that the r.v. ZM, with ga given by Eqs. (12)–(15) for a such as 0 6 jaj 6M, is
the best approximation in the mean-square sense of Eq. (4). As a result, if the coefficients ~ga are good approximations of the
coefficients ga, we are sure that the approximations of the moments lN of Z by the moments ~lM ;N of ~ZM are correct, at least
up to the second order (i.e. for N 6 2).

3. Applications

In order to illustrate some possibilities of the proposed method, we propose four applications focused on the calculation
of the statistical moments of the system response and on the estimation of the Probability Density Function (PDF) of the
marginal laws of the response r.v. The influence of the variability of the uncertain parameters on the response system is also
studied. The uncertain parameters are modeled as lognormal r.v.’s; these r.v. are correlated if more than one is considered.
The first presented example deals with a mechanically linear problem. Thanks to its simplicity, the exact analytical expres-
sions of the target moments can be established. The other examples concern some nonlinear problems for which the cal-
culation of the target moments requires using a Monte Carlo procedure.

3.1. Application 1: Bar under axial load

We consider a homogeneous rectilinear bar with constant section, embedded at one end and submitted to an axial load
at the other one (see Fig. 1).

We are interested in the longitudinal elastic displacement z of the final section, given by

z ¼ FL
ES

; ð29Þ

where F is the tensile axial load, S is the area of the cross-section, L is the length of the bar and E is the Young modulus of
the constitutive material.

The uncertain parameters of the model are L and S, respectively denoted by y1 and y2. Hence

z ¼ ay1y�1
2 ; a ¼ E�1F . ð30Þ

The parameters E and F are deterministic and equal to

E ¼ 2:1� 1011 Pa; F ¼ 106 N.

The couple y = (y1, y2) is modeled as a two-dimensional lognormal r.v. Y = (Y1, Y2) with characteristics:

Mean of Y1: mY 1
¼ hY 1i ¼ 1 m; Variance of Y1: r2

Y 1
¼ hðY 1 � mY 1

Þ2i ¼ m2
Y 1

v2
Y 1

.

Mean of Y2: mY 2
¼ hY 2i ¼ 2� 10�4 m2; Variance of Y2: r2

Y 2
¼ hðY 2 � mY 2

Þ2i ¼ m2
Y 2

v2
Y 2

.
Covariance of Y1 and Y2: CY 1Y 2

¼ hðY 1 � mY 1
ÞðY 2 � mY 2

Þi ¼ mY 1
mY 2

vY 1
vY 2

qY 1Y 2
, where vY 1

(resp. vY 2
) is the coefficient of

variation of Y1 (resp. Y2) and qY 1Y 2
is the coefficient of correlation of the couple (Y1, Y2).

As a result, z is a scalar r.v. that we shall denote by Z from now on and which is such that

Z ¼ aY 1Y �1
2 . ð31Þ
L

FE, S 

Fig. 1. Bar under axial load.
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It can be easily shown that this r.v. is lognormal, with mean mZ and coefficient of variation vZ given by

mZ ¼ amY 1
m�1

Y 2
ð1þ v2

Y 2
Þð1þ vY 1

vY 2
qY 1Y 2

Þ�1
; ð32Þ

v2
Z ¼ ð1þ v2

Y 1
Þð1þ v2

Y 2
Þð1þ vY 1

vY 2
qY 1Y 2

Þ�2 � 1. ð33Þ

The scattering of the response results from the variability of the random parameters Y1 (the length) and Y2 (the section
area). It is characterized by the coefficient of variation vZ, and therefore, according to Eq. (33), only depends on vY 1

,
vY 2

and qY 1Y 2
.

Approximations of the two first moments of Z are driven by two parameters: the approximation order M and the num-
ber NI of B-spline interpolation points. For given values of M and NI, the approximations of the mean and of the standard
deviation of Z are respectively denoted by ~mZðM ;NIÞ and ~rZðM ;N IÞ. These statistics are compared to the corresponding
exact statistics mZ and rZ given by Eqs. (32) and (33) (where rZ = mZvZ) by means of the relative error rates:

emðM ;N IÞ ¼
100½mZ � ~mZðM ;NIÞ�

mZ
; erðM ;N IÞ ¼

100½rZ � ~rZðM ;N IÞ�
rZ

:

In fact, according to Eq. (21), ~mZðM ;NIÞ does not depend on M, and consequently neither does em(M, NI). It will be de-
noted by em(NI) in the following. Fig. 2 shows the variation of em(NI) with NI, for vY 1

¼ vY 2
¼ 0:1 and qY 1Y 2

¼ 0:8.
For the same values of vY 1

, vY 2
and qY 1Y 2

, Fig. 3 depicts the variation of er(M, NI) with M, for several values of NI. On
these figures, we can see that the approximation of the mean is good, even for small values of NI. However, the approx-
imated standard deviation does not converge on the exact one if NI is too small, that is if the interpolation refinement is not
sufficient. Nevertheless, for values of NI allowing convergence, it can be noticed that this one is fast and leads to very good
approximations.

For any fixed value of the couple (M, NI), the approximation of the coefficient of variation vZ of Z is denoted by
~vZðM ;NIÞ. For M = 2 and for two values of NI (25 and 36), Figs. 4 and 5 show the variation of ~vZðM ;N IÞ with, respectively
(a) vY 1

, for vY 2
¼ 0:1 and qY 1Y 2

¼ 0:8 (Fig. 4), (b) qY 1Y 2
, for vY 1

¼ vY 2
¼ 0:1 (Fig. 5). The values NI = 25 and NI = 36 cor-

respond respectively to 4 and 5 B-spline interpolation arcs in each space direction. The corresponding evolutions of the
exact coefficient of variation vZ, given by Eq. (33), are plotted on the same figures. The comparison of these graphs shows
a good agreement between exact and approximated results. We can also observe that this agreement improves when NI

increases, that is when the accuracy of the interpolation improves.

3.2. Application 2: Elasto-plastic truss

Now we consider a three-bar truss (see Fig. 6) submitted to a deterministic load F applied on its bottom node. Lateral
bars have the same Young modulus E1 and the same length L/cosa, where L is the length of the central bar, which is com-
posed of a material with Young modulus E2. The three bars have the same section, with area S.

We are interested in the vertical displacement z of the bottom node, calculated under the assumption that the mechanical
behavior of the constituent materials is elasto-plastic.
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The uncertain parameters of the mechanical model are the Young modulus E1 and E2, denoted by y1 and y2 respectively.
The couple y = (y1, y2) is modeled as a two-dimensional lognormal r.v. Y = (Y1, Y2) with characteristics:

Mean of Y1: mY 1
¼ 2� 1010 Pa; Standard deviation of Y1: rY 1

¼ mY 1
vY 1

.
Mean of Y2: mY 2

¼ 2� 1010 Pa; Standard deviation of Y2: rY 2
¼ mY 2

vY 2
.

Covariance of Y1 and Y2: CY 1Y 2
¼ mY 1

mY 2
vY 1

vY 2
qY 1Y 2

where vY 1
(resp. vY 2

) is the coefficient of variation of Y1 (resp. Y2)
and qY 1Y 2

is the coefficient of correlation of the couple (Y1, Y2).

The other parameters of the model, namely L, S, a, F, fy (yield stress) and Ep (plastic modulus) are deterministic and
equal to

L ¼ 1 m; S ¼ 20� 10�4 m2; a ¼ p=4;

F ¼ 25� 104 N; f y ¼ 6� 107 Pa; Ep ¼ 0:7mY 1
:

Under these conditions, the displacement z is a scalar r.v. that we shall denote by Z from now on and which is such that:
Z = f(Y), where f is a nonlinear mapping from ðR�þÞ

2 into R whose expression can be analytically established in this par-
ticular case (see [17]).
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We are interested in the mean mZ and the standard deviation rZ of this r.v. As explained in the first application, the
approximation of mZ, denoted by ~mZðN IÞ, only depends on NI and the approximation of rZ, denoted by ~rZðM ;N IÞ,
depends on M and NI. Table 1 shows the variation of ~mZðN IÞ with NI, for vY 1

¼ vY 2
¼ 0:3 and qY 1Y 2

¼ 1 (we consider such
largest values of vY 1

and vY 2
in order to verify the numerical convergence of the method, even for large coefficients of

variation).
The variation of ~rZðM ;N IÞ with M is plotted in Fig. 7 for the same values of vY 1

, vY 2
and qY 1Y 2

, and for three values of NI:
9, 16 and 81, corresponding respectively to 2, 3 and 8 interpolation B-spline arcs in each space direction.

In each case, ~mZðN IÞ and ~rZðM ;N IÞ are compared with their respective targets m̂Z and r̂Z estimated from 105 Monte
Carlo simulations. We can observe that these results are consistent with those of the first application, that is: (a) the mean
approximation rapidly converges to the target value, (b) for small values of NI, the standard deviation approximation does
not converge to the target value, and (c) for values of NI for which the convergence is possible, this one is very fast and
leads to very good approximations.

We denote by ~vZðM ;NIÞ the coefficient of variation of Z provided by the proposed method and by v̂Z the corresponding
target statistic obtained from Monte Carlo simulations: ~vZðM ;NIÞ ¼ ~rZðM ;NIÞ=~mZðNIÞ, v̂Z ¼ r̂Z=m̂Z . For M = 6, vY 2

¼ 0:1,
qY 1Y 2

¼ 0:8 and for two values of NI: 25 and 36, corresponding respectively to 4 and 5 B-spline interpolation arcs in each
space direction, Fig. 8 depicts the variation of ~vZðM ;N IÞ with vY 1

and compares this evolution with the one of the target v̂Z .
Table 1
Variation of the mean of Z with the number NI of B-spline interpolation points (vY 1

¼ vY 2
¼ 0:3, qY 1Y 2

¼ 1Þ
NI

9 16 25 49 81

Proposed method: ~mZðNIÞð�10�3 m) 4.32 3.75 4.02 4.10 4.09
Monte Carlo simulations: m̂Zð�10�3 m) 4.09
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Again, these results corroborate those of the previous application: a good agreement is observed between approximations
and targets and this agreement highly improves when NI increases.

3.3. Sphere under internal pressure

This application deals with a hollow sphere under internal pressure (see Fig. 9). The geometrical and mechanical para-
meters of the model are the internal and external radius a and b, the Young modulus E, the Poisson ratio m, the yield stress
fy and the internal pressure p. The constituent material is supposed to be elastic perfectly plastic.

The random parameter of the problem is the Young modulus E, afterwards denoted by y and modeled as a lognormal
r.v. Y with characteristics: mY = 2 · 1011 Pa, rY = mYvY.

The other parameters are assumed to be deterministic and equal to: m = 0.3, a = 1 mm, b = 2 mm, fy = 3 · 108 Pa,
p = 3.589 · 108 Pa. We are interested here in the radial plastic displacement z at any point of the internal outline. The
deterministic solution of this problem is known [18]. In the random case, the solution is a scalar r.v. Z given by

Z ¼ f ðY Þ; ð34Þ
where f is a mapping from R�þ into R, such that, 8y 2 R�þ,

f ðyÞ ¼ A
y

ð35Þ



a

b

p

Fig. 9. Sphere under internal pressure.

J. Baroth et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 6479–6501 6489
and

A ¼ A1 � mA2; ð36Þ

A1 ¼ af y a3 � ln a2 � 2

3
ð1� b3Þ

� �
; A2 ¼ af y a3 � ln a4 � 4

3
ð1� b3Þ

� �
; ð37Þ

a ¼ c
a

; b ¼ c
b
; ð38Þ

the constant c being obtained by solving the equation:

p ¼ 2f y ln aþ 1

3
ð1� b3Þ

� �
. ð39Þ

Table 2 provides the errors (expressed as a percentage (%)) on four statistical moments (mean, variance, skewness and kur-
tosis) for increasing qualities of the spline interpolation used for the computation of the approximation coefficients (see Eq.
(16)).

For all the four moments, convergence of these errors on zero is observed when the number NI of interpolation points
increases. A very good accuracy of the mean is quickly obtained and not surprisingly, major efforts have to be made when
the order of the statistical moments increases. Nevertheless, good results are obtained for all these four moments with a
significant reduction of the number NI of mechanical computations (here NI 6 11) by comparison with the 105 Monte
Carlo simulations required.

Table 3 shows errors on variance, skewness and kurtosis of Z, for different coefficients of variation of the ‘‘input’’ r.v. Y

and for several values of the number of interpolation points (NI = 7, 9, 11).
Even if, as expected, errors increase with the coefficient of variation (the higher the moment order, the higher this phe-

nomenon), less than 1% error has been obtained using appropriate spline interpolation (here NI = 11, i.e. a 10-arcs spline
was used on the interpolation domain).

Then, the Probability Density Function (PDF) of the response Z has been considered. This PDF has been obtained
using two different ways. On the one hand, the PDF (called ‘‘analytical’’ in Fig. 10) has been estimated performing
10000000 simulations of the exact solution of the mechanical problem. On the other hand, the PDF had been approxi-
mated performing the same number of Monte Carlo simulations of the approximated response ~Z (18). We can observe
in Fig. 10 that a good accuracy is obtained for an interpolation points number greater or equal to 9 (on the graph, the
11-points curve is superposed on the analytical one). Thus, using the proposed approximation technique, only 9 or 11
deterministic FE computations of the mechanical response are required for this problem (one for each interpolation point),
whereas several millions of computations are needed using classical Monte Carlo simulations.
Table 2
Errors (%) on statistical moments (vY = 0.3)

NI

4 5 6 7 8 9 10 11

Mean 10.43 2.11 0.48 0.24 0.04 <0.01 <0.01 <0.01
Variance 19.17 27.15 8.59 0.91 1.38 0.34 0.06 0.03
Skewness 143.39 66.99 21.69 14.77 2.25 0.86 0.34 0.47
Kurtosis 140.07 192.76 268.15 29.14 12.15 10.00 2.21 0.62



Table 3
Errors (%) on statistical moments for various coefficients of variation

Coefficients of variation

0.05 0.1 0.2 0.3 0.4 0.5

Variance NI = 7 0.81 0.83 0.88 0.91 0.86 0.70
NI = 9 0.10 0.12 0.20 0.34 0.57 0.90
NI = 11 <0.01 <0.01 0.01 0.03 0.06 0.10

Skewness NI = 7 10.67 10.76 12.27 14.77 17.78 20.65
NI = 9 0.64 0.98 1.04 0.86 0.40 0.44
NI = 11 0.78 0.44 0.38 0.47 0.62 0.78

Kurtosis NI = 7 2.53 3.62 9.58 29.14 93.17 288.60
NI = 9 0.38 0.51 1.99 10.00 42.28 145.92
NI = 11 0.14 0.20 0.39 0.62 0.72 0.38
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Fig. 10. Sphere—probability density functions.
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3.4. Hertz contact problem

We eventually consider a Hertz contact problem between an infinitely long cylinder and a fixed rigid horizontal plane.
The cylinder is compressed by a vertical uniform load 2F along its axis. The behavior of its material is supposed to be iso-
tropic linear elastic in a first model (Section 3.4.1) and then elasto-plastic in a second one (Section 3.4.2). Plane strain
assumption is made, so the analysis can be reduced to a two-dimensional one (see Fig. 11a).

Thanks to the problem symmetry, only half section of the cylinder, submitted to a load F, is discretized, using linear
plain strain Finite Elements (see Fig. 11b). Contact is taken into account using a mesh of contact FE linking the basis
of the cylinder and the portion of the plane that may be in contact. Due to the contact, the mechanical problem is nonlinear
in both models (elastic and elasto-plastic ones) and the FE resolution is incremental and iterative.
2F

R
2

1

3

4

5

a b

Fig. 11. Hertz contact problem—(a) geometry, (b) FE mesh.
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We are interested in vertical displacements (zi) of five points i (1 6 i 6 5) of the section S (1=(0, 2R), 2=(0; 3
2
R), 3=(0, R),

4=(0; 2
3
R), 5=(0; 1

3
R), see Fig. 11a). These displacements are gathered in a vector z. They are set at five successive loading

steps: (Fi = 0, 2i · F)16i65.
Parameters of the deterministic model, namely the Poisson’s ratio m, the half-loading intensity F, the radius R and the

yield limit stress fy (for second model only), are equal to: m = 0.3; F = 5000 N; R = 50 mm; fy = 30 · 106 Pa.

3.4.1. Elastic cylinder

The uncertain parameter of this first model is the Young Modulus E of the constituent material, modeled by a lognor-
mal r.v. Y, whose mean and coefficient of variation write respectively: mY = 3 · 1010 Pa; vY = 0.2. As a result, the vector
displacements z is a vector r.v. that we shall denote by Z = (Z1, . . . , Z5).

Tables 4a and 4b provide errors (expressed as a percentage (%)) on statistical moments, for vY = 0.2, for several values
of the number NI of interpolation points and for each r.v. (Zi)16i65. Table 4a shows errors on mean and variance. This
table illustrates the very fast convergence of the mean errors on zero: only five interpolation points are required to obtain
less than 1% error, whatever the r.v. Zi.

Convergence of the variance errors is less easy, but about 2% errors are obtained for more than six interpolation points.
Table 4b provides errors on skewness and kurtosis. Whatever the r.v. Zi, we notice a good convergence of errors on zero.
For both statistical moments, at most 5% errors (and in most cases, about 2% errors) are obtained for more than 7 inter-
polation points.

The probability density functions of the responses Zi are then studied. Fig. 12a and b show the estimated PDFs of the
r.v. Z1 for the last loading step (F5 = F). These PDFs had been obtained by Monte Carlo simulations of the approximated
response ~Z (18). Different spline interpolations had been considered for the computation of the approximation coefficients.
A convergence behavior is clearly observed in Fig. 12 for increasing interpolation points numbers (on this graph, 8 points
spline and 11 points spline curves are quasi-superposed).

In Fig. 12b, these ‘‘approximated’’ PDFs are compared with the PDF estimated by direct Monte Carlo simulation of the
deterministic FE model. Because of the high computational cost of this simulation, only 104 simulations had been made
and 100 points of this PDF (called ‘‘exact’’ PDF) had been considered. By comparison, the ‘‘approximated’’ PDFs curves
Table 4a
Errors (%) on statistical moments (vY = 0.2): Mean and Variance—elastic cylinder

NI

4 5 6 8 11

Mean Z1 3.49 0.90 0.21 0.06 0.06
Z2 3.21 0.90 0.26 0.06 0.06
Z3 3.06 0.90 0.28 0.06 0.05
Z4 2.93 0.91 0.30 0.06 0.05
Z5 2.62 0.91 0.35 0.06 0.05

Variance Z1 3.23 22.83 7.10 1.77 2.13
Z2 2.48 23.23 6.87 2.01 2.11
Z3 2.06 23.46 6.75 2.15 2.10
Z4 1.70 23.66 6.63 2.27 2.09
Z5 0.86 24.14 6.35 2.56 2.07

Table 4b
Errors (%) on statistical moments (vY = 0.2): Skewness and Kurtosis—elastic cylinder

NI

4 5 6 7 8 9 10 11

Skewness Z1 138.36 36.73 27.61 11.02 1.89 0.79 0.76 0.63
Z2 139.13 35.93 30.50 10.58 2.60 0.56 0.72 0.94
Z3 139.44 35.38 32.28 10.32 3.09 0.45 0.67 1.13
Z4 139.64 34.85 33.94 10.10 3.57 0.36 0.61 1.31
Z5 139.75 33.29 38.26 9.56 4.91 0.18 0.40 1.78

Kurtosis Z1 77.97 62.81 110.71 9.00 1.91 1.34 1.67 0.83
Z2 74.60 60.72 121.99 9.46 1.24 2.02 1.72 0.80
Z3 72.65 59.54 128.77 9.76 0.90 1.98 1.79 0.74
Z4 70.90 58.50 134.96 10.06 0.62 1.71 1.86 0.65
Z5 66.62 56.01 150.48 10.86 0.07 0.41 2.10 0.13



-0.00015 -0.0001 -5e-05
z1

0

5000

10000

15000

20000

25000

30000

PD
F 

(z
1)

Spline 4 points
Spline 5 points
Spline 6 points
Spline 8 points
Spline 11 points

-0.00015 -0.0001 -5e-05
z1

0

5000

10000

15000

20000

PD
F 

(z
1)

Exact
Spline 6 points
Spline 7 points
Spline 8 points

b

a

Fig. 12. Elastic cylinder—convergence of probability density functions displacement z1—loading step 5.
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are 1000 points curves and had been obtained performing 107 simulations because 11 deterministic FE computations were
at most needed in that case. In order to improve its shape, the ‘‘exact’’ PDF curve had been smoothed before being plotted
in Fig. 12b. Despite the poor quality of the ‘‘exact’’ PDF, agreement of ‘‘exact’’ PDF and ‘‘approximated’’ ones for suf-
ficient interpolation quality seems to be observed.

3.4.2. Elasto-plastic cylinder

Now we consider that the behavior of the cylinder is elasto-plastic with linear hardening. The uncertain parameters of
this second model is the Young modulus E and the plastic modulus Ep, denoted afterwards y1 and y2 respectively. The
couple (y1, y2) is modeled as a two-dimensional lognormal r.v. Y = (Y1, Y2), with characteristics:

Mean of Y1 and Y2: mY 1
¼ 3� 1010 Pa and mY 2

¼ 9� 109 Pa.
Coefficient of variation of Y1 and Y2: vY 1

¼ vY 2
¼ 0:2.

Coefficient of correlation of the couple: qY 1Y 2
¼ 0:9.

As a result, the vector displacements z is a vector r.v. that we shall denote by Z = (Z1, . . . , Z5). The plastic points of the
cylinder given by the deterministic FE computation with E ¼ y1 ¼ mY 1

and Ep ¼ y2 ¼ mY 2
are shown in Fig. 13 for the 5

loading steps considered. Tables 5a–5d provide errors (expressed as a percentage (%)) on statistical moments, for
vY 1
¼ vY 2

¼ 0:2 and for several values of the number NI of interpolation points ((4 · 4) 6 NI 6 (11 · 11)), at two loading
steps F1 = 0.2 · F and F5 = F, for each r.v. (Zi)16i65.

Table 5a illustrates the very fast convergence of the mean errors on zero: errors less than 1% error can easily be obtained
whatever the r.v. Zi and the load intensity.

Tables 5b–5d show the errors for moments of higher degrees (variance, skewness and kurtosis). As expected, accurate
approximations of such moments require a higher computational effort. Nevertheless, satisfactory errors of 1–3% are
obtained here for spline interpolations up to 8 · 8 points, whatever the r.v. Zi and the loading level.



Fig. 13. Plastic points at different loading steps (E ¼ y1 ¼ mY 1
, Ep ¼ y2 ¼ mY 2

).

Table 5a
Errors (%) on Mean (vY 1

¼ vY 2
¼ 0:2)—elasto-plastic cylinder

NI

4 · 4 5 · 5 6 · 6 8 · 8 11 · 11

Mean Z1 Step 1 1.31 0.25 0.16 0.17 0.18
Step 5 0.46 0.27 0.04 0.09 0.09

Z2 Step 1 1.19 0.21 0.19 0.20 0.20
Step 5 0.08 0.24 0.03 0.09 0.09

Z3 Step 1 1.14 0.20 0.21 0.21 0.21
Step 5 0.10 0.23 0.02 0.08 0.09

Z4 Step 1 1.09 0.18 0.23 0.22 0.23
Step 5 0.25 0.22 0.02 0.08 0.09

Z5 Step 1 0.98 0.15 0.27 0.25 0.25
Step 5 0.56 0.21 0.02 0.09 0.09
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In Fig. 14 are plotted the ‘‘exact’’ and some ‘‘approximated’’ PDF of the r.v. Z1, for different accuracy of the interpo-
lation (NI = 6 · 6, 8 · 8), at the last loading step (F5 = F). On the one hand, as simulations of approximated response ~Z1

are very few time-consuming, 107 simulations were made for the ‘‘approximated’’ PDFs and these PDFs are plotted at 1000
points. On the other hand, because of the numerical cost of deterministic FE computations, the ‘‘exact’’ PDF results from
2 · 104 simulations only; Consequently, the corresponding curve is still a rather coarse approximation of the true one, as it
can be seen for example by comparison between the estimated PDF and the associated smoothed curve. Nevertheless,
despite the low resolution of the smoothed ‘‘exact’’ PDF, the ‘‘approximated’’ PDFs seem to be in satisfactory agreement
with the ‘‘exact’’ one. The proposed approach is far less time-consuming, so 107 simulations of the PDF were made and
these PDFs are plotted at 1000 points.

3.4.3. Comparison of the elastic and the elasto-plastic Hertz contact problems

In Fig. 15 are plotted three PDFs that correspond to the marginal law of r.v. Z5 at the last loading step (F5 = F). These
PDFs have been evaluated by Monte Carlo simulations (107 simulations) of an accurate approximation involving a 11 · 11
interpolation points spline. The solid line curve shows the PDF for the elastic problem (Section 3.4.1: 1 r.v., the Young



Table 5b
Errors (%) on Variance (vY 1

¼ vY 2
¼ 0:2)—elasto-plastic cylinder

NI

4 · 4 5 · 5 6 · 6 8 · 8 11 · 11

Variance Z1 Step 1 1.17 6.64 3.63 2.47 2.67
Step 5 0.86 6.47 5.24 2.76 3.10

Z2 Step 1 1.17 6.81 3.52 2.25 2.50
Step 5 0.62 6.57 5.72 2.67 3.10

Z3 Step 1 1.16 6.90 3.46 2.13 2.40
Step 5 0.47 6.63 5.97 2.64 3.11

Z4 Step 1 1.16 6.98 3.40 2.01 2.31
Step 5 0.33 6.69 6.18 2.61 3.12

Z5 Step 1 1.15 7.18 3.25 1.72 2.08
Step 5 0.03 6.85 6.62 2.55 3.13

Table 5c
Errors (%) on Skewness (vY 1

¼ vY 2
¼ 0:2)—elasto-plastic cylinder

NI

4 · 4 5 · 5 6 · 6 8 · 8 11 · 11

Skewness Z1 Step 1 40.12 2.60 5.33 1.92 1.65
Step 5 19.40 2.21 15.07 2.28 2.59

Z2 Step 1 39.61 2.96 4.62 2.12 1.73
Step 5 10.23 4.23 18.59 2.74 3.09

Z3 Step 1 39.33 3.17 4.21 2.24 1.78
Step 5 5.30 5.43 20.55 3.03 3.37

Z4 Step 1 39.07 3.35 3.86 2.35 1.83
Step 5 1.11 6.52 22.26 3.31 3.63

Z5 Step 1 38.44 3.78 2.99 2.63 1.96
Step 5 8.06 9.17 26.15 4.02 4.23

Table 5d
Errors (%) on Kurtosis (vY 1

¼ vY 2
¼ 0:2)—elasto-plastic cylinder

NI

4 · 4 5 · 5 6 · 6 8 · 8 11 · 11

Kurtosis Z1 Step 1 20.58 10.23 2.48 2.07 2.66
Step 5 11.49 7.49 0.49 1.46 2.33

Z2 Step 1 20.65 10.48 2.48 1.89 2.56
Step 5 8.37 6.52 0.39 0.65 2.07

Z3 Step 1 20.69 10.62 2.47 1.78 2.51
Step 5 6.84 5.98 0.88 0.05 1.91

Z4 Step 1 20.72 10.75 2.47 1.69 2.46
Step 5 5.62 5.51 1.30 0.58 1.76

Z5 Step 1 20.80 11.04 2.46 1.43 2.31
Step 5 3.19 4.45 2.22 2.45 1.42
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modulus) and the dark curve with squares represents the PDF corresponding to the elasto-plastic problem (Section 3.4.2: 2
r.v., the Young modulus and the plastic modulus). An intermediate problem has also been considered: the cylinder is yet
elasto-plastic but the randomness of the problem is only due to the Young modulus. The plastic modulus is then considered
as equal to mY 2

¼ 9 � 109 Pa; the bright curve with circles represents the corresponding PDF.
Fig. 15 shows that, as it was expected, plastic behavior increases the (absolute value of the) vertical displacement. In the

intermediate problem, we can observe that the response variance decreases by comparison to the elastic problem. On the
contrary, if an additional source of randomness is included (namely the plastic modulus), the variance reaches a higher
value.

Similar shapes of PDFs for these three problems can be seen if we consider the other r.v. of the response vector Z. These
tendencies can also be observed and quantified in Tables 6a–6c. In Tables 6a–6c, columns (i), (ii) and (iv) give values cor-
responding respectively to the elastic, the intermediate and the elasto-plastic problems. In columns (iii) and (v), we can read
relative growth or reduction rates (expressed as a percentage (%)) with respect to the elasticity problem.
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Table 6a
Comparison of the (absolute value of the) means 11 · 11 interpolation points—loading step 5

r.v. Elastic Plastic 1 r.v. Plastic 2 r.v.

(i) (ii) (iii) (iv) (v)

Z1 9.37 · 10�5 11.63 · 10�5 +24% 11.70 · 10�5 +25%
Z2 6.59 · 10�5 8.82 · 10�5 +34% 8.89 · 10�5 +35%
Z3 5.66 · 10�5 7.92 · 10�5 +40% 7.99 · 10�5 +41%
Z4 5.05 · 10�5 7.34 · 10�5 +45% 7.41 · 10�5 +47%
Z5 4.02 · 10�5 6.40 · 10�5 +59% 6.47 · 10�5 +61%

Table 6b
Comparison of the variances 11 · 11 interpolation points—loading step 5

r.v. Elastic Plastic 1 r.v. Plastic 2 r.v.

(i) (ii) (iii) (iv) (v)

Z1 31.76 · 10�11 29.37 · 10�11 �8% 41.09 · 10�11 +29%
Z2 15.06 · 10�11 13.26 · 10�11 �12% 21.51 · 10�11 +43%
Z3 10.85 · 10�11 9.34 · 10�11 �14% 16.55 · 10�11 +53%
Z4 8.43 · 10�11 7.13 · 10�11 �15% 13.70 · 10�11 +62%
Z5 5.09 · 10�11 4.13 · 10�11 �19% 9.67 · 10�11 +90%
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Table 6c
Comparison of the (absolute value of the) coefficients of variation 11 · 11 interpolation points—loading step 5

r.v. Elastic Plastic 1 r.v. Plastic 2 r.v.

(i) (ii) (iii) (iv) (v)

Z1 0.1904 0.1473 �23% 0.1732 �9%
Z2 0.1861 0.1306 �30% 0.1650 �11%
Z3 0.1839 0.1221 �34% 0.1611 �12%
Z4 0.1820 0.1151 �37% 0.1580 �13%
Z5 0.1774 0.1005 �43% 0.1520 �14%
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The increase of the (absolute value of the) means when plasticity is taken into account, is found again in Table 6a for
each r.v. (Zi)(i=1,. . .,5). We can see in Table 6b, that variances decrease for intermediate problem and not surprisingly
increase for 2 r. v. elasto-plastic problem.

We can also observe that the amplitudes of the variations of these statistical moments increase from point 1 to point 5
(that is, when points are closer to the contact area). But no evident links appear between the plastic zone locations (at last
loading step, point 1 stays in a plastic zone and point 5 is close to the other plastic zone (see Fig. 13)) and the variations of
the statistical moments.

Finally, Table 6c deals with the coefficients of variation of the response r.v. In the elastic case, these coefficients of var-
iation are close to the coefficient of variation of the input r.v. (vY = 0.2). On the contrary, elasto-plasticity produces a
decrease of the coefficients of variation; this decreasing tendency is observed even if an additional source of randomness
is taken into account (plasticity with 2 r.v.).

4. Conclusion

This paper is a contribution to the development of SFE Methods for nonlinear mechanical problems. The presented
approach is the combination of two techniques: (i) the expansion of the mechanical nonlinear response on an Hilbertian
basis, (ii) the calculations of the expansion coefficients thanks to a cubic B-spline interpolation. The application of this
interpolation technique is original in the context of SFE Methods and leads to preliminary interesting results: accurate
approximations of the response on the whole definition domain are obtained from a limited number of calls of the finite
element model. The coefficients of this expansion up to the expected order are then computed at low cost from the inter-
polation. The statistical moments of any order and the Probability Density Function (PDF) of the mechanical response can
then be estimated in an economic way.

The proposed technique was tested on four examples. The first considered problem was mechanically linear and the
three others were nonlinear (elasto-plastic material and contact problem in the fourth example). One or several (correlated)
lognormal r.v. were considered on the different problems. The accuracy of the approximations was evaluated by compar-
ison to reference solutions obtained whether by analytical models or by Monte Carlo simulations. The effect of the inter-
polation refinement and of the dimension space projection on the calculated moments were eventually studied.

Beyond the use of a mathematically convergent development, comparisons to target results show a satisfactory conver-
gence of the Hilbertian expansion as soon as the spline interpolation is accurate enough. Concerning the presented appli-
cations, the method leads to exploitable and satisfactory results. However, these first results have to be confirmed on much
more complex problems.

The proposed approach can be put among the family of the response surface methods: the canonic basis of polynomials
used in classical regression techniques is here replaced by an orthogonal basis (namely the Hermite polynomials basis) and
the Euclidean norm on Rk is replaced by the norm associated to the space of mk-square integrable functions from Rk to R

defined in (9).
The response surface methods are widely developed, especially because they can be very easily coupled with existing

deterministic FE codes. It has been already pointed out in the literature that they can be applied to a large class of engi-
neering problems in a reliability context or for statistical moments computations in a sensitivity analysis context. Never-
theless, although these approaches are economical when compared to Monte Carlo simulations, it is clear that the
computational cost will increase with the number of input r.v. Consequently, with current computational resources, it
seems difficult to apply such methods, including the proposed approach, to problems involving random fields.

An important issue for response surface obtained by regression techniques is the storage and the inversion of the (usu-
ally ill-conditioned) matrix of the system that defines the approximation coefficients. However, thanks to the orthogonality
of the Hermite polynomials, the corresponding matrix is here diagonal so these two difficulties disappear.

The second important problem is the evaluation of the integrals involved in the definition of the response surface coef-
ficients. In this paper, an accurate cubic B-spline interpolation technique has been chosen. Alternatives, like efficient Monte
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Carlo techniques or quadratures methods, can also be found in the literature (see [25,20]). Here, a unique approximation of
the response surface is made. This is an important advantage of the proposed method because, unlike the above mentioned
methods, as soon as an accurate enough B-spline interpolation is obtained, no additional mechanical computations would
be needed for the approximation of moments of any order. Eventually, the location of the integration points has to be
optimized. Here we considered, for simplicity, uniformly distributed points. It could be useful to test other strategies
too (collocation technique, etc.).

We believe it would now be interesting to carry out comparisons, by help of some benchmarks, between these different
ways, especially for high order moments computations.

Appendix A. Gaussian standardization of lognormal random vectors

Let Y = (Y1, . . . ,Yk) be a k-dimensional lognormal random variable with given mean mY 2 Rk and covariance matrix
CY 2 Rk�k, such that

mY ¼

mY 1

mY 2

..

.

mY k

2
666664

3
777775; CY ¼

r2
Y 1

CY 1Y 2
� � � CY 1Y k

CY 2Y 1
r2

Y 2
� � � CY 2Y k

..

. ..
. . .

. ..
.

CY k Y 1
CY k Y 2

� � � r2
Y k

2
666664

3
777775; ðA:1Þ

where, "(i,j) 2 {1, . . . , k}2,

mY i ¼ hY ii; r2
Y i
¼ CY iY i ; CY iY j ¼ hðY i � mY iÞðY j � mY jÞi. ðA:2Þ

Let C 2 Rk�k be the symmetric and positive-definite (k · k) real matrix whose generic term Cij is given by

Cij ¼ ln 1þ
CY iY j

mY i mY j

� �
; ði; jÞ 2 f1; . . . ; kg2. ðA:3Þ

Let L 2 Rk�k be the lower triangular (k · k) real matrix derived from Cholesky’s factorization of C:

C ¼ LLT . ðA:4Þ
Let T:x = (x1, . . . , xk)! y = (y1, . . . , yk) = T(x) be the function from Rk into Rk defined by

y ¼ T ðxÞ ()

y1 ¼
mY 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

Y 1

q expfðLxÞ1g

..

.

yk ¼
mY kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

Y k

q expfðLxÞkg

8>>>>>>>>><
>>>>>>>>>:

ðA:5Þ

where vY i ¼ rY i m
�1
Y i

is the coefficient of variation of Yi and (Lx)i is the ith component of the vector Lx on the canonic basis
of Rk.

Finally, let X = (X1, . . . , Xk) be a k-dimensional standard Gaussian random variable, i.e. a Rk-valued Gaussian random
variable with zero mean and unit covariance matrix.

Then, we have the following result: the random variables Y and T(X) have the same probability distribution, i.e.:

Y ¼L T ðX Þ; ðA:6Þ
where the symbol ¼L denotes the equality of probability distributions.

As an example, the above relation takes the following forms for k = 1 and k = 2:

• Scalar case (k = 1):

Y ¼ T ðX Þ ¼ mYffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

Y

p expfLXg ðA:7Þ

with

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ v2

Y Þ
q

. ðA:8Þ
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• Two-dimensional case (k = 2):

Y ¼ T ðX Þ ()

Y 1 ¼
mY 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

Y 1

q expfL11X 1g

Y 2 ¼
mY 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

Y 2

q expfL21X 1 þ L22X 2g

8>>>><
>>>>:

ðA:9Þ

with:

L11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ v2

Y 1
Þ

q
ðA:10Þ

L21 ¼
lnð1þ qY 1Y 2

vY 1
vY 2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1þ v2
Y 1
Þ

q ðA:11Þ

L22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ v2

Y 1
Þ lnð1þ v2

Y 2
Þ � ln2ð1þ qY 1Y 2

vY 1
vY 2
Þ

lnð1þ v2
Y 1
Þ

s
ðA:12Þ

where qY 1Y 2
¼ CY 1Y 2

ðrY 1
rY 2
Þ�1 is the coefficient of correlation of the couple (Y1, Y2).

Appendix B. Hermite polynomials on Rk

Let us recall first that the family ðH m;m 2 NÞ of the Hermite polynomials on R (i.e. x 2 R) is defined by

H mðxÞ ¼
1 if m ¼ 0;

ð�1Þme
x2

2 dm

dxm ðe
x2

2 Þ if m 2 N�;

(
ðB:1Þ

and satisfies the recurrence relationship:

H 0ðxÞ ¼ 1; Hmþ1ðxÞ ¼ xH mðxÞ � H 0mðxÞ. ðB:2Þ
As an example, the six first Hermite polynomials on R are

H 0ðxÞ ¼ 1; H 3ðxÞ ¼ x3 � 3x;

H 1ðxÞ ¼ x; H 4ðxÞ ¼ x4 � 6x2 þ 3;

H 2ðxÞ ¼ x2 � 1; H 5ðxÞ ¼ x5 � 10x2 þ 15x:

These polynomials are orthogonal with respect to the standard Gaussian measure m on R:

8ðm; nÞ 2 N2;

Z þ1

�1
HnðxÞH mðxÞmðdxÞ ¼ n!dnm. ðB:3Þ

Let hm(x) be the polynomial on R—called the m-order standardized Hermite polynomial on R—such that, 8m 2 N:

hmðxÞ ¼
1ffiffiffiffiffi
m!
p H mðxÞ. ðB:4Þ

The family ðhmðxÞ;m 2 NÞ satisfies

8ðm; nÞ 2 N2;

Z þ1

�1
hnðxÞhmðxÞmðdxÞ ¼ dnm ðB:5Þ

and forms an orthonormal basis of the Hilbert space L2ðR; mÞ [24].
Let a ¼ ða1; . . . ; akÞ 2 Nk; k 2 N�, be a k-order multi-index with length jaj = a1 + � � � + ak, and let a! and da,b be the

symbols defined by

a! ¼ a1!� � � � � ak!; 8ða; bÞ 2 Nk �Nk; da;b ¼ da1b1
� � � � � dakbk

; ðB:6Þ

where aj! and dajbj
are the common factorial and Kronecker’s delta symbols.

Then, the a-order Hermite polynomial on Rk (i.e. x 2 Rk) is defined by

H aðxÞ ¼
Yk

i¼1

H aiðxiÞ; ðB:7Þ
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where x = (x1, . . . , xk) and, "i 2 {1, . . . , k}, H aiðxiÞ is the ai-order Hermite polynomial on R. Hermite polynomials on Rk

are orthogonal with respect to the standard Gaussian measure mk on Rk:

8ða; bÞ 2 Nk �Nk;

Z
Rk

H aðxÞHbðxÞmkðdxÞ ¼ a!da;b. ðB:8Þ

Let ha(x) be the polynomial on Rk—called the a-order standardized Hermite polynomial on Rk—such that, 8a 2 Nk:

haðxÞ ¼
1ffiffiffi
a
p

!
H aðxÞ. ðB:9Þ

The family ðhaðxÞ; a 2 NkÞ satisfies

8ða; bÞ 2 Nk �Nk;

Z
Rk

haðxÞhbðxÞmkðdxÞ ¼ da;b; ðB:10Þ

and forms an orthonormal basis of the Hilbert space L2ðRk; mkÞ.
Let us recall that the standard Gaussian measure mk on Rk is defined as

mkðdxÞ ¼ ð2pÞ�
k
2 exp �kxk

2

2

 !
dx; ðB:11Þ

where x = (x1, . . . , xk) and dx = dx1� � �dxk. For k = 1, m1 is denoted by m.

Appendix C. Cubic B-spline interpolation

• Functions from R into R.

Let a and b be two real numbers such that �1 < a < b < +1, and let f be a function from R into R such that
Def(f) � [a,b], where Def(f) denotes the definition domain of f. We consider a partition [x0,x1[[ � � � [ [xn�1,xn[[ [xn,xn+1]
of [a, b], where x0 = a and xn+1 = b, and we suppose that the values (f(xi); i = 0, . . . , n + 1) of f at the n + 2 nodes xi of
this partition are known (thanks to a first calculation). We want then to approximate f on [a, b] by a cubic B-spline function
S satisfying the n + 2 interpolation conditions:

SðxiÞ ¼ f ðxiÞ; i 2 f0; . . . ; nþ 1g. ðC:1Þ
According to the B-spline interpolation technique, the target approximation S is of the form [7]:

SðxÞ ¼
Xnþ3

l¼0

P lNl
3ðxÞ; ðC:2Þ

where the n + 4 real functions N l
3 are the cubic B-spline basis functions associated with the nodal vector (t0, t1, . . . , tn+7),

with t0 = t1 = t2 = t3 = x0, t4 = x1, . . . , tn+3 = xn, and tn+4 = tn+5 = tn+6 = tn+7 = xn+1.
For this nodal vector, the n + 6 B-spline basis functions of degree 0 are given by

N 0
0ðxÞ ¼ N 1

0ðxÞ ¼ N 2
0ðxÞ 	 0;

N l
0ðxÞ ¼ I½tl;tlþ1½ðxÞ ¼ I½xl�3;xl�2½ðxÞ for l ¼ 3; . . . ; nþ 3;

N nþ4
0 ðxÞ ¼ Nnþ5

0 ðxÞ ¼ Nnþ6
0 ðxÞ 	 0;

8>><
>>: ðC:3Þ

and, for 0 6 l 6 n + 6 � k, the basis functions Nl
k of degree k can be obtained using the following recurrence formula:

Nl
kðxÞ ¼

x� tl

tlþk � tl
Nl

k�1ðxÞ þ
tlþkþ1 � x

tlþkþ1 � tlþ1

N lþ1
k�1ðxÞ. ðC:4Þ

Because the extreme nodes are of multiplicity 4 (t0 = t1 = t2 = t3 = x0 and tn+4 = tn+5 = tn+6 = tn+7 = xn+1), the following
conditions must be satisfied:

P 0 ¼ f ðx0Þ; P nþ3 ¼ f ðxnþ1Þ; 3� P 1 � P 0

x1 � x0

¼ df
dx
ðx0Þ; 3� P nþ3 � P nþ2

xnþ1 � xn
¼ df

dx
ðxnÞ. ðC:5Þ

In practice, the derivative df
dx ðx0Þ and df

dx ðxnÞ are usually unknown but can be approximated using a numerical differentiation
scheme.
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Finally, the n unknown coefficients P2, P3, . . . , Pn+1 are obtained by solving the following linear system:

b1P 2 þ c1P 3 ¼ ðd0 þ d1Þf ðx1Þ � a1P 1

a2P 2 þ b2P 3 þ c2P 4 ¼ ðd1 þ d2Þf ðx2Þ

. .
. . .

. . .
. ..

.

. .
. . .

. . .
. ..

.

an�1P n�1 þ bn�1P n þ cn�1P nþ1 ¼ ðdn�2 þ dn�1Þf ðxn�1Þ
anP n þ bnP nþ1 ¼ ðdn�1 þ dnÞf ðxnÞ � cnP nþ2

8>>>>>>>>>>><
>>>>>>>>>>>:

ðC:6Þ

where

ai ¼
ðdiÞ2

Di�1

; bi ¼
diðdi�2 þ di�1Þ

Di�1

þ di�1ðdi þ diþ1Þ
Di

; ci ¼
ðdi�1Þ2

Di

di ¼ xiþ1 � xi; Di ¼ di�1 þ di þ diþ1 and d�1 ¼ dnþ1 ¼ 0:

ðC:7Þ
• Functions from R2 into R.
Let a, b, c and d be four real numbers such that �1 < a < b < +1 and �1 < c < d < +1, and let f be a function
from R2 into R such that Def(f) � [a, b] · [c, d]. We consider a partition [ [x0, x1[[ � � � [ [xn�1, xn[[ [xn, xn+1] ] ·
[ [y0, y1[[ � � � [ [ym�1, ym[[ [ym, ym+1] ] of [a, b] · [c, d], where x0 = a, xn+1 = b, y0 = c and ym+1 = d, and we suppose that
the values (f(xi, yj); i = 0, . . . , n + 1; j = 0, . . . , m + 1) of f at the (n + 2)(m + 2) nodes (xi, yj) of this partition are known.
We want then to approximate f on [a, b] · [c, d] by a cubic B-spline function S satisfying the (n + 2)(m + 2) interpolation
conditions:

Sðxi; yjÞ ¼ f ðxi; yjÞ; ði; jÞ 2 f0; . . . ; nþ 1g � f0; . . . ;mþ 1g. ðC:8Þ

The solution S is of the form:

Sðx; yÞ ¼
Xnþ3

l¼0

Xmþ3

k¼0

P lkN l
3ðxÞN k

3ðyÞ; ðC:9Þ

where the real functions ðNl
3Þð06l6nþ3Þ and ðNk

3Þð06k6mþ3Þ are the cubic B-spline basis functions respectively associated with
the nodal vectors (x0, x0, x0, x0, x1, . . . , xn, xn+1, xn+1, xn+1, xn+1) and (y0,y0,y0,y0,y1, . . . , ym,ym+1,ym+1,ym+1,ym+1). The
above formula can also be written:

Sðx; yÞ ¼
Xnþ3

l¼0

P lðyÞN lðxÞ ðC:10Þ

with

P lðyÞ ¼
Xmþ3

k¼0

P lkNkðyÞ: ðC:11Þ

Thus, the two-dimensional interpolation problem leads to a set of ((m + 2) + (n + 4)) one-dimensional interpolation
problems.

It should be noticed that four additional boundary conditions are required in such a two-dimensional interpolation pro-

cedure. In practice, it leads to the evaluation of the four twists o2f
ox oy ðx0; y0Þ, o2f

ox oy ðxnþ1; y0Þ, o2f
ox oy ðx0; ymþ1Þ and o2f

ox oy ðxnþ1; ymþ1Þ.
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