
Introduction
This page gives comparisons of CPU times of YADE on multicore computers, following recent
launchpad discussions[1][2]. Most Yade users ask how many cores they should use or whether
buying a new computer/workstation/server/... with a lot of cpu cores is reasonable.
Several performance tests were carried out. First Yades built-in performance test “--performance”
was used. Furthermore Christian Jakob's setup for Yade<->PFC3D was used (consisting of a regular
cubic assembly of particles and a slight angular planar wall underneath). Finally test were carried
out using a more dynamic simulation which makes use of RotationEngine.

parameters that were tested
– internal graphics (Matrox G200) vs. external graphics (Nvidia Quadro 4000, 2GB DDR5)
– number of cores
– complexity of simulation

– number of particles
– movement

Hardware and Software
- 2xIntel Xeon E5-2687W @3.1GHz each got 8 physical cores using hyper-threading → 32 virtual
cores
- 128 GB RAM
- 240 GB SSD on which yade-daily is install
- Ubuntu 12.04 LTS
- yade-daily build

Conclusion (draft)
Because of openMP implementation Yade should benefit from an increasing number of cpu cores.
Suprisingly a benefit in terms of shorter simulation times is only achieved for a rather small number
of cores (depending on simulation between 4 and 7).

“And in many cases it is enough, because more threads require more time for
"communication" and "synchronisation". You can try to use both openmp-
and mpi-based programs and choose the most suitable for you.” Anton Gladky

Bruno Chareyre (bruno-chareyre) said : #9
Thanks.
You could actually plot everything on the same graph more easily if y-axis was cycles*Nparticles /
time.

A conclusion from these results seems to be that parallelism gives a 3x speedup, obtained with 3-4
cores, and there is no
point using more than 4 cores.
This is not really what I concluded from my recent tests, but again: different simulation => different
conclusions.

A few things to keep in mind:
- The collider (contact detection) is the main non-parallel task.
- the collider takes a larger part of the total time for larger number of particles, and for more
dynamic simulations
- BUT it takes less time if verletDist is increased, at the price of more virtual interactions

In my recent tests, the collider was taking about 1% of the total time (*), then it did not matter if the

http://answers.launchpad.net/yade/+question/215540
https://launchpad.net/~bruno-chareyre
https://yade-dem.org/wiki/Comparisons_with_PFC3D
https://answers.launchpad.net/yade/+question/216187

collider is parallel or not. If the collider takes more than that, then it can explain why you get the
best speed with 3-4 cores when I get it with 8 cores.

In "--performance", the collider's cost goes from 1.8% (5k bodies) to 55% (200k bodies). This is
partly because, the stats there include the cost of initializing the collider (cost of the first iteration in
any simulation). Including this cost is not really correct: since the number of steps is varying as a
function of Nparticles, the 1st iteration will take proportionaly more time with more particles but
this is only because the total number of iterations is smaller, then the result can't be extrapolated in
the form of an average time per step.

In the end, there is a clear answer to your question: no, --performance is not good at testing
parallelism and/or hardware.

(*) This information is available in the "--performance" output, 2nd line in the table below. If you
are currently running tests, it would be good to record such data as it gives a better understanding of
how/why speed is affected by the different factors.

Name Count Time Rel. time

ForceResetter 12000 369078us 0.39%
InsertionSortCollider 337 1713474us 1.80%
InteractionLoop 12000 74036435us 77.56%
NewtonIntegrator 12000 19331902us 20.25%
TOTAL 95450891us 100.00%

25091

Model setup
Yade built-in performance

Initial state Steady state

Btw.: "--performance" was not created to test new systems, but to check
regressions after some commits. Nevertheless it can give a first impression of how your system
performs. Here is a Bash-Script that may help using it.

file:///home/dummy/Yade/Simulationen/PerformanceTests/YadePerformanceMonitoring
<code>
#!/bin/bash
#start script via "bash yadeBuiltInPerformanceTest.sh MIN MAX >>

~/yadeBuiltInPerformance.log" starten
MIN: number of cores to start with
MAX: maximum number of cores to test
echo "Beginning Yade Performance Test"

BEGIN=$1
END=$2

for ((I=$BEGIN; $I <= $END; I++)); do
DATE=$(date)
echo $I" core(s); beginning: "$DATE
yade-daily -j$I --performance >> ~/yadelogBuiltInPerformance_j$I.log

done

DATE=$(date)
echo "Ende: "$DATE
</code>

Yade<->PFC3D
The model for determining calculation speed consists of a regular cubic assembly of particles and a
slight angular planar wall underneath.

A linear contact model (without viscous damping) with stiffness of 10^6 for the
particles and 10^8 for the walls was chosen. The friction angle is 26,6° (=
friction coefficient 0,5) for the wall and the particles. The density of the particles was set to 1000
[kg/m3]. Gravity acts in negative z-direction with 9,81 [m/s2]. A
local damping constant of 0,7 was set. The time step was kept constant to 10^{-3}
[s] during calculations.

more complex simulations
tub with two packs of spheres falling inside and facet cylinder rotating
angularVelocityOfCylinder=2*pi/49.2
stage 1: falling

stage 2: stirring

tub filled with 1176 spheres (r=3mm). A facet cylinder is rotating inside with different angular
velocities

cylindrical container
height of cylinder = 0.5m
radius of cylinder = 0.275m
number of spheres = 300163 with r=0.003mm

Results
Yade Built-in Performance Test

cores\particles 5037 25103 50250 100467 200813

1 3.18 29.07 62.44 130.52 267.62

2 2.93 14.38 29.24 68.96 188.08

3 2.72 11.53 22.58 54.73 172.27

4 2.71 11.40 19.97 50.28 171.06

5 2.46 11.39 20.02 51.11 167.02

6 2.47 10.64 19.84 49.17 170.85

7 2.21 11.09 20.11 49.09 164.64

8 2.31 11.07 19.61 50.82 169.15

9 2.13 11.92 21.16 48.78 170.77

10 2.09 12.37 18.29 48.82 171.75

11 1.94 11.92 21.58 50.50 172.94

12 2.27 12.16 20.64 51.07 169.67

13 2.22 12.08 20.86 52.84 169.88

14 2.00 12.27 20.55 54.29 176.12

15 2.10 12.86 21.63 53.83 175.78

16 2.72 15.58 24.45 58.83 182.39

Plot für ausgewählte Kerne

with hyperthreading:

cores\particles 5037 25103 50250 100467 200813

1 6.85 34.99 60.6 127.47 254.31

2 4.52 21.27 39.35 85.96 223.03

3 2.94 16.17 28.13 66.61 180.62

4 2.84 13.89 28.18 60.65 181.81

5 2.26 12.36 24.47 56.48 179.8

6 2.06 11.4 25.02 54.19 168.68

7 2.07 12.66 22.31 53.11 172.6

8 2.12 11.66 23.08 54.71 171.21

9 2.17 12.31 23.57 52.49 169.13

10 2.2 12.04 21.36 54.73 174.62

11 2.31 12.01 22.51 55.34 174.62

12 2.27 12.06 22.42 54.67 170.48

13 1.63 9.62 17.39 45.32 150.63

14 1.56 10.62 18.88 48.12 151.11

15 1.68 10.62 19 49 146.04

16 2.08 13.54 22.98 47.68 156.61

17 2.39 13.79 23.77 50.01 158.21

18 2.36 14.34 23.89 50.91 152.97

19 2.27 13.89 22.18 50.22 154.7

20 2.38 15.44 23.74 52.58 158.46

21 2.76 14.96 24.9 53.47 154.33

Jakob
The speed test was done with 10x10x10 = 1000 spheres, 20x20x20 = 8000 spheres, ... , 60x60x60 =
216000 spheres. All calculations were performed 20 times with 1000 steps. The average values of
the calculation times (in seconds) and the calculation speed (in steps/second) are shown in the
following table. Also the relative differences of the calculation times are included (positive, when
YADE needed less calc. times).

relative times per 1000 iterations:

core\num
ber of
particles

1000 8000 27000 64000 125000 216000 343000 512000

1 1.42 2.96 3.24 3.24 3.39 3.43 2.95 1.89

2 1.28 1.74 1.81 1.82 1.9 1.92 1.8 1.26

3 1 1.28 1.37 1.38 1.4 1.44 1.46 1.15

4 1 1.14 1.15 1.21 1.22 1.27 1.23 1.12

5 1.19 1.21 1.06 1.12 1.17 1.1 1.11 1.09

6 1.23 1 1 1.06 1.13 1.08 1.15 1.05

7 1.42 1.17 1 1.01 1.07 1.04 1.03 1

8 1.39 1.15 1.06 1.02 1.03 1.04 1.06 1.06

9 1.6 1.22 1.07 1.02 1.07 1.03 1.01 1.05

10 1.63 1.22 1.04 1 1.03 1 1.02 1.03

11 1.53 1.29 1.04 1.04 1 1 1 1.09

12 1.76 1.33 1.09 1.01 1.05 1.02 1.03 1.01

13 1.77 1.25 1.04 1.04 1.07 1 1.06 1.05

14 1.62 1.41 1.09 1.09 1.09 1.05 1.05 1.04

15 1.74 1.34 1.15 1.2 1.13 1.1 1.12 1.04

16 1.93 1.71 1.46 1.43 1.43 1.34 1.13 1.08

17 2.25 1.84 1.53 1.52 1.51 1.39 1.15 1.09

18 2.2 1.88 1.63 1.59 1.5 1.41 1.26 1.16

19 2.07 1.84 1.56 1.64 1.63 1.41 1.31 1.12

20 2.18 1.88 1.62 1.67 1.58 1.51 1.38 1.15

21 2.18 1.94 1.67 1.69 1.69 1.53 1.41 1.14

22 2.14 2 1.69 1.79 1.72 1.53 1.45 1.19

23 2.23 2.11 1.68 1.76 1.81 1.58 1.44 1.14

24 2 2.12 1.78 1.7 1.85 1.66 1.52 1.13

25 2.23 1.55 1.62 1.6 1.59 1.55 1.51 1.12

26 2.12 1.64 1.59 1.7 1.69 1.5 1.33 1.09

27 2.3 1.7 1.61 1.75 1.64 1.63 1.55 1.2

28 2.11 2.06 1.9 2.02 1.93 1.8 1.61 1.22

29 2.16 2.2 1.87 2.06 1.99 1.86 1.63 1.19

30 1.3 1.68 1.67 1.74 1.75 1.58 1.44 1.14

absolute times per 1000 iterations:

particles 1000 8000 27000 64000 125000 216000 343000 512000

t_min/1000iter [s] 0.46 3.76 14.03 37.07 75.61 140.7 293.32 1373.8

number of cores 3 6 6 10 11 10 11 7

0 50000 100000 150000 200000 250000 300000 350000 400000
0

50

100

150

200

250

300

350

t_min/1000iter

HertzMindlin
tub with two packs of spheres falling inside and facet cylinder rotating

stage 1 and stage 2

tub
A) low angularVelocity 2*pi/49.2=0.127; appr. 10e7 iterations per revolution

B) high angularVelocity 10*2*pi/49.2=1.27; appr. 1e7 iterations per revolution

Useful scripts
– extractResults from Logfiles

– YadePerformance
– timing
– score

– Jakob
– Timing

