
Reference Manual

Václav Šmilauer, Emanuele Catalano, Bruno Chareyre, Sergei
Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, Burak Er,

Alexander Eulitz, Anton Gladky, Christian Jakob, François Kneib,
Janek Kozicki, Donia Marzougui, Raphaël Maurin, Chiara

Modenese, Luc Scholtès, Luc Sibille, Jan Stránský, Thomas Sweijen,
Klaus Thoeni, Chao Yuan

Yade Documentation 2nd edition, 2015
based on Yade 1.14.0



Citing this document:
Šmilauer V. et al. (2015). Reference Manual. In:Yade Documentation 2nd ed. doi:10.5281/zenodo.34045.
http://yade-dem.org
See also http://yade-dem/doc/citing.html.



ii



Contents

1 Class reference (yade.wrapper module) 1
1.1 Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3 Global engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.4 Partial engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1.5 Bounding volume creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
1.6 Interaction Geometry creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
1.7 Interaction Physics creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
1.8 Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
1.9 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
1.10 Preprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
1.11 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
1.12 Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
1.13 Other classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

2 Yade modules 285
2.1 yade.bodiesHandling module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
2.2 yade.export module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
2.3 yade.geom module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
2.4 yade.linterpolation module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2.5 yade.pack module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
2.6 yade.plot module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
2.7 yade.polyhedra_utils module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
2.8 yade.post2d module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
2.9 yade.qt module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
2.10 yade.timing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
2.11 yade.utils module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
2.12 yade.ymport module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Bibliography 331

Python Module Index 341

iii



iv



Chapter 1

Class reference (yade.wrapper
module)

1.1 Bodies

1.1.1 Body

class yade.wrapper.Body((object)arg1)
A particle, basic element of simulation; interacts with other bodies.
aspherical(=false)

Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

bound(=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded(=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body::isBounded/Body::setBounded)

chain
Returns Id of chain to which the body belongs.

clumpId
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.
Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dict() → dict
Return dictionary of attributes.

dynamic(=true)
Whether this body will be moved by forces. (In c++, use
Body::isDynamic/Body::setDynamic)

flags(=FLAG_BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask(=1)
Bitmask for determining interactions.

1



Reference Manual, Release Yade documentation 2nd ed.

id(=Body::ID_NONE)
Unique id of this body.

intrs() → list
Return all interactions in which this body participates.

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

iterBorn
Returns step number at which the body was added to simulation.

mask
Shorthand for Body::groupMask

mat
Shorthand for Body::material

material(=uninitalized)
Material instance associated with this body.

shape(=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

timeBorn
Returns time at which the body was added to simulation.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.1.2 Shape

Shape

Box Cylinder

Sphere

ChainedCylinder

GridConnection

Wall

Tetra

Polyhedra

GridNode

Facet

Clump

2 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Shape((object)arg1)
Geometry of a body
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box((object)arg1)
Box (cuboid) particle geometry. (Avoid using in new code, prefer Facet instead.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

extents(=uninitalized)
Half-size of the cuboid

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.ChainedCylinder((object)arg1)
Geometry of a deformable chained cylinder, using geometry Cylinder.
chainedOrientation(=Quaternionr::Identity())

Deviation of node1 orientation from node-to-node vector
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

1.1. Bodies 3



Reference Manual, Release Yade documentation 2nd ed.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

initLength(=0)
tensile-free length, used as reference for tensile strain

length(=NaN)
Length [m]

radius(=NaN)
Radius [m]

segment(=Vector3r::Zero())
Length vector

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Clump((object)arg1)
Rigid aggregate of bodies
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

members
Return clump members as {‘id1’:(relPos,relOri),...}

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Cylinder((object)arg1)
Geometry of a cylinder, as Minkowski sum of line and sphere.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

4 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

length(=NaN)
Length [m]

radius(=NaN)
Radius [m]

segment(=Vector3r::Zero())
Length vector

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Facet((object)arg1)
Facet (triangular particle) geometry.
area(=NaN)

Facet’s area
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

normal(=Vector3r(NaN, NaN, NaN))
Facet’s normal (in local coordinate system)

setVertices((Vector3)arg2, (Vector3)arg3, (Vector3)arg4) → None
TODO

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vertices(=vector<Vector3r>(3, Vector3r(NaN, NaN, NaN)))
Vertex positions in local coordinates.

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridConnection((object)arg1)
GridConnection shape. Component of a grid designed to link two GridNodes. It’s highly recom-
mended to use utils.gridConnection(...) to generate correct GridConnections.

1.1. Bodies 5



Reference Manual, Release Yade documentation 2nd ed.

cellDist(=Vector3i(0, 0, 0))
missing doc :(

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

node1(=uninitalized)
First Body the GridConnection is connected to.

node2(=uninitalized)
Second Body the GridConnection is connected to.

periodic(=false)
true if two nodes from different periods are connected.

radius(=NaN)
Radius [m]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.GridNode((object)arg1)
GridNode shape, component of a grid. To create a Grid, place the nodes first, they will define the
spacial discretisation of it. It’s highly recommended to use utils.gridNode(...) to generate correct
GridNodes. Note that the GridNodes should only be in an Interaction with other GridNodes. The
Sphere-Grid contact is only handled by the GridConnections.
ConnList(=uninitalized)

List of GridConnections the GridNode is connected to.
addConnection((Body)Body) → None

Add a GridConnection to the GridNode.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

6 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

radius(=NaN)
Radius [m]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Polyhedra((object)arg1)
Polyhedral (convex) geometry.
GetCentroid() → Vector3

return polyhedra’s centroid
GetInertia() → Vector3

return polyhedra’s inertia tensor
GetOri() → Quaternion

return polyhedra’s orientation
GetSurfaceTriangulation() → object

triangulation of facets (for plotting)
GetSurfaces() → object

get indices of surfaces’ vertices (for postprocessing)
GetVolume() → float

return polyhedra’s volume
Initialize() → None

Initialization
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

seed(=time(__null))
Seed for random generator.

setVertices((object)arg2) → None
set vertices and update receiver

size(=Vector3r(1., 1., 1.))
Size of the grain in meters - x,y,z - before random rotation

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=uninitalized)
Tetrahedron vertices in global coordinate system.

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

1.1. Bodies 7



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Sphere((object)arg1)
Geometry of spherical particle.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

radius(=NaN)
Radius [m]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Tetra((object)arg1)
Tetrahedron geometry.
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=std::vector<Vector3r>(4))
Tetrahedron vertices (in local coordinate system).

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Wall((object)arg1)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).
axis(=0)

Axis of the normal; can be 0,1,2 for +x, +y, +z respectively (Body’s orientation is disregarded
for walls)

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

8 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

sense(=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

1.1.3 State

State

JCFpmState

ChainedState

WireState

CpmState

class yade.wrapper.State((object)arg1)
State of a body (spatial configuration, internal variables).
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

1.1. Bodies 9



Reference Manual, Release Yade documentation 2nd ed.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.ChainedState((object)arg1)
State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
rank and chainNumber.
addToChain((int)bodyId) → None

Add body to current active chain
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
bId(=-1)

id of the body containing - for postLoad operations only.
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

chainNumber(=0)
chain id.

currentChain = 0
densityScaling(=1)

(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

10 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

ori
Current orientation.

pos
Current position.

rank(=0)
rank in the chain.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.CpmState((object)arg1)
State information about body use by cpm-model.
None of that is used for computation (at least not now), only for post-processing.
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

1.1. Bodies 11



Reference Manual, Release Yade documentation 2nd ed.

damageTensor(=Matrix3r::Zero())
Damage tensor computed with microplane theory averaging. state.damageTensor.trace() =
state.normDmg

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

epsVolumetric(=0)
Volumetric strain around this body (unused for now)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

normDmg(=0)
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

numBrokenCohesive(=0)
Number of (cohesive) contacts that damaged completely

numContacts(=0)
Number of contacts with this body

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

stress(=Matrix3r::Zero())
Stress tensor of the spherical particle (under assumption that particle volume = pi*r*r*r*4/3.)
for packing fraction 0.62

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

12 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.JCFpmState((object)arg1)
JCFpm state information about each body.
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

joint(=0)
Indicates the number of joint surfaces to which the particle belongs (0-> no joint, 1->1 joint,
etc..). [-]

jointNormal1(=Vector3r::Zero())
Specifies the normal direction to the joint plane 1. Rk: the ideal here would be to create a
vector of vector wich size is defined by the joint integer (as much joint normals as joints).
However, it needs to make the pushback function works with python since joint detection is
done through a python script. lines 272 to 312 of cpp file should therefore be adapted. [-]

jointNormal2(=Vector3r::Zero())
Specifies the normal direction to the joint plane 2. [-]

jointNormal3(=Vector3r::Zero())
Specifies the normal direction to the joint plane 3. [-]

mass(=0)
Mass of this body

noIniLinks(=0)
Number of initial cohesive interactions. [-]

onJoint(=false)
Identifies if the particle is on a joint surface.

ori
Current orientation.

1.1. Bodies 13



Reference Manual, Release Yade documentation 2nd ed.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

shearBreak(=0)
Number of shear breakages. [-]

shearBreakRel(=0)
Relative number (in [0;1], compared with noIniLinks) of shear breakages. [-]

tensBreak(=0)
Number of tensile breakages. [-]

tensBreakRel(=0)
Relative number (in [0;1], compared with noIniLinks) of tensile breakages. [-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.WireState((object)arg1)
Wire state information of each body.
None of that is used for computation (at least not now), only for post-processing.
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

densityScaling(=1)
(auto-updated) see GlobalStiffnessTimeStepper::targetDt.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos)

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

14 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

isDamped(=true)
Damping in Newtonintegrator can be deactivated for individual particles by setting this vari-
able to FALSE. E.g. damping is inappropriate for particles in free flight under gravity but it
might still be applicable to other particles in the same simulation.

mass(=0)
Mass of this body

numBrokenLinks(=0)
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vel(=Vector3r::Zero())
Current linear velocity.

1.1. Bodies 15



Reference Manual, Release Yade documentation 2nd ed.

1.1.4 Material

Material

ViscElCapMatViscElMat

FrictMat

InelastCohFrictMat

ElastMat

LudingMat

BubbleMat

CpmMat

WireMat

CohFrictMat

NormalInelasticMat

PolyhedraMat

JCFpmMat

FrictViscoMat

class yade.wrapper.Material((object)arg1)
Material properties of a body.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((dict)arg2) → None

16 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

Update object attributes from given dictionary
class yade.wrapper.BubbleMat((object)arg1)

material for bubble interactions, for use with other Bubble classes
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

surfaceTension(=0.07197)
The surface tension in the fluid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CohFrictMat((object)arg1)

alphaKr(=2.0)
Dimensionless rolling stiffness.

alphaKtw(=2.0)
Dimensionless twist stiffness.

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

etaRoll(=-1.)
Dimensionless rolling (aka ‘bending’) strength. If negative, rolling moment will be elastic.

1.1. Bodies 17



Reference Manual, Release Yade documentation 2nd ed.

etaTwist(=-1.)
Dimensionless twisting strength. If negative, twist moment will be elastic.

fragile(=true)
do cohesion disappear when contact strength is exceeded

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isCohesive(=true)
label(=uninitalized)

Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

momentRotationLaw(=false)
Use bending/twisting moment at contact. The contact will have moments only if both bodies
have this flag true. See CohFrictPhys::cohesionDisablesFriction for details.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

normalCohesion(=-1)
Tensile strength, homogeneous to a pressure. If negative the normal force is purely elastic.

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion(=-1)
Shear strength, homogeneous to a pressure. If negative the shear force is purely elastic.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.CpmMat((object)arg1)
Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm−³automatically, which gives approximate 2800 kgm−³
on 0.5 density packing.

Concrete Particle Model (CPM)
CpmMat is particle material, Ip2_CpmMat_CpmMat_CpmPhys averages two particles’ materials,
creating CpmPhys, which is then used in interaction resultion by Law2_ScGeom_CpmPhys_Cpm.
CpmState is associated to CpmMat and keeps state defined on particles rather than interactions
(such as number of completely damaged interactions).
The model is contained in externally defined macro CPM_MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM_MATERIAL_MODEL is not defined. The full model will be described in de-
tail in my (Václav Šmilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).

18 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.
damLaw(=1)

Law for damage evolution in uniaxial tension. 0 for linear stress-strain softening branch, 1
(default) for exponential damage evolution law

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgRateExp(=0)
Exponent for normal viscosity function. [-]

dmgTau(=-1, deactivated if negative)
Characteristic time for normal viscosity. [s]

epsCrackOnset(=NaN)
Limit elastic strain [-]

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

isoPrestress(=0)
Isotropic prestress of the whole specimen. [Pa]

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

neverDamage(=false)
If true, no damage will occur (for testing only).

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

plRateExp(=0)
Exponent for visco-plasticity function. [-]

plTau(=-1, deactivated if negative)
Characteristic time for visco-plasticity. [s]

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

relDuctility(=NaN)
relative ductility of bonds in normal direction

1.1. Bodies 19

https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py


Reference Manual, Release Yade documentation 2nd ed.

sigmaT(=NaN)
Initial cohesion [Pa]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ElastMat((object)arg1)
Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2_FrictMat_FrictMat_MindlinPhys, or contact
stiffnesses in Ip2_FrictMat_FrictMat_FrictPhys.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictMat((object)arg1)
Elastic material with contact friction. See also ElastMat.
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

20 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.FrictViscoMat((object)arg1)
Material for use with the FrictViscoPM classes
betan(=0.)

Fraction of the viscous damping coefficient in normal direction equal to cn

Cn,crit
.

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created

1.1. Bodies 21



Reference Manual, Release Yade documentation 2nd ed.

will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.InelastCohFrictMat((object)arg1)

alphaKr(=2.0)
Dimensionless coefficient used for the rolling stiffness.

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

compressionModulus(=0.0)
Compresion elasticity modulus

creepBending(=0.0)
Bending creeping coefficient. Usual values between 0 and 1.

creepTension(=0.0)
Tension/compression creeping coefficient. Usual values between 0 and 1.

creepTwist(=0.0)
Twist creeping coefficient. Usual values between 0 and 1.

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

epsilonMaxCompression(=0.0)
Maximal plastic strain compression

epsilonMaxTension(=0.0)
Maximal plastic strain tension

etaMaxBending(=0.0)
Maximal plastic bending strain

etaMaxTwist(=0.0)
Maximal plastic twist strain

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

22 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

nuBending(=0.0)
Bending elastic stress limit

nuTwist(=0.0)
Twist elastic stress limit

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

shearCohesion(=0.0)
Shear elastic stress limit

shearModulus(=0.0)
shear elasticity modulus

sigmaCompression(=0.0)
Compression elastic stress limit

sigmaTension(=0.0)
Tension elastic stress limit

tensionModulus(=0.0)
Tension elasticity modulus

unloadBending(=0.0)
Bending plastic unload coefficient. Usual values between 0 and +infinity.

unloadTension(=0.0)
Tension/compression plastic unload coefficient. Usual values between 0 and +infinity.

unloadTwist(=0.0)
Twist plastic unload coefficient. Usual values between 0 and +infinity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.JCFpmMat((object)arg1)
Possibly jointed, cohesive frictional material, for use with other JCFpm classes
cohesion(=0.)

Defines the maximum admissible tangential force in shear, for Fn=0, in the matrix (FsMax =
cohesion * crossSection). [Pa]

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

1.1. Bodies 23



Reference Manual, Release Yade documentation 2nd ed.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

jointCohesion(=0.)
Defines the maximum admissible tangential force in shear, for Fn=0, on the joint surface. [Pa]

jointDilationAngle(=0)
Defines the dilatancy of the joint surface (only valid for smooth contact logic). [rad]

jointFrictionAngle(=-1)
Defines Coulomb friction on the joint surface. [rad]

jointNormalStiffness(=0.)
Defines the normal stiffness on the joint surface. [Pa/m]

jointShearStiffness(=0.)
Defines the shear stiffness on the joint surface. [Pa/m]

jointTensileStrength(=0.)
Defines the maximum admissible normal force in traction on the joint surface. [Pa]

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

tensileStrength(=0.)
Defines the maximum admissible normal force in traction in the matrix (FnMax = ten-
sileStrength * crossSection). [Pa]

type(=0)
If particles of two different types interact, it will be with friction only (no cohesion).[-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.LudingMat((object)arg1)
Material for simple Ludning‘s model of contact.
G0(=NaN)

Viscous damping
PhiF(=NaN)

Dimensionless plasticity depth
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

24 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=NaN)
Friction angle [rad]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

k1(=NaN)
Slope of loading plastic branch

kc(=NaN)
Slope of irreversible, tensile adhesive branch

kp(=NaN)
Slope of unloading and reloading limit elastic branch

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormalInelasticMat((object)arg1)
Material class for particles whose contact obey to a normal inelasticity (governed by this coeff_-
dech).
coeff_dech(=1.0)

=kn(unload) / kn(load)
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

1.1. Bodies 25



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.PolyhedraMat((object)arg1)
Elastic material with Coulomb friction.
IsSplitable(=0)

To be splitted ... or not
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

strength(=100)
Stress at which polyhedra of volume 4/3*pi [mm] breaks.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

26 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

young(=1e8)
TODO

class yade.wrapper.ViscElCapMat((object)arg1)
Material for extended viscoelastic model of contact with capillary parameters.
Capillar(=false)

True, if capillar forces need to be added.
CapillarType(=”“)

Different types of capillar interaction: Willett_numeric, Willett_analytic [Willett2000] ,
Weigert [Weigert1999] , Rabinovich [Rabinov2005] , Lambert (simplified, corrected Rabinovich
model) [Lambert2008]

Vb(=0.0)
Liquid bridge volume [m^3]

cn(=NaN)
Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

cs(=NaN)
Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!

density(=1000)
Density of the material [kg/m³]

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

en(=NaN)
Restitution coefficient in normal direction

et(=NaN)
Restitution coefficient in tangential direction

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

gamma(=0.0)
Surface tension [N/m]

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

kn(=NaN)
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

ks(=NaN)
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

mR(=0.0)
Rolling resistance, see [Zhou1999536].

1.1. Bodies 27



Reference Manual, Release Yade documentation 2nd ed.

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

tc(=NaN)
Contact time

theta(=0.0)
Contact angle [°]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.ViscElMat((object)arg1)
Material for simple viscoelastic model of contact from analytical solution of a pair spheres inter-
action problem [Pournin2001] .
cn(=NaN)

Normal viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!
cs(=NaN)

Shear viscous constant. Attention, this parameter cannot be set if tc, en or es is defined!
density(=1000)

Density of the material [kg/m³]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

en(=NaN)
Restitution coefficient in normal direction

et(=NaN)
Restitution coefficient in tangential direction

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

kn(=NaN)
Normal elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

28 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

ks(=NaN)
Shear elastic stiffness. Attention, this parameter cannot be set if tc, en or es is defined!

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536].

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

tc(=NaN)
Contact time

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

young(=1e9)
elastic modulus [Pa]. It has different meanings depending on the Ip functor.

class yade.wrapper.WireMat((object)arg1)
Material for use with the Wire classes
as(=0.)

Cross-section area of a single wire used to transform stress into force. [m²]
density(=1000)

Density of the material [kg/m³]
diameter(=0.0027)

Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

1.1. Bodies 29



Reference Manual, Release Yade documentation 2nd ed.

isDoubleTwist(=false)
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

lambdaEps(=0.47)
Parameter between 0 and 1 to reduce strain at failure of a double-twisted wire (as used by
[Bertrand2008]). [-]

lambdaF(=1.0)
Parameter between 0 and 1 introduced by [Thoeni2013] which defines where the shifted force-
displacement curve intersects with the new initial stiffness: F∗ = λFFelastic. [-]

lambdak(=0.73)
Parameter between 0 and 1 to compute the elastic stiffness of a double-twisted wire (as used
by [Bertrand2008]): kD = 2(λkkh + (1− λk)k

S). [-]
lambdau(=0.2)

Parameter between 0 and 1 introduced by [Thoeni2013] which defines the maximum shift
of the force-displacement curve in order to take an additional initial elongation (e.g. wire
distortion/imperfections, slipping, system flexibility) into account: ∆l∗ = λul0rnd(seed). [-]

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have
special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

poisson(=.25)
Poisson’s ratio or the ratio between shear and normal stiffness [-]. It has different meanings
depending on the Ip functor.

seed(=12345)
Integer used to initialize the random number generator for the calculation of the distortion.
If the integer is equal to 0 a internal seed number based on the time is computed. [-]

strainStressValues(=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed! NOTE:
Vector needs to be initialized!

strainStressValuesDT(=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for the double twist. Tension only is considered and the point (0,0) is not needed! If this value
is given the calculation will be based on two different stress-strain curves without considering
the parameter introduced by [Bertrand2008] (see [Thoeni2013]).

type
Three different types are considered:
0 Corresponds to Bertrand’s approach (see [Bertrand2008]): only one stress-strain

curve is used
1 New approach: two separate stress-strain curves can be used (see [Thoeni2013])
2 New approach with stochastically distorted contact model: two separate stress-strain

curves with changed initial stiffness and horizontal shift (shift is random if seed ≥ 0,
for more details see [Thoeni2013])

By default the type is 0.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
young(=1e9)

elastic modulus [Pa]. It has different meanings depending on the Ip functor.

30 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.1.5 Bound

Bound Aabb

class yade.wrapper.Bound((object)arg1)
Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection
color(=Vector3r(1, 1, 1))

Color for rendering this object
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

lastUpdateIter(=0)
record iteration of last reference position update (auto-updated)

max(=Vector3r(NaN, NaN, NaN))
Upper corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos(=Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength(=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Aabb((object)arg1)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)
color(=Vector3r(1, 1, 1))

Color for rendering this object
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

lastUpdateIter(=0)
record iteration of last reference position update (auto-updated)

1.1. Bodies 31



Reference Manual, Release Yade documentation 2nd ed.

max(=Vector3r(NaN, NaN, NaN))
Upper corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

refPos(=Vector3r(NaN, NaN, NaN))
Reference position, updated at current body position each time the bound dispatcher update
bounds (auto-updated)

sweepLength(=0)
The length used to increase the bounding boxe size, can be adjusted on the basis of previous
displacement if BoundDispatcher::targetInterv>0. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.2 Interactions

1.2.1 Interaction

class yade.wrapper.Interaction((object)arg1)
Interaction between pair of bodies.
cellDist

Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have thepriod information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

dict() → dict
Return dictionary of attributes.

geom(=uninitalized)
Geometry part of the interaction.

id1(=0)
Id of the first body in this interaction.

id2(=0)
Id of the second body in this interaction.

isActive
True if this interaction is active. Otherwise the forces from this interaction will not be taken
into account. True by default.

isReal
True if this interaction has both geom and phys; False otherwise.

iterBorn(=-1)
Step number at which the interaction was added to simulation.

iterMadeReal(=-1)
Step number at which the interaction was fully (in the sense of geom and phys) created.
(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

phys(=uninitalized)
Physical (material) part of the interaction.

32 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.2.2 IGeom

IGeom

ScGeom

GenericSpheresContact

L6Geom
L3Geom

ScGridCoGeom

ScGeom6D

TTetraGeom

CylScGeom6D

GridNodeGeom6D

TTetraSimpleGeom

PolyhedraGeom

CylScGeom

GridCoGridCoGeom

ChCylGeom6D

class yade.wrapper.IGeom((object)arg1)
Geometrical configuration of interaction
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ChCylGeom6D((object)arg1)
Test
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

1.2. Interactions 33



Reference Manual, Release Yade documentation 2nd ed.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle (around normal axis) of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CylScGeom((object)arg1)
Geometry of a cylinder-sphere contact.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end(=Vector3r::Zero())
position of 2nd node (auto-updated)

id3(=0)
id of next chained cylinder (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact

34 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode(=false)
contact on node?

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

start(=Vector3r::Zero())
position of 1st node (auto-updated)

trueInt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CylScGeom6D((object)arg1)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

end(=Vector3r::Zero())
position of 2nd node (auto-updated)

id3(=0)
id of next chained cylinder (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

1.2. Interactions 35



Reference Manual, Release Yade documentation 2nd ed.

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

onNode(=false)
contact on node?

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

start(=Vector3r::Zero())
position of 1st node (auto-updated)

trueInt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

twist(=0)
Elastic twist angle (around normal axis) of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GenericSpheresContact((object)arg1)
Class uniting ScGeom and L3Geom, for the purposes of GlobalStiffnessTimeStepper. (It might be
removed in the future). Do not use this class directly.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

36 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GridCoGridCoGeom((object)arg1)
Geometry of a GridConnection-GridConnection contact.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos1(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

relPos2(=0)
position of the contact on the first connection (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GridNodeGeom6D((object)arg1)
Geometry of a GridNode-GridNode contact. Inherits almost everything from ScGeom6D.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
connectionBody(=uninitalized)

Reference to the GridNode Body who is linking the two GridNodes.

1.2. Interactions 37



Reference Manual, Release Yade documentation 2nd ed.

contactPoint(=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle (around normal axis) of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.L3Geom((object)arg1)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]
F(=Vector3r::Zero())

Applied force in local coordinates [debugging only, will be removed]
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

38 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf(=Matrix3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.L6Geom((object)arg1)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]
F(=Vector3r::Zero())

Applied force in local coordinates [debugging only, will be removed]
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

1.2. Interactions 39



Reference Manual, Release Yade documentation 2nd ed.

phi(=Vector3r::Zero())
Rotation components, in local coordinates. (auto-updated)

phi0(=Vector3r::Zero())
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

trsf(=Matrix3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.

Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PolyhedraGeom((object)arg1)
Geometry of interaction between 2 vector, including volumetric characteristics
contactPoint(=Vector3r::Zero())

Contact point (global coords), centriod of the overlapping polyhedron
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

equivalentCrossSection(=NaN)
Cross-section area of the overlap (perpendicular to the normal) - not used

equivalentPenetrationDepth(=NaN)
volume / equivalentCrossSection - not used

normal(=Vector3r::Zero())
Normal direction of the interaction

orthonormal_axis(=Vector3r::Zero())

40 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

penetrationVolume(=NaN)
Volume of overlap [m³]

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist_axis(=Vector3r::Zero())
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.ScGeom((object)arg1)

Class representing geometry of a contact point between two bodies. It is more general than sphere-
sphere contact even though it is primarily focused on spheres interactions (reason for the ‘Sc’
namming); it is also used for representing contacts of a Sphere with non-spherical bodies (Facet,
Plane, Box, ChainedCylinder), or between two non-spherical bodies (ChainedCylinder). The con-
tact has 3 DOFs (normal and 2×shear) and uses incremental algorithm for updating shear.
We use symbols x, v, ω respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.
Then we define branch length and unit contact normal

l = ||x2 − x1||,n =
x2 − x1

||x2 − x1||

The relative velocity of the spheres is then

v12 =
r1 + r2

l
(v2 − v1) − (r2ω2 + r1ω1)× n

where the fraction multiplying translational velocities is to make the definition objective and avoid
ratcheting effects (see Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting). The shear com-
ponent is

vs12 = v12 − (n · v12)n.

Tangential displacement increment over last step then reads

∆xs12 = ∆tvs12.

contactPoint(=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

1.2. Interactions 41



Reference Manual, Release Yade documentation 2nd ed.

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ScGeom6D((object)arg1)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

twist(=0)
Elastic twist angle (around normal axis) of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

42 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ScGridCoGeom((object)arg1)
Geometry of a GridConnection-Sphere contact.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id3(=0)
id of the first GridNode. (auto-updated)

id4(=0)
id of the second GridNode. (auto-updated)

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True ]) → Vector3
Return incident velocity of the interaction (see also Ig2_Sphere_Sphere_Sc-
Geom.avoidGranularRatcheting for explanation of the ratcheting argument).

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automatically if the contact is shared between two Connections. A
duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

normal(=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

relPos(=0)
position of the contact on the connection (0: node-, 1:node+) (auto-updated)

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

1.2. Interactions 43



Reference Manual, Release Yade documentation 2nd ed.

trueInt(=-1)
Defines the body id of the GridConnection where the contact is real, when ScGridCo-
Geom::isDuplicate>0.

twist(=0)
Elastic twist angle (around normal axis) of the contact.

twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TTetraGeom((object)arg1)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics
contactPoint(=uninitalized)

Contact point (global coords)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

equivalentCrossSection(=NaN)
Cross-section of the overlap (perpendicular to the axis of least inertia

equivalentPenetrationDepth(=NaN)
??

maxPenetrationDepthA(=NaN)
??

maxPenetrationDepthB(=NaN)
??

normal(=uninitalized)
Normal of the interaction, directed in the sense of least inertia of the overlap volume

penetrationVolume(=NaN)
Volume of overlap [m³]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TTetraSimpleGeom((object)arg1)
EXPERIMENTAL. Geometry of interaction between 2 tetrahedra
contactPoint(=uninitalized)

Contact point (global coords)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

44 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

flag(=0)
TODO

normal(=uninitalized)
Normal of the interaction TODO

penetrationVolume(=NaN)
Volume of overlap [m³]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.2.3 IPhys

IPhys

MindlinCapillaryPhysMindlinPhys

FrictPhys

InelastCohFrictPhys

NormShearPhysNormPhys

PolyhedraPhys

ViscElPhys

LudingPhys

NormalInelasticityPhys

CapillaryPhys

WirePhys

CohFrictPhys

CpmPhys

ViscoFrictPhys

ViscElCapPhys

BubblePhys

FrictViscoPhys

JCFpmPhys

class yade.wrapper.IPhys((object)arg1)
Physical (material) properties of interaction.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BubblePhys((object)arg1)
Physics of bubble-bubble interactions, for use with BubbleMat
Dmax(=NaN)

Maximum penetrationDepth of the bubbles before the force displacement curve changes to
an artificial exponential curve. Setting this value will have no effect. See Law2_ScGeom_-
BubblePhys_Bubble::pctMaxForce for more information

1.2. Interactions 45



Reference Manual, Release Yade documentation 2nd ed.

computeForce((float)arg1, (float)arg2, (float)arg3, (int)arg4, (float)arg5, (float)arg6,
(float)arg7, (BubblePhys)arg8) → float :

Computes the normal force acting between the two interacting bubbles using the Newton-
Rhapson method

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fN(=NaN)
Contact normal force

newtonIter(=50)
Maximum number of force iterations allowed

newtonTol(=1e-6)
Convergence criteria for force iterations

normalForce(=Vector3r::Zero())
Normal force

rAvg(=NaN)
Average radius of the two interacting bubbles

surfaceTension(=NaN)
Surface tension of the surrounding liquid

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CapillaryPhys((object)arg1)
Physics (of interaction) for Law2_ScGeom_CapillaryPhys_Capillarity.
Delta1(=0.)

Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)
Delta2(=0.)

Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)
capillaryPressure(=0.)

Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fCap(=Vector3r::Zero())
Capillary force produced by the presence of the meniscus. This is the force acting on particle
#2

fusionNumber(=0.)
Indicates the number of meniscii that overlap with this one

isBroken(=false)
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

46 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

meniscus(=false)
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vMeniscus(=0.)
Volume of the meniscus

class yade.wrapper.CohFrictPhys((object)arg1)

cohesionBroken(=true)
is cohesion active? Set to false at the creation of a cohesive contact, and set to true when a
fragile contact is broken

cohesionDisablesFriction(=false)
is shear strength the sum of friction and adhesion or only adhesion?

creep_viscosity(=-1)
creep viscosity [Pa.s/m].

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fragile(=true)
do cohesion disappear when contact strength is exceeded?

initCohesion(=false)
Initialize the cohesive behaviour with current state as equilibrium state (same as Ip2_Co-
hFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow but acting on only one interaction)

kn(=0)
Normal stiffness

kr(=0)
rotational stiffness [N.m/rad]

ks(=0)
Shear stiffness

ktw(=0)
twist stiffness [N.m/rad]

maxRollPl(=0.0)
Coefficient of rolling friction (negative means elastic).

1.2. Interactions 47



Reference Manual, Release Yade documentation 2nd ed.

maxTwistPl(=0.0)
Coefficient of twisting friction (negative means elastic).

momentRotationLaw(=false)
use bending/twisting moment at contacts. See Law2_ScGeom6D_CohFrictPhys_Cohesion-
Moment::always_use_moment_law for details.

moment_bending(=Vector3r(0, 0, 0))
Bending moment

moment_twist(=Vector3r(0, 0, 0))
Twist moment

normalAdhesion(=0)
tensile strength

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearAdhesion(=0)
cohesive part of the shear strength (a frictional term might be added depending on CohFrict-
Phys::cohesionDisablesFriction)

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

unp(=0)
plastic normal displacement, only used for tensile behaviour and if CohFrictPhys::fragile
=false.

unpMax(=0)
maximum value of plastic normal displacement (counted positively), after that the interaction
breaks even if CohFrictPhys::fragile =false. A negative value (i.e. -1) means no maximum.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CpmPhys((object)arg1)
Representation of a single interaction of the Cpm type: storage for relevant parameters.
Evolution of the contact is governed by Law2_ScGeom_CpmPhys_Cpm, that includes damage
effects and chages of parameters inside CpmPhys. See cpm-model for details.
E(=NaN)

normal modulus (stiffness / crossSection) [Pa]
Fn

Magnitude of normal force (auto-updated)
Fs

Magnitude of shear force (auto-updated)
G(=NaN)

shear modulus [Pa]
crossSection(=NaN)

equivalent cross-section associated with this contact [m²]
cummBetaCount = 0
cummBetaIter = 0
damLaw(=1)

Law for softening part of uniaxial tension. 0 for linear, 1 for exponential (default)
dict() → dict

Return dictionary of attributes.

48 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

dmgOverstress(=0)
damage viscous overstress (at previous step or at current step)

dmgRateExp(=0)
exponent in the rate-dependent damage evolution

dmgStrain(=0)
damage strain (at previous or current step)

dmgTau(=-1)
characteristic time for damage (if non-positive, the law without rate-dependence is used)

epsCrackOnset(=NaN)
strain at which the material starts to behave non-linearly

epsFracture(=NaN)
strain at which the bond is fully broken [-]

epsN
Current normal strain (auto-updated)

epsNPl
normal plastic strain (initially zero) (auto-updated)

epsT
Current shear strain (auto-updated)

epsTPl
shear plastic strain (initially zero) (auto-updated)

funcG((float)kappaD, (float)epsCrackOnset, (float)epsFracture[, (bool)neverDamage=False[,
(int)damLaw=1 ] ]) → float :

Damage evolution law, evaluating the ω parameter. κD is historically maximum strain, ep-
sCrackOnset (ε0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage). TODO

funcGInv((float)omega, (float)epsCrackOnset, (float)epsFracture[,
(bool)neverDamage=False[, (int)damLaw=1 ] ]) → float :

Inversion of damage evolution law, evaluating the κD parameter. ω is damage, for other
parameters see funcG function

isCohesive(=false)
if not cohesive, interaction is deleted when distance is greater than zero.

isoPrestress(=0)
“prestress” of this link (used to simulate isotropic stress)

kappaD
Up to now maximum normal strain (semi-norm), non-decreasing in time (auto-updated)

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

neverDamage(=false)
the damage evolution function will always return virgin state

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

1.2. Interactions 49



Reference Manual, Release Yade documentation 2nd ed.

omega
Damage internal variable (auto-updated)

plRateExp(=0)
exponent in the rate-dependent viscoplasticity

plTau(=-1)
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

refLength(=NaN)
initial length of interaction [m]

refPD(=NaN)
initial penetration depth of interaction [m] (used with ScGeom)

relDuctility(=NaN)
Relative ductility of bonds in normal direction

relResidualStrength
Relative residual strength (auto-updated)

setDamage((float)arg2) → None
TODO

setRelResidualStrength((float)arg2) → None
TODO

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

sigmaN
Current normal stress (auto-updated)

sigmaT
Current shear stress (auto-updated)

tanFrictionAngle(=NaN)
tangens of internal friction angle [-]

undamagedCohesion(=NaN)
virgin material cohesion [Pa]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FrictPhys((object)arg1)
The simple linear elastic-plastic interaction with friction angle, like in the traditional [Cundall-
Strack1979]
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

50 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FrictViscoPhys((object)arg1)
Representation of a single interaction of the FrictViscoPM type, storage for relevant parameters
cn(=NaN)

Normal viscous constant defined as n = cn,critβn.
cn_crit(=NaN)

Normal viscous constant for ctitical damping defined as n = Cn,critβn.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

normalViscous(=Vector3r::Zero())
Normal viscous component

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.InelastCohFrictPhys((object)arg1)

cohesionBroken(=false)
is cohesion active? will be set false when a fragile contact is broken

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

isBroken(=false)
true if compression plastic fracture achieved

kDam(=0)
Damage coefficient on bending, computed from maximum bending moment reached and pure

1.2. Interactions 51



Reference Manual, Release Yade documentation 2nd ed.

creep behaviour. Its values will vary between InelastCohFrictPhys::kr and InelastCohFrict-
Phys::kRCrp .

kRCrp(=0.0)
Bending creep stiffness

kRUnld(=0.0)
Bending plastic unload stiffness

kTCrp(=0.0)
Tension/compression creep stiffness

kTUnld(=0.0)
Tension/compression plastic unload stiffness

kTwCrp(=0.0)
Twist creep stiffness

kTwUnld(=0.0)
Twist plastic unload stiffness

kn(=0)
Normal stiffness

knC(=0)
compression stiffness

knT(=0)
tension stiffness

kr(=0)
bending stiffness

ks(=0)
shear stiffness

ktw(=0)
twist shear stiffness

maxBendMom(=0.0)
Plastic failure bending moment.

maxContract(=0.0)
Plastic failure contraction (shrinkage).

maxCrpRchdB(=Vector3r(0, 0, 0))
maximal bending moment reached on plastic deformation.

maxCrpRchdC(=Vector2r(0, 0))
maximal compression reached on plastic deformation. maxCrpRchdC[0] stores un and max-
CrpRchdC[1] stores Fn.

maxCrpRchdT(=Vector2r(0, 0))
maximal extension reached on plastic deformation. maxCrpRchdT[0] stores un and maxCr-
pRchdT[1] stores Fn.

maxCrpRchdTw(=Vector2r(0, 0))
maximal twist reached on plastic deformation. maxCrpRchdTw[0] stores twist angle and
maxCrpRchdTw[1] stores twist moment.

maxElB(=0.0)
Maximum bending elastic moment.

maxElC(=0.0)
Maximum compression elastic force.

maxElT(=0.0)
Maximum tension elastic force.

maxElTw(=0.0)
Maximum twist elastic moment.

52 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

maxExten(=0.0)
Plastic failure extension (stretching).

maxTwist(=0.0)
Plastic failure twist angle

moment_bending(=Vector3r(0, 0, 0))
Bending moment

moment_twist(=Vector3r(0, 0, 0))
Twist moment

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

onPlastB(=false)
true if plasticity achieved on bending

onPlastC(=false)
true if plasticity achieved on compression

onPlastT(=false)
true if plasticity achieved on traction

onPlastTw(=false)
true if plasticity achieved on twisting

pureCreep(=Vector3r(0, 0, 0))
Pure creep curve, used for comparison in calculation.

shearAdhesion(=0)
Maximum elastic shear force (cohesion).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

twp(=0)
plastic twist penetration depth describing the equilibrium state.

unp(=0)
plastic normal penetration depth describing the equilibrium state.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.JCFpmPhys((object)arg1)
Representation of a single interaction of the JCFpm type, storage for relevant parameters
FnMax(=0)

positiv value computed from tensile strength (or joint variant) to define the maximum admis-
sible normal force in traction: Fn >= -FnMax. [N]

FsMax(=0)
computed from cohesion (or jointCohesion) to define the maximum admissible tangential force
in shear, for Fn=0. [N]

crackJointAperture(=0)
Relative displacement between 2 spheres (in case of a crack it is equivalent of the crack
aperture)

crossSection(=0)
crossSection=pi*Rmin^2. [m2]

dict() → dict
Return dictionary of attributes.

dilation(=0)
defines the normal displacement in the joint after sliding treshold. [m]

1.2. Interactions 53



Reference Manual, Release Yade documentation 2nd ed.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

initD(=0)
equilibrium distance for interacting particles. Computed as the interparticular distance at
first contact detection.

isBroken(=false)
flag for broken interactions

isCohesive(=false)
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensile strength (or their jointed variants).

isOnJoint(=false)
defined as true when both interacting particles are on joint and are in opposite sides of the joint
surface. In this case, mechanical parameters of the interaction are derived from the ‘’joint...”
material properties of the particles. Furthermore, the normal of the interaction may be re-
oriented (see Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM.smoothJoint).

jointCumulativeSliding(=0)
sliding distance for particles interacting on a joint. Used, when is true, to take into account
dilatancy due to shearing. [-]

jointNormal(=Vector3r::Zero())
normal direction to the joint, deduced from e.g. .

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

more(=false)
specifies if the interaction is crossed by more than 3 joints. If true, interaction is deleted
(temporary solution).

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tanDilationAngle(=0)
tangent of the angle defining the dilatancy of the joint surface (auto. computed from JCFp-
mMat.jointDilationAngle). [-]

tanFrictionAngle(=0)
tangent of Coulomb friction angle for this interaction (auto. computed). [-]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LudingPhys((object)arg1)
IPhys created from LudingMat, for use with Law2_ScGeom_LudingPhys_Basic.
DeltMax(=NaN)

Maximum overlap between particles for a collision
DeltMin(=NaN)

MinimalDelta value of delta
DeltNull(=NaN)

Force free overlap, plastic contact deformation

54 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

DeltPMax(=NaN)
Maximum overlap between particles for the limit case

DeltPNull(=NaN)
Max force free overlap, plastic contact deformation

DeltPrev(=NaN)
Previous value of delta

G0(=NaN)
Viscous damping

PhiF(=NaN)
Dimensionless plasticity depth

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

k1(=NaN)
Slope of loading plastic branch

k2(=NaN)
Slope of unloading and reloading elastic branch

kc(=NaN)
Slope of irreversible, tensile adhesive branch

kn(=0)
Normal stiffness

kp(=NaN)
Slope of unloading and reloading limit elastic branch

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MindlinCapillaryPhys((object)arg1)
Adds capillary physics to Mindlin’s interaction physics.
Delta1(=0.)

Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)
Delta2(=0.)

Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)
Fs(=Vector2r::Zero())

Shear force in local axes (computed incrementally)
adhesionForce(=0.0)

Force of adhesion as predicted by DMT

1.2. Interactions 55



Reference Manual, Release Yade documentation 2nd ed.

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

betas(=0.0)
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

capillaryPressure(=0.)
Value of the capillary pressure Uc. Defined as Ugas-Uliquid, obtained from corresponding
Law2 parameter

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

fCap(=Vector3r::Zero())
Capillary Force produces by the presence of the meniscus. This is the force acting on particle
#2

fusionNumber(=0.)
Indicates the number of meniscii that overlap with this one

isAdhesive(=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isBroken(=false)
Might be set to true by the user to make liquid bridge inactive (capillary force is zero)

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kn(=0)
Normal stiffness

kno(=0.0)
Constant value in the formulation of the normal stiffness

kr(=0.0)
Rotational stiffness

ks(=0)
Shear stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendPl(=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

meniscus(=false)
True when a meniscus with a non-zero liquid volume (vMeniscus) has been computed for this
interaction

56 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

momentBend(=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist(=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

normalViscous(=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

radius(=NaN)
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

shearViscous(=Vector3r::Zero())
Shear viscous component

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal(=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

vMeniscus(=0.)
Volume of the meniscus

class yade.wrapper.MindlinPhys((object)arg1)
Representation of an interaction of the Hertz-Mindlin type.
Fs(=Vector2r::Zero())

Shear force in local axes (computed incrementally)
adhesionForce(=0.0)

Force of adhesion as predicted by DMT
alpha(=0.0)

Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Normal Damping Ratio. Fraction of the viscous damping coefficient (normal direction) equal
to cn

Cn,crit
.

betas(=0.0)
Shear Damping Ratio. Fraction of the viscous damping coefficient (shear direction) equal to

cs

Cs,crit
.

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

1.2. Interactions 57



Reference Manual, Release Yade documentation 2nd ed.

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

isAdhesive(=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kn(=0)
Normal stiffness

kno(=0.0)
Constant value in the formulation of the normal stiffness

kr(=0.0)
Rotational stiffness

ks(=0)
Shear stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendPl(=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

momentBend(=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist(=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

normalViscous(=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

radius(=NaN)
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

shearViscous(=Vector3r::Zero())
Shear viscous component

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

58 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

usTotal(=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.NormPhys((object)arg1)
Abstract class for interactions that have normal stiffness.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormShearPhys((object)arg1)
Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NormalInelasticityPhys((object)arg1)
Physics (of interaction) for using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity :
with inelastic unloadings
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

1.2. Interactions 59



Reference Manual, Release Yade documentation 2nd ed.

dispIndex
Return class index of this instance.

forMaxMoment(=1.0)
parameter stored for each interaction, and allowing to compute the maximum value of the
exchanged torque : TorqueMax= forMaxMoment * NormalForce

kn(=0)
Normal stiffness

knLower(=0.0)
the stifness corresponding to a virgin load for example

kr(=0.0)
the rolling stiffness of the interaction

ks(=0)
Shear stiffness

moment_bending(=Vector3r(0, 0, 0))
Bending moment. Defined here, being initialized as it should be, to be used in Law2_-
ScGeom6D_NormalInelasticityPhys_NormalInelasticity

moment_twist(=Vector3r(0, 0, 0))
Twist moment. Defined here, being initialized as it should be, to be used in Law2_Sc-
Geom6D_NormalInelasticityPhys_NormalInelasticity

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

previousFn(=0.0)
the value of the normal force at the last time step

previousun(=0.0)
the value of this un at the last time step

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

unMax(=0.0)
the maximum value of penetration depth of the history of this interaction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PolyhedraPhys((object)arg1)
Simple elastic material with friction for volumetric constitutive laws
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

60 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscElCapPhys((object)arg1)
IPhys created from ViscElCapMat, for use with Law2_ScGeom_ViscElCapPhys_Basic.
Capillar(=false)

True, if capillar forces need to be added.
CapillarType(=None_Capillar)

Different types of capillar interaction: Willett_numeric, Willett_analytic, Weigert, Rabi-
novich, Lambert, Soulie

Vb(=0.0)
Liquid bridge volume [m^3]

cn(=NaN)
Normal viscous constant

cs(=NaN)
Shear viscous constant

dict() → dict
Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

gamma(=0.0)
Surface tension [N/m]

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

liqBridgeActive(=false)
Whether liquid bridge is active at the moment

liqBridgeCreated(=false)
Whether liquid bridge was created, only after a normal contact of spheres

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

sCrit(=false)
Critical bridge length [m]

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

1.2. Interactions 61



Reference Manual, Release Yade documentation 2nd ed.

tangensOfFrictionAngle(=NaN)
tan of angle of friction

theta(=0.0)
Contact angle [rad]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscElPhys((object)arg1)
IPhys created from ViscElMat, for use with Law2_ScGeom_ViscElPhys_Basic.
cn(=NaN)

Normal viscous constant
cs(=NaN)

Shear viscous constant
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

mR(=0.0)
Rolling resistance, see [Zhou1999536].

mRtype(=1)
Rolling resistance type, see [Zhou1999536]. mRtype=1 - equation (3) in [Zhou1999536]; mR-
type=2 - equation (4) in [Zhou1999536]

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ViscoFrictPhys((object)arg1)
Temporary version of FrictPhys for compatibility with e.g. Law2_ScGeom6D_NormalInelastici-
tyPhys_NormalInelasticity
creepedShear(=Vector3r(0, 0, 0))

Creeped force (parallel)
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

62 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispIndex
Return class index of this instance.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.WirePhys((object)arg1)
Representation of a single interaction of the WirePM type, storage for relevant parameters
dL(=0.)

Additional wire length for considering the distortion for WireMat type=2 (see [Thoeni2013]).
dict() → dict

Return dictionary of attributes.

dispHierarchy([(bool)names=True ]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displForceValues(=uninitalized)
Defines the values for force-displacement curve.

initD(=0.)
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

isDoubleTwist(=false)
If true the properties of the interaction will be defined as a double-twisted wire.

isLinked(=false)
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

isShifted(=false)
If true WireMat type=2 and the force-displacement curve will be shifted.

kn(=0)
Normal stiffness

ks(=0)
Shear stiffness

limitFactor(=0.)
This value indicates on how far from failing the wire is, e.g. actual normal displacement
divided by admissible normal displacement.

normalForce(=Vector3r::Zero())
Normal force after previous step (in global coordinates).

1.2. Interactions 63



Reference Manual, Release Yade documentation 2nd ed.

plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero.

shearForce(=Vector3r::Zero())
Shear force after previous step (in global coordinates).

stiffnessValues(=uninitalized)
Defines the values for the various stiffnesses (the elastic stiffness is stored as kn).

tangensOfFrictionAngle(=NaN)
tan of angle of friction

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

64 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.2. Interactions 65



Reference Manual, Release Yade documentation 2nd ed.

1.3 Global engines

1.3.1 GlobalEngine

GlobalEngine

Collider

PeriodicEngine

DomainLimiter

BoundaryController

CapillaryStressRecorder

Recorder

RungeKuttaCashKarp54IntegratorIntegrator

TimeStepper

ForceRecorder

BoxFactory

SpheresFactory

GlobalStiffnessTimeStepper

FacetTopologyAnalyzer

CpmStateUpdater

ResetRandomPosition

FieldApplier

CohesiveFrictionalContactLaw

NewtonIntegrator

HydrodynamicsLawLBM

TriaxialStateRecorder

Law2_ScGeom_CapillaryPhys_Capillarity

TorqueRecorder

TesselationWrapper

ForceResetter

TetraVolumetricLaw

PolyhedraSplitter

PyRunner

MicroMacroAnalyser

CircularFactory

VTKRecorder

ElasticContactLaw

SnapshotEngine

InteractionLoop

class yade.wrapper.GlobalEngine((object)arg1)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

66 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BoxFactory((object)arg1)
Box geometry of the SpheresFactory region, given by extents and center
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
center(=Vector3r(NaN, NaN, NaN))

Center of the region
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

1.3. Global engines 67



Reference Manual, Release Yade documentation 2nd ed.

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

extents(=Vector3r(NaN, NaN, NaN))
Extents of the region

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

68 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CapillaryStressRecorder((object)arg1)
Records information from capillary meniscii on samples submitted to triaxial compressions. Clas-
sical sign convention (tension positiv) is used for capillary stresses. -> New formalism needs to be
tested!!!
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

1.3. Global engines 69



Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.CircularFactory((object)arg1)
Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or
cylinder (given by radius, length and center).
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
center(=Vector3r(NaN, NaN, NaN))

Center of the region
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

70 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

length(=0)
Length of the cylindrical region (0 by default)

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

radius(=NaN)
Radius of the region

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

1.3. Global engines 71



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.CohesiveFrictionalContactLaw((object)arg1)
[DEPRECATED] Loop over interactions applying Law2_ScGeom6D_CohFrictPhys_CohesionMo-
ment on all interactions.

Note: Use InteractionLoop and Law2_ScGeom6D_CohFrictPhys_CohesionMoment instead of
this class for performance reasons.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creep_viscosity(=false)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

72 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CpmStateUpdater((object)arg1)
Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In
particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.
avgRelResidual(=NaN)

Average residual strength at last run.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxOmega(=NaN)
Globally maximum damage parameter at last run.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1.3. Global engines 73



Reference Manual, Release Yade documentation 2nd ed.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.DomainLimiter((object)arg1)
Delete particles that are out of axis-aligned box given by lo and hi.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

hi(=Vector3r(0, 0, 0))
Upper corner of the domain.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lo(=Vector3r(0, 0, 0))
Lower corner of the domain.

mDeleted(=0)
Mass of deleted particles.

mask(=-1)
If mask is defined, only particles with corresponding groupMask will be deleted.

nDeleted(=0)
Cummulative number of particles deleted.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

74 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vDeleted(=0)
Volume of deleted particles.

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ElasticContactLaw((object)arg1)
[DEPRECATED] Loop over interactions applying Law2_ScGeom_FrictPhys_CundallStrack on
all interactions.

Note: Use InteractionLoop and Law2_ScGeom_FrictPhys_CundallStrack instead of this class
for performance reasons.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1.3. Global engines 75



Reference Manual, Release Yade documentation 2nd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FacetTopologyAnalyzer((object)arg1)
Initializer for filling adjacency geometry data for facets.
Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.
commonEdgesFound(=0)

how many common edges were identified during last run. (auto-updated)
commonVerticesFound(=0)

how many common vertices were identified during last run. (auto-updated)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

projectionAxis(=Vector3r::UnitX())
Axis along which to do the initial vertex sort

relTolerance(=1e-4)
maximum distance of ‘identical’ vertices, relative to minimum facet size

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ForceRecorder((object)arg1)
Engine saves the resultant force affecting to bodies, listed in ids. For instance, can be useful for
defining the forces, which affects to _buldozer_ during its work.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

76 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

ids(=uninitalized)
List of bodies whose state will be measured

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalForce(=Vector3r::Zero())
Resultant force, returning by the function.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.3. Global engines 77



Reference Manual, Release Yade documentation 2nd ed.

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ForceResetter((object)arg1)
Reset all forces stored in Scene::forces (O.forces in python). Typically, this is the first engine to
be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlobalStiffnessTimeStepper((object)arg1)
An engine assigning the time-step as a fraction of the minimum eigen-period in the problem. The
derivation is detailed in the chapter on DEM formulation. The viscEl option enables to evaluate
the timestep in a similar way for the visco-elastic contact law Law2_ScGeom_ViscElPhys_Basic,
more detail in GlobalStiffnessTimestepper::viscEl.
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defaultDt(=-1)
used as the initial value of the timestep (especially useful in the first steps when no contact
exist). If negative, it will be defined by utils.PWaveTimeStep * GlobalStiffnessTimeStep-
per::timestepSafetyCoefficient

densityScaling(=false)
(auto-updated) don’t modify this value if you don’t plan to modify the scaling factor manually
for some bodies. In most cases, it is enough to set NewtonIntegrator::densityScaling and let
this one be adjusted automatically.

78 Chapter 1. Class reference (yade.wrapper module)

https://www.yade-dem.org/doc/formulation.html#dem-simulations


Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxDt(=Mathr::MAX_REAL)
if positive, used as max value of the timestep whatever the computed value

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

previousDt(=1)
last computed dt (auto-updated)

targetDt(=1)
if NewtonIntegrator::densityScaling is active, this value will be used as the simulation timestep
and the scaling will use this value of dt as the target value. The value of targetDt is arbitrary
and should have no effect in the result in general. However if some bodies have imposed
velocities, for instance, they will move more or less per each step depending on this value.

timeStepUpdateInterval(=1)
dt update interval

timestepSafetyCoefficient(=0.8)
safety factor between the minimum eigen-period and the final assigned dt (less than 1)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

viscEl(=false)
To use with ViscElPhys. if True, evaluate separetly the minimum eigen-period in the problem
considering only the elastic contribution on one hand (spring only), and only the viscous
contribution on the other hand (dashpot only). Take then the minimum of the two and
use the safety coefficient GlobalStiffnessTimestepper::timestepSafetyCoefficient to take into
account the possible coupling between the two contribution.

class yade.wrapper.HydrodynamicsLawLBM((object)arg1)
Engine to simulate fluid flow (with the lattice Boltzmann method) with a coupling with the discrete
element method. If you use this Engine, please cite and refer to F. Lominé et al. International
Journal For Numerical and Analytical Method in Geomechanics, 2012, doi: 10.1002/nag.1109
ConvergenceThreshold(=0.000001)
CstBodyForce(=Vector3r::Zero())

A constant body force (=that does not vary in time or space, otherwise the implementation
introduces errors)

DemIterLbmIterRatio(=-1)
Ratio between DEM and LBM iterations for subcycling

1.3. Global engines 79



Reference Manual, Release Yade documentation 2nd ed.

EndTime(=-1)
the time to stop the simulation

EngineIsActivated(=true)
To activate (or not) the engine

IterMax(=1)
This variable can be used to do several LBM iterations during one DEM iteration.

IterPrint(=1)
Print info on screen every IterPrint iterations

IterSave(=100)
Data are saved every IterSave LBM iteration (or see TimeSave)

IterSubCyclingStart(=-1)
Iteration number when the subcycling process starts

LBMSavedData(=” “)
a list of data that will be saved. Can use veloc-
ity,velXY,forces,rho,bodies,nodeBD,newNode,observedptc,observednode,contacts,spheres,bz2

Nu(=0.000001)
Fluid kinematic viscosity

Nx(=1000)
The number of grid division in x direction

ObservedNode(=-1)
The identifier of the node that will be observed (-1 means none)

ObservedPtc(=-1)
The identifier of the particle that will be observed (-1 means the first one)

RadFactor(=1.0)
The radius of DEM particules seen by the LBM is the real radius of particules*RadFactor

Rho(=1000.)
Fluid density

SaveGridRatio(=1)
Grid data are saved every SaveGridRatio * IterSave LBM iteration (with SaveMode=1)

SaveMode(=1)
Save Mode (1-> default, 2-> in time (not yet implemented)

TimeSave(=-1)
Data are saved at constant time interval (or see IterSave)

VbCutOff(=-1)
the minimum boundary velocity that is taken into account

VelocityThreshold(=-1.)
Velocity threshold when removingCriterion=2

WallXm_id(=2)
Identifier of the X- wall

WallXp_id(=3)
Identifier of the X+ wall

WallYm_id(=0)
Identifier of the Y- wall

WallYp_id(=1)
Identifier of the Y+ wall

WallZm_id(=4)
Identifier of the Z- wall

80 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

WallZp_id(=5)
Identifier of the Z+ wall

XmBCType(=1)
Boundary condition for the wall in Xm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

XmBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

XmBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

XmYmZmBCType(=-1)
Boundary condition for the corner node XmYmZm (not used with d2q9, -1: unused, 1: pres-
sure condition, 2: velocity condition).

XmYmZpBCType(=2)
Boundary condition for the corner node XmYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XmYpZmBCType(=-1)
Boundary condition for the corner node XmYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XmYpZpBCType(=2)
Boundary condition for the corner node XmYpZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XpBCType(=1)
Boundary condition for the wall in Xp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

XpBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

XpBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

XpYmZmBCType(=-1)
Boundary condition for the corner node XpYmZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XpYmZpBCType(=2)
Boundary condition for the corner node XpYmZp (-1: unused, 1: pressure condition, 2:
velocity condition).

XpYpZmBCType(=-1)
Boundary condition for the corner node XpYpZm (not used with d2q9, -1: unused, 1: pressure
condition, 2: velocity condition).

XpYpZpBCType(=2)
Boundary condition for the corner node XpYpZp (-1: unused, 1: pressure condition, 2: velocity
condition).

YmBCType(=2)
Boundary condition for the wall in Ym (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

YmBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

YmBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

YpBCType(=2)
Boundary condition for the wall in Yp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

1.3. Global engines 81



Reference Manual, Release Yade documentation 2nd ed.

YpBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

YpBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

ZmBCType(=-1)
Boundary condition for the wall in Zm (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

ZmBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

ZmBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

ZpBCType(=-1)
Boundary condition for the wall in Zp (-1: unused, 1: pressure condition, 2: velocity condi-
tion).

ZpBcVel(=Vector3r::Zero())
(!!! not fully implemented !!) The velocity imposed at the boundary

applyForcesAndTorques(=true)
Switch to apply forces and torques

bc(=” “)
Boundary condition

dP(=Vector3r(0., 0., 0.))
Pressure difference between input and output

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defaultLbmInitMode(=0)
Switch between the two initialisation methods

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

model(=”d2q9”)
The LB model. Until now only d2q9 is implemented

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodicity(=” “)
periodicity

removingCriterion(=0)
Criterion to remove a sphere (1->based on particle position, 2->based on particle velocity

82 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

tau(=0.6)
Relaxation time

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useWallXm(=false)
Set true if you want that the LBM see the wall in Xm

useWallXp(=false)
Set true if you want that the LBM see the wall in Xp

useWallYm(=true)
Set true if you want that the LBM see the wall in Ym

useWallYp(=true)
Set true if you want that the LBM see the wall in Yp

useWallZm(=false)
Set true if you want that the LBM see the wall in Zm

useWallZp(=false)
Set true if you want that the LBM see the wall in Zp

zpBcRho(=-1)
(!!! not fully implemented !!) The density imposed at the boundary

class yade.wrapper.Integrator((object)arg1)
Integration Engine Interface.
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

integrationsteps(=uninitalized)
all integrationsteps count as all succesfull substeps

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocitySq(=NaN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1.3. Global engines 83



Reference Manual, Release Yade documentation 2nd ed.

slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

timeStepUpdateInterval(=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.InteractionLoop((object)arg1)
Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor
Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

callbacks(=uninitalized)
Callbacks which will be called for every Interaction, if activated.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

eraseIntsInLoop(=false)
Defines if the interaction loop should erase pending interactions, else the collider takes care
of that alone (depends on what collider is used).

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

geomDispatcher(=new IGeomDispatcher)
IGeomDispatcher object that is used for dispatch.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lawDispatcher(=new LawDispatcher)
LawDispatcher object used for dispatch.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

physDispatcher(=new IPhysDispatcher)
IPhysDispatcher object used for dispatch.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

84 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity((object)arg1)
This law allows one to take into account capillary forces/effects between spheres coming from the
presence of interparticular liquid bridges (menisci).
The control parameter is the capillary pressure (or suction) Uc = Ugas - Uliquid. Liquid bridges
properties (volume V, extent over interacting grains delta1 and delta2) are computed as a result
of the defined capillary pressure and of the interacting geometry (spheres radii and interparticular
distance).
References: in english [Scholtes2009b]; more detailed, but in french [Scholtes2009d].
The law needs ascii files M(r=i) with i=R1/R2 to work (see https://yade-
dem.org/wiki/CapillaryTriaxialTest). These ASCII files contain a set of results from the
resolution of the Laplace-Young equation for different configurations of the interacting geometry,
assuming a null wetting angle.
In order to allow capillary forces between distant spheres, it is necessary to enlarge the bounding
boxes using Bo1_Sphere_Aabb::aabbEnlargeFactor and make the Ig2 define define distant inter-
actions via interactionDetectionFactor. It is also necessary to disable interactions removal by the
constitutive law (Law2). The only combinations of laws supported are currently capillary law
+ Law2_ScGeom_FrictPhys_CundallStrack and capillary law + Law2_ScGeom_MindlinPhys_-
Mindlin (and the other variants of Hertz-Mindlin).
See CapillaryPhys-example.py for an example script.
binaryFusion(=true)

If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected.
Otherwise fCap = fCap / (fusionNumber + 1 )

capillaryPressure(=0.)
Value of the capillary pressure Uc defined as Uc=Ugas-Uliquid

createDistantMeniscii(=false)
Generate meniscii between distant spheres? Else only maintain the existing ones. For modeling
a wetting path this flag should always be false. For a drying path it should be true for one
step (initialization) then false, as in the logic of [Scholtes2009c]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fusionDetection(=false)
If true potential menisci overlaps are checked, computing fusionNumber for each capillary
interaction, and reducing fCap according to binaryFusion

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1.3. Global engines 85

https://yade-dem.org/wiki/CapillaryTriaxialTest
https://yade-dem.org/wiki/CapillaryTriaxialTest


Reference Manual, Release Yade documentation 2nd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MicroMacroAnalyser((object)arg1)
compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.
compDeformation(=false)

Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

compIncrt(=false)
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

incrtNumber(=1)
interval(=100)

Number of timesteps between analyzed states.
label(=uninitalized)

Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nonSphereAsFictious(=true)
bodies that are not spheres will be used to defines bounds (else just skipped).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

outputFile(=”MicroMacroAnalysis”)
Base name for increment analysis output file.

stateFileName(=”state”)
Base name of state files.

stateNumber(=0)
A number incremented and appended at the end of output files to reflect increment number.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

86 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.NewtonIntegrator((object)arg1)
Engine integrating newtonian motion equations.
damping(=0.2)

damping coefficient for Cundall’s non viscous damping (see numerical damping and
[Chareyre2005])

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

densityScaling
if True, then density scaling [Pfc3dManual30] will be applied in order to have a critical timestep
equal to GlobalStiffnessTimeStepper::targetDt for all bodies. This option makes the simula-
tion unrealistic from a dynamic point of view, but may speedup quasistatic simulations. In
rare situations, it could be useful to not set the scalling factor automatically for each body
(which the time-stepper does). In such case revert GlobalStiffnessTimeStepper.densityScaling
to False.

dict() → dict
Return dictionary of attributes.

exactAsphericalRot(=true)
Enable more exact body rotation integrator for aspherical bodies only, using formulation from
[Allen1989], pg. 89.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Gravitational acceleration (effectively replaces GravityEngine).

kinSplit(=false)
Whether to separately track translational and rotational kinetic energy.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
If mask defined and the bitwise AND between mask and body‘s groupMask gives 0, the body
will not move/rotate. Velocities and accelerations will be calculated not paying attention to
this parameter.

maxVelocitySq(=NaN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevVelGrad(=Matrix3r::Zero())
Store previous velocity gradient (Cell::velGrad) to track acceleration. (auto-updated)

1.3. Global engines 87

https://yade-dem.org/doc/formulation.html?highlight=damping#numerical-damping


Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

warnNoForceReset(=true)
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.PeriodicEngine((object)arg1)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.
The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.
If initRun is set (false by default), the engine will run when called for the first time; otherwise it
will only start counting period (realLast etc interal variables) from that point, but without actually
running, and will run only once a period has elapsed since the initial run.
This class should not be used directly; rather, derive your own engine which you want to be run
periodically.
Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.
Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts:

PyRunner(realPeriod=5,iterPeriod=10000,command='print O.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whiever
comes first since it was last run.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

88 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PolyhedraSplitter((object)arg1)
Engine that splits polyhedras.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

1.3. Global engines 89



Reference Manual, Release Yade documentation 2nd ed.

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PyRunner((object)arg1)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-
cEngine documentation for details.
command(=”“)

Command to be run by python interpreter. Not run if empty.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

90 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.Recorder((object)arg1)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

1.3. Global engines 91



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.ResetRandomPosition((object)arg1)
Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.
angularVelocity(=Vector3r::Zero())

Mean angularVelocity of spheres.
angularVelocityRange(=Vector3r::Zero())

Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity±angularVelocityRange.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

factoryFacets(=uninitalized)
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

92 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxAttempts(=20)
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

normal(=Vector3r(0, 1, 0))
??

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

point(=Vector3r::Zero())
??

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

subscribedBodies(=uninitalized)
Affected bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=Vector3r::Zero())
Mean velocity of spheres.

velocityRange(=Vector3r::Zero())
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocity±velocityRange.

virtLast(=0)
Tracks virtual time of last run (auto-updated).

1.3. Global engines 93



Reference Manual, Release Yade documentation 2nd ed.

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

volumeSection(=false, define factory by facets.)
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.RungeKuttaCashKarp54Integrator((object)arg1)
RungeKuttaCashKarp54Integrator engine.
__init__() → None

object __init__(tuple args, dict kwds)
__init__((list)arg2) → object : Construct from (possibly nested) list of slaves.

a_dxdt(=1.0)
a_x(=1.0)
abs_err(=1e-6)

Relative integration tolerance
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

integrationsteps(=uninitalized)
all integrationsteps count as all succesfull substeps

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocitySq(=NaN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rel_err(=1e-6)
Absolute integration tolerance

slaves
List of lists of Engines to calculate the force acting on the particles; to obtain the derivatives
of the states, engines inside will be run sequentially.

stepsize(=1e-6)
It is not important for an adaptive integration but important for the observer for setting the
found states after integration

timeStepUpdateInterval(=1)
dt update interval

94 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.SnapshotEngine((object)arg1)
Periodically save snapshots of GLView(s) as .png files. Files are named fileBase + counter + ‘.png’
(counter is left-padded by 0s, i.e. snap00004.png).
counter(=0)

Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

deadTimeout(=3)
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fileBase(=”“)
Basename for snapshots

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

format(=”PNG”)
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

ignoreErrors(=true)
Only report errors instead of throwing exceptions, in case of timeouts.

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

msecSleep(=0)
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

1.3. Global engines 95

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c


Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

plot(=uninitalized)
Name of field in plot.imgData to which taken snapshots will be appended automatically.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

snapshots(=uninitalized)
Files that have been created so far

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.SpheresFactory((object)arg1)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMax, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overridden SpheresFactory::pickRandomPosition().
A sample script for this engine is in scripts/spheresFactory.py.
PSDcalculateMass(=true)

PSD-Input is in mass (true), otherwise the number of particles will be considered.
PSDcum(=uninitalized)

PSD-dispersion, cumulative procent meanings [-]
PSDsizes(=uninitalized)

PSD-dispersion, sizes of cells, Diameter [m]
blockedDOFs(=”“)

Blocked degress of freedom
color(=Vector3r(-1, -1, -1))

Use the color for newly created particles, if specified
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

exactDiam(=true)
If true, the particles only with the defined in PSDsizes diameters will be created. Otherwise
the diameter will be randomly chosen in the range [PSDsizes[i-1]:PSDsizes[i]], in this case the
length of PSDsizes should be more on 1, than the length of PSDcum.

96 Chapter 1. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/spheresFactory.py


Reference Manual, Release Yade documentation 2nd ed.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

goalMass(=0)
Total mass that should be attained at the end of the current step. (auto-updated)

ids(=uninitalized)
ids of created bodies

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=-1)
groupMask to apply for newly created spheres

massFlowRate(=NaN)
Mass flow rate [kg/s]

materialId(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt(=5000)
Maximum number of attempts to position a new sphere randomly.

maxMass(=-1)
Maximal mass at which to stop generating new particles regardless of massFlowRate. if
maxMass=-1 - this parameter is ignored.

maxParticles(=100)
The number of particles at which to stop generating new ones regardless of massFlowRate. if
maxParticles=-1 - this parameter is ignored .

normal(=Vector3r(NaN, NaN, NaN))
Orientation of the region’s geometry, direction of particle’s velocites if normalVel is not set.

normalVel(=Vector3r(NaN, NaN, NaN))
Direction of particle’s velocites.

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

stopIfFailed(=true)
If true, the SpheresFactory stops (sets massFlowRate=0), when maximal number of attempts
to insert particle exceed.

1.3. Global engines 97



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

totalVolume(=0)
Volume of spheres that was produced so far. (auto-updated)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper((object)arg1)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities (see also the dedicated section in user manual). The calculation of microstrain
is explained in [Catalano2014a]
See example usage in script example/tesselationWrapper/tesselationWrapper.py.
Below is an output of the defToVtk function visualized with paraview (in this case Yade’s Tessela-
tionWrapper was used to process experimental data obtained on sand by Edward Ando at Grenoble
University, 3SR lab.)

computeDeformations() → None
compute per-particle deformation. Get it with TesselationWrapper::deformation (id,i,j).

98 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/doc/user.html#micro-stress-and-micro-strain


Reference Manual, Release Yade documentation 2nd ed.

computeVolumes() → None
compute volumes of all Voronoi’s cells.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

defToVtk([(str)outputFile=’def.vtk’ ]) → None
Write local deformations in vtk format from states 0 and 1.

defToVtkFromPositions([(str)input1=’pos1’[, (str)input2=’pos2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=False ] ] ] ]) → None

Write local deformations in vtk format from positions files (one sphere per line, with x,y,z,rad
separated by spaces).

defToVtkFromStates([(str)input1=’state1’[, (str)input2=’state2’[,
(str)outputFile=’def.vtk’[, (bool)bz2=True ] ] ] ]) → None

Write local deformations in vtk format from state files (since the file format is very special,
consider using defToVtkFromPositions if the input files were not generated by Tesselation-
Wrapper).

deformation((int)id, (int)i, (int)j) → float
Get particle deformation

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

getVolPoroDef([(bool)deformation=False ]) → dict
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

loadState([(str)inputFile=’state’[, (bool)state=0[, (bool)bz2=True ] ] ]) → None
Load a file with positions to define state 0 or 1.

n_spheres(=0)
(auto-computed)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

saveState([(str)outputFile=’state’[, (bool)state=0[, (bool)bz2=True ] ] ]) → None
Save a file with positions, can be later reloaded in order to define state 0 or 1.

setState([(bool)state=0 ]) → None
Make the current state of the simulation the initial (0) or final (1) configuration for the
definition of displacement increments, use only state=0 if you just want to get volmumes and
porosity.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1.3. Global engines 99



Reference Manual, Release Yade documentation 2nd ed.

triangulate([(bool)reset=True ]) → None
triangulate spheres of the packing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

volume([(int)id=0 ]) → float
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw((object)arg1)
Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TimeStepper((object)arg1)
Engine defining time-step (fundamental class)
active(=true)

is the engine active?
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

100 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timeStepUpdateInterval(=1)
dt update interval

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TorqueRecorder((object)arg1)
Engine saves the total torque according to the given axis and ZeroPoint, the force is taken from
bodies, listed in ids For instance, can be useful for defining the torque, which affects on ball mill
during its work.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

ids(=uninitalized)
List of bodies whose state will be measured

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

1.3. Global engines 101



Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

rotationAxis(=Vector3r::UnitX())
Rotation axis

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

totalTorque(=0)
Resultant torque, returning by the function.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

zeroPoint(=Vector3r::Zero())
Point of rotation center

class yade.wrapper.TriaxialStateRecorder((object)arg1)
Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

file(=uninitalized)
Name of file to save to; must not be empty.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

102 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

porosity(=1)
porosity of the packing [-]

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.VTKRecorder((object)arg1)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-
processing programs such as Paraview. Both bodies (spheres and facets) and interactions can be
recorded, with various vector/scalar quantities that are defined on them.
PeriodicEngine.initRun is initialized to True automatically.
Key(=”“)

Necessary if recorders contains ‘cracks’. A string specifying the name of file ‘cracks___.txt’
that is considered in this case (see corresponding attribute).

ascii(=false)
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter::Ascii, while the default is Appended

compress(=false)
Compress output XML files [experimental].

1.3. Global engines 103

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html


Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fileName(=”“)
Base file name; it will be appended with {spheres,intrs,facets}-243100.vtu (unless multiblock
is True) depending on active recorders and step number (243100 in this case). It can contain
slashes, but the directory must exist already.

firstIterRun(=0)
Sets the step number, at each an engine should be executed for the first time (disabled by
default).

initRun(=false)
Run the first time we are called as well.

iterLast(=0)
Tracks step number of last run (auto-updated).

iterPeriod(=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

multiblock(=false)
Use multi-block (.vtm) files to store data, rather than separate .vtu files.

nDo(=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone(=0)
Track number of executions (cummulative) (auto-updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

realLast(=0)
Tracks real time of last run (auto-updated).

realPeriod(=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

recorders
List of active recorders (as strings). all (the default value) enables all base and generic
recorders.

Base recorders

104 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

Base recorders save the geometry (unstructured grids) on which other data is defined. They
are implicitly activated by many of the other recorders. Each of them creates a new file (or a
block, if multiblock is set).
spheres Saves positions and radii (radii) of spherical particles.
facets Save facets positions (vertices).
boxes Save boxes positions (edges).
intr Store interactions as lines between nodes at respective particles positions. Additionally

stores magnitude of normal (forceN) and shear (absForceT) forces on interactions (the
geom).

Generic recorders
Generic recorders do not depend on specific model being used and save commonly useful data.
id Saves id’s (field id) of spheres; active only if spheres is active.
mass Saves masses (field mass) of spheres; active only if spheres is active.
clumpId Saves id’s of clumps to which each sphere belongs (field clumpId); active only if

spheres is active.
colors Saves colors of spheres and of facets (field color); only active if spheres or facets

are activated.
mask Saves groupMasks of spheres and of facets (field mask); only active if spheres or facets

are activated.
materialId Saves materialID of spheres and of facets; only active if spheres or facets are

activated.
coordNumber Saves coordination number (number of neighbours) of spheres and of facets;

only active if spheres or facets are activated.
velocity Saves linear and angular velocities of spherical particles as Vector3 and length(fields

linVelVec, linVelLen and angVelVec, angVelLen respectively‘‘); only effective with
spheres.

stress Saves stresses of spheres and of facets as Vector3 and length; only active if spheres
or facets are activated.

force Saves force and torque of spheres, facets and boxes as Vector3 and length (norm); only
active if spheres, facets or boxes are activated.

pericell Saves the shape of the cell (simulation has to be periodic).
bstresses Saves per-particle principal stresses (sigI >= sigII >= sigIII) and associated prin-

cipal directions (dirI/II/III). Per-particle stress tensors are given by bodyStressTensors
(positive values for tensile states).

Specific recorders
The following should only be activated in appropriate cases, otherwise crashes can
occur due to violation of type presuppositions.
cpm Saves data pertaining to the concrete model: cpmDamage (normalized residual

strength averaged on particle), cpmStress (stress on particle); intr is activated
automatically by cpm

wpm Saves data pertaining to the wire particle model: wpmForceNFactor shows the
loading factor for the wire, e.g. normal force divided by threshold normal force.

jcfpm Saves data pertaining to the rock (smooth)-jointed model: damage is defined
by JCFpmState.tensBreak + JCFpmState.shearBreak; intr is activated auto-
matically by jcfpm, and on joint or cohesive interactions can be vizualized.

1.3. Global engines 105



Reference Manual, Release Yade documentation 2nd ed.

cracks Saves other data pertaining to the rock model: cracks shows locations where
cohesive bonds failed during the simulation, with their types (0/1 for tensile/shear
breakages), their sizes (0.5*(R1+R2)), and their normal directions. The corre-
sponding attribute has to be activated, and Key attributes have to be consistent.

skipFacetIntr(=true)
Skip interactions that are not of sphere-sphere type (e.g. sphere-facet, sphere-box...), when
saving interactions

skipNondynamic(=false)
Skip non-dynamic spheres (but not facets).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod(=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

1.3.2 BoundaryController

BoundaryController

Disp2DPropLoadEngine

Peri3dController

PeriIsoCompressor

KinemCTDEngine

KinemSimpleShearBox

KinemCNSEngine

TriaxialCompressionEngine

TriaxialStressController

KinemCNLEngine

UniaxialStrainer

ThreeDTriaxialEngine

PeriTriaxController

KinemCNDEngine

class yade.wrapper.BoundaryController((object)arg1)
Base for engines controlling boundary conditions of simulations. Not to be used directly.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

106 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Disp2DPropLoadEngine((object)arg1)
Disturbs a simple shear sample in a given displacement direction
This engine allows one to apply, on a simple shear sample, a loading controlled by du/dgamma =
cste, which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so,
the upper plate of the simple shear box is moved in a given direction (corresponding to a given
du/dgamma), whereas lateral plates are moved so that the box remains closed. This engine can
easily be used to perform directionnal probes, with a python script launching successivly the same
.xml which contains this engine, after having modified the direction of loading (see theta attribute).
That’s why this Engine contains a saveData procedure which can save data on the state of the
sample at the end of the loading (in case of successive loadings - for successive directions - through
a python script, each line would correspond to one direction of loading).
Key(=”“)

string to add at the names of the saved files, and of the output file filled by saveData
LOG(=false)

boolean controling the output of messages on the screen
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

1.3. Global engines 107



Reference Manual, Release Yade documentation 2nd ed.

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nbre_iter(=0)
the number of iterations of loading to perform

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

theta(=0.0)
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

v(=0.0)
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v = V_shear - | (V_shear-
V_comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.wrapper.KinemCNDEngine((object)arg1)
To apply a Constant Normal Displacement (CND) shear for a parallelogram box
This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows one to perform a constant normal displacement shear, by translat-
ing horizontally the upper plate, while the lateral ones rotate so that they always keep contact
with the lower and upper walls.
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the

108 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
the current value of the tangential displacement

gamma_save(=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of the tangential displacement at wich the displacement is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at which the shear is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

1.3. Global engines 109



Reference Manual, Release Yade documentation 2nd ed.

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNLEngine((object)arg1)
To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)
This engine allows one to translate horizontally the upper plate while the lateral ones rotate so
that they always keep contact with the lower and upper walls.
In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)
The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)
The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

Key(=”“)
string to add at the names of the saved files

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
current value of tangential displacement [m]

110 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

gamma_save(=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCNSEngine((object)arg1)
To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)
This engine, useable in simulations implying one deformable parallelepipedic box, allows one to
translate horizontally the upper plate while the lateral ones rotate so that they always keep contact
with the lower and upper walls. The upper plate can move not only horizontally but also vertically,

1.3. Global engines 111



Reference Manual, Release Yade documentation 2nd ed.

so that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).
The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

Key(=”“)
string to add at the names of the saved files

KnC(=10.0e6)
the normal rigidity chosen by the user [MPa/mm] - the conversion in Pa/m will be made

LOG(=false)
boolean controling the output of messages on the screen

alpha(=Mathr::PI/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

gamma(=0.0)
current value of tangential displacement [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

112 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemCTDEngine((object)arg1)
To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (targetSigma). Moreover
saves are executed at each value of stresses stored in the vector sigma_save, and at targetSigma
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

compSpeed(=0.0)
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

1.3. Global engines 113



Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma_save(=uninitalized)
vector with the values of sigma at which a save of the simulation should be performed [kPa]

targetSigma(=0.0)
the value of sigma at which the compression should stop [kPa]

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

114 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.KinemSimpleShearBox((object)arg1)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine. Has to
be saved, but not to be changed by the user.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Has to be saved, but not to be changed by the user.

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Has to be saved, but not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

1.3. Global engines 115



Reference Manual, Release Yade documentation 2nd ed.

id_topbox(=3)
the id of the upper wall

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Has to be saved, but not to be
changed by the user.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Has
to be saved, but not to be changed by the user.

class yade.wrapper.Peri3dController((object)arg1)
Class for controlling independently all 6 components of “engineering” stress and strain of periodic
Cell. goal are the goal values, while stressMask determines which components prescribe stress and
which prescribe strain.
If the strain is prescribed, appropriate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.
Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(dσi, dσi−1). Linear extrapolation is used to estimate error in the next step

dσi+1 = 2dσi − dσi−1

According to this error, the strain rate is modified by mod parameter

dσi+1

{
> 0 → ε̇i+1 = ε̇i −max(abs(ε̇i)) ·mod
< 0 → ε̇i+1 = ε̇i +max(abs(ε̇i)) ·mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and

116 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).
The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf T = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt · ε̇ is properly rotated to cell’s local
coordinates and added to P

Pi+1 = P+UTdt · ε̇U

The new value of trsf is computed at T i+1 = UPi+1. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V = (T i+1T
−1 − I)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.
Examples examples/test/peri3dController_example1.py and examples/test/peri3dController_-
triaxialCompression.py explain usage and inputs of Peri3dController, exam-
ples/test/peri3dController_shear.py is an example of using shear components and also simulation
on rotated cell.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=uninitalized)
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

goal(=Vector6r::Zero())
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lenPe(=0)
Peri3dController internal variable

lenPs(=0)
Peri3dController internal variable

maxStrain(=1e6)
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

maxStrainRate(=1e3)
Maximal absolute value of strain rate (both normal and shear components of strain)

mod(=.1)
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

nSteps(=1000)
Number of steps of the simulation.

1.3. Global engines 117

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_example1.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_triaxialCompression.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_shear.py
https://github.com/yade/trunk/blob/master/examples/test/peri3dController_shear.py


Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

pathSizes(=Vector6i::Zero())
Peri3dController internal variable

pathsCounter(=Vector6i::Zero())
Peri3dController internal variable

pe(=Vector6i::Zero())
Peri3dController internal variable

poissonEstimation(=.25)
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

progress(=0.)
Actual progress of the simulation with Controller.

ps(=Vector6i::Zero())
Peri3dController internal variable

strain(=Vector6r::Zero())
Current strain (deformation) vector (εx,εy,εz,γyz,γzx,γxy) (auto-updated).

strainGoal(=Vector6r::Zero())
Peri3dController internal variable

strainRate(=Vector6r::Zero())
Current strain rate vector.

stress(=Vector6r::Zero())
Current stress vector (σx,σy,σz,τyz,τzx,τxy)|yupdate|.

stressGoal(=Vector6r::Zero())
Peri3dController internal variable

stressIdeal(=Vector6r::Zero())
Ideal stress vector at current time step.

stressMask(=0, all strains)
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

stressRate(=Vector6r::Zero())
Current stress rate vector (that is prescribed, the actual one slightly differ).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.
Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))
at step 400 (=5*1000/2) the value is 450 (=3*300/2),
at step 800 (=4*1000/5) the value is 150 (=1*300/2),

118 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).
See example scripts/test/peri3dController_example1 for illusration.

xyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for xy direction, see xxPath

youngEstimation(=1e20)
Estimation of macroscopic Young’s modulus, used for the first simulation step

yyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yy direction, see xxPath

yzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yz direction, see xxPath

zxPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zx direction, see xxPath

zzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zz direction, see xxPath

class yade.wrapper.PeriIsoCompressor((object)arg1)
Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.
charLen(=-1.)

Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

currUnbalanced
Current value of unbalanced force

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=”“)
Python command to be run when reaching the last specified stress

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

globalUpdateInt(=20)
how often to recompute average stress, stiffness and unbalanced force

keepProportions(=true)
Exactly keep proportions of the cell (stress is controlled based on average, not its components

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxSpan(=-1.)
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

maxUnbalanced(=1e-4)
if actual unbalanced force is smaller than this number, the packing is considered stable,

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1.3. Global engines 119

https://github.com/yade/trunk/blob/master/scripts/test/peri3dController_example1


Reference Manual, Release Yade documentation 2nd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sigma
Current stress value

state(=0)
Where are we at in the stress series

stresses(=uninitalized)
Stresses that should be reached, one after another

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PeriTriaxController((object)arg1)
Engine for independently controlling stress or strain in periodic simulations.
strainStress contains absolute values for the controlled quantity, and stressMask determines
meaning of those values (0 for strain, 1 for stress): e.g. ( 1<<0 | 1<<2 ) = 1 | 4 = 5 means
that strainStress[0] and strainStress[2] are stress values, and strainStress[1] is strain.
See scripts/test/periodic-triax.py for a simple example.
absStressTol(=1e3)

Absolute stress tolerance
currUnbalanced(=NaN)

current unbalanced force (updated every globUpdate) (auto-updated)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doneHook(=uninitalized)
python command to be run when the desired state is reached

dynCell(=false)
Imposed stress can be controlled using the packing stiffness or by applying the laws of dynamic
(dynCell=true). Don’t forget to assign a mass to the cell.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Work input from boundary controller.

globUpdate(=5)
How often to recompute average stress, stiffness and unbalaced force.

goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii).

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

120 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

growDamping(=.25)
Damping of cell resizing (0=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mass(=NaN)
mass of the cell (user set); if not set and dynCell is used, it will be computed as sum of masses
of all particles.

maxBodySpan(=Vector3r::Zero())
maximum body dimension (auto-computed)

maxStrainRate(=Vector3r(1, 1, 1))
Maximum strain rate of the periodic cell.

maxUnbalanced(=1e-4)
maximum unbalanced force.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

prevGrow(=Vector3r::Zero())
previous cell grow

relStressTol(=3e-5)
Relative stress tolerance

stiff(=Vector3r::Zero())
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

strain(=Vector3r::Zero())
cell strain (auto-updated)

strainRate(=Vector3r::Zero())
cell strain rate (auto-updated)

stress(=Vector3r::Zero())
diagonal terms of the stress tensor

stressMask(=0, all strains)
mask determining strain/stress (0/1) meaning for goal components

stressTensor(=Matrix3r::Zero())
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ThreeDTriaxialEngine((object)arg1)
The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl_i)
else in strain.
For a stress control the imposed stress is specified by ‘sigma_i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using

1.3. Global engines 121



Reference Manual, Release Yade documentation 2nd ed.

TriaxialStressController::controlInternalStress. For that, just switch on ‘internalCom-
paction=1’ and fix sigma_iso=value of mean pressure that you want at the end of the internal
compaction.

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

Key(=”“)
A string appended at the end of all files, use it to name simulations.

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
currentStrainRate1(=0)

current strain rate in direction 1 - converging to ThreeDTriaxialEngine::strainRate1 (./s)
currentStrainRate2(=0)

current strain rate in direction 2 - converging to ThreeDTriaxialEngine::strainRate2 (./s)
currentStrainRate3(=0)

current strain rate in direction 3 - converging to ThreeDTriaxialEngine::strainRate3 (./s)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

frictionAngleDegree(=-1)
Value of friction used in the simulation if (updateFrictionAngle)

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

122 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and spheres).

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
setContactProperties((float)arg2) → None

Assign a new friction angle (degrees) to dynamic bodies and relative interactions
spheresVolume

Shorthand for TriaxialStressController::particlesVolume
stiffnessUpdateInterval(=10)

target strain rate (./s)
strain

Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.
strainDamping(=0.9997)

factor used for smoothing changes in effective strain rate. If target rate is TR, then (1-
damping)*(TR-currentRate) will be added at each iteration. With damping=0, rate=target
all the time. With damping=1, it doesn’t change.

1.3. Global engines 123



Reference Manual, Release Yade documentation 2nd ed.

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

strainRate1(=0)
target strain rate in direction 1 (./s, >0 for compression)

strainRate2(=0)
target strain rate in direction 2 (./s, >0 for compression)

strainRate3(=0)
target strain rate in direction 3 (./s, >0 for compression)

stress((int)id) → Vector3
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressControl_1(=true)
Switch to choose a stress or a strain control in directions 1

stressControl_2(=true)
Switch to choose a stress or a strain control in directions 2

stressControl_3(=true)
Switch to choose a stress or a strain control in directions 3

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining wether the imposed TriaxialStressController::goal‘s are stresses (0 for
none, 7 for all, 1 for direction 1, 5 for directions 1 and 3, etc. :ydefault:‘7

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateFrictionAngle(=false)
Switch to activate the update of the intergranular frictionto the value ThreeDTriaxi-
alEngine::frictionAngleDegree.

updatePorosity(=false)
If true porosity calculation will be updated once (will automatically reset to false after one
calculation step). Can be used, when volume of particles changes during the simulation (e.g.
when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

124 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialCompressionEngine((object)arg1)
The engine is a state machine with the following states; transitions my be automatic, see below.

1.STATE_ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmaIsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (!internalCompaction) or by growing size of grains (internalCom-
paction).

2.STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmaIsoCom-
paction.

3.STATE_TRIAX_LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

4.STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5.STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;
Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in

1.3. Global engines 125



Reference Manual, Release Yade documentation 2nd ed.

[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

Warning: This engine is deprecated, please switch to TriaxialStressController if you expect
long term support.

Key(=”“)
A string appended at the end of all files, use it to name simulations.

StabilityCriterion(=0.001)
tolerance in terms of TriaxialCompressionEngine::UnbalancedForce to consider the packing is
stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

autoCompressionActivation(=true)
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmaIsoCompaction) to deviatoric loading

autoStopSimulation(=false)
Stop the simulation when the sample reach STATE_LIMBO, or keep running

autoUnload(=true)
Auto-switch from isotropic compaction to unloading

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
currentState(=1)

There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.TriaxialCompressionEngine

currentStrainRate(=0)
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

epsilonMax(=0.5)
Value of axial deformation for which the loading must stop

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

126 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

fixedPoroCompaction(=false)
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

fixedPorosity(=0)
Value of porosity chosen by the user

frictionAngleDegree(=-1)
Value of friction assigned just before the deviatoric loading

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

isAxisymetric(=false)
if true, sigma_iso is assigned to sigma1, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

maxStress(=0)
Max absolute value of axial stress during the simulation (for post-processing)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

noFiles(=false)
If true, no files will be generated (*.xml, *.spheres,...)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

1.3. Global engines 127



Reference Manual, Release Yade documentation 2nd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and spheres).

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousSigmaIso(=1)
Previous value of inherited sigma_iso (used to detect manual changes of the confining pressure)

previousState(=1)
Previous state (used to detect manual changes of the state in .xml)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
setContactProperties((float)arg2) → None

Assign a new friction angle (degrees) to dynamic bodies and relative interactions
sigmaIsoCompaction(=1)

Prescribed isotropic pressure during the compaction phase (< 0 for real - compressive - com-
paction)

sigmaLateralConfinement(=1)
Prescribed confining pressure in the deviatoric loading (< 0 for classical compressive cases);
might be different from TriaxialCompressionEngine::sigmaIsoCompaction

sigma_iso(=0)
prescribed confining stress (see :yref:TriaxialCompressionEngine::isAxisymetric‘)

spheresVolume
Shorthand for TriaxialStressController::particlesVolume

stiffnessUpdateInterval(=10)
target strain rate (./s)

strain
Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.

strainDamping(=0.99)
coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate(=0)
target strain rate (./s, >0 for compression)

stress((int)id) → Vector3
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

stressMask(=7)
Bitmask determining wether the imposed TriaxialStressController::goal‘s are stresses (0 for
none, 7 for all, 1 for direction 1, 5 for directions 1 and 3, etc. :ydefault:‘7

testEquilibriumInterval(=20)
interval of checks for transition between phases, higher than 1 saves computation time.

128 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

translationAxis(=TriaxialStressController::normal[wall_bottom])
compression axis

uniaxialEpsilonCurr(=1)
Current value of axial deformation during confined loading (is reference to strain[1])

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatePorosity(=false)
If true porosity calculation will be updated once (will automatically reset to false after one
calculation step). Can be used, when volume of particles changes during the simulation (e.g.
when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

warn(=0)
counter used for sending a deprecation warning once

1.3. Global engines 129



Reference Manual, Release Yade documentation 2nd ed.

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.TriaxialStressController((object)arg1)
An engine maintaining constant stresses or constant strain rates on some boundaries of a par-
allepipedic packing. The stress/strain control is defined for each axis using TriaxialStressCon-
troller::stressMask (a bitMask) and target values are defined by goal1,goal2, and goal3. The sign
conventions of continuum mechanics are used for strains and stresses (positive traction).

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

goal1(=0)
prescribed stress/strain rate on axis 1, as defined by TriaxialStressController::stressMask

goal2(=0)
prescribed stress/strain rate on axis 2, as defined by TriaxialStressController::stressMask

goal3(=0)
prescribed stress/strain rate on axis 3, as defined by TriaxialStressController::stressMask

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

130 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=1)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

particlesVolume
Total volume of particles (clumps and spheres).

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
spheresVolume

Shorthand for TriaxialStressController::particlesVolume
stiffnessUpdateInterval(=10)

target strain rate (./s)
strain

Current strain in a vector (exx,eyy,ezz). The values reflect true (logarithmic) strain.
strainDamping(=0.99)

coefficient used for smoother transitions in the strain rate. The rate reaches the target value
like dn reaches 0, where d is the damping coefficient and n is the number of steps

strainRate
Current strain rate in a vector d/dt(exx,eyy,ezz).

stress((int)id) → Vector3
Returns the average stress on boundary ‘id’. Here, ‘id’ refers to the internal numbering of
boundaries, between 0 and 5.

stressDamping(=0.25)
wall damping coefficient for the stress control - wallDamping=0 implies a (theoretical) perfect
control, wallDamping=1 means no movement

1.3. Global engines 131



Reference Manual, Release Yade documentation 2nd ed.

stressMask(=7)
Bitmask determining wether the imposed TriaxialStressController::goal‘s are stresses (0 for
none, 7 for all, 1 for direction 1, 5 for directions 1 and 3, etc. :ydefault:‘7

thickness(=-1)
thickness of boxes (needed by some functions)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatePorosity(=false)
If true porosity calculation will be updated once (will automatically reset to false after one
calculation step). Can be used, when volume of particles changes during the simulation (e.g.
when particles are erased or when clumps are created).

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wall_back_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_back_id(=4)
id of boundary ; coordinate 2- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_bottom_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_bottom_id(=2)
id of boundary ; coordinate 1- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_front_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_front_id(=5)
id of boundary ; coordinate 2+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_left_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_left_id(=0)
id of boundary ; coordinate 0- (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_right_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_right_id(=1)
id of boundary ; coordinate 0+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

wall_top_activated(=true)
if true, this wall moves according to the target value (stress or strain rate).

wall_top_id(=3)
id of boundary ; coordinate 1+ (default value is ok if aabbWalls are appended BEFORE
spheres.)

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

132 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.UniaxialStrainer((object)arg1)
Axial displacing two groups of bodies in the opposite direction with given strain rate.
absSpeed(=NaN)

alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms−¹]

active(=true)
Whether this engine is activated

asymmetry(=0, symmetric)
If 0, straining is symmetric for negIds and posIds; for 1 (or -1), only posIds are strained and
negIds don’t move (or vice versa)

avgStress(=0)
Current average stress (auto-updated) [Pa]

axis(=2)
The axis which is strained (0,1,2 for x,y,z)

blockDisplacements(=false)
Whether displacement of boundary bodies perpendicular to the strained axis are blocked or
are free

blockRotations(=false)
Whether rotations of boundary bodies are blocked.

crossSectionArea(=NaN)
crossSection perpendicular to he strained axis; must be given explicitly [m²]

currentStrainRate(=NaN)
Current strain rate (update automatically). (auto-updated)

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

idleIterations(=0)
Number of iterations that will pass without straining activity after stopStrain has been reached

initAccelTime(=-200)
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

limitStrain(=0, disabled)
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

negIds(=uninitalized)
Bodies on which strain will be applied (on the negative end along the axis)

notYetReversed(=true)
Flag whether the sense of straining has already been reversed (only used internally).

1.3. Global engines 133



Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

originalLength(=NaN)
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

posIds(=uninitalized)
Bodies on which strain will be applied (on the positive end along the axis)

setSpeeds(=false)
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

stopStrain(=NaN)
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

strain(=0)
Current strain value, elongation/originalLength (auto-updated) [-]

strainRate(=NaN)
Rate of strain, starting at 0, linearly raising to strainRate. [-]

stressUpdateInterval(=10)
How often to recompute stress on supports.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.3.3 Collider

Collider

GeneralIntegratorInsertionSortColliderInsertionSortCollider

ZECollider

FlatGridCollider

SpatialQuickSortCollider

PersistentTriangulationCollider

class yade.wrapper.Collider((object)arg1)
Abstract class for finding spatial collisions between bodies.

Special constructor

134 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FlatGridCollider((object)arg1)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly
multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMax) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: objects Body::bound are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

aabbMax(=Vector3r::Zero())
Upper corner of grid (approximate, might be rouded up to minStep.

aabbMin(=Vector3r::Zero())
Lower corner of grid.

1.3. Global engines 135



Reference Manual, Release Yade documentation 2nd ed.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

step(=0)
Step in the grid (cell size)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

verletDist(=0)
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.GeneralIntegratorInsertionSortCollider((object)arg1)
This class is the adaptive version of the InsertionSortCollider and changes the NewtonIntegrator
dependency of the collider algorithms to the Integrator interface which is more general.
allowBiggerThanPeriod

If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

136 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

doSort(=false)
Do forced resorting of interactions.

dumpBounds() → tuple
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

•coordinate (float)
•body id (int), but negated for negative bounds
•period numer (int), if the collider is in the periodic regime.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fastestBodyMaxDist(=-1)
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.1)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

numReinit(=0)
Cummulative number of bound array re-initialization.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=50)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1.3. Global engines 137



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

useless(=uninitalized)
for compatibility of scripts defining the old collider’s attributes - see deprecated attributes

verletDist(=-.5, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.InsertionSortCollider((object)arg1)
Collider with O(n log(n)) complexity, using Aabb for bounds.
At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along this (sortAxis)
axis, then collided. The initial sort has O(n2) complexity, see Colliders’ performance for some
information (There are scripts in examples/collider-perf for measurements).
Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).
Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.
This collider handles periodic boundary conditions. There are some limitations, notably:

1.No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception if it does and gets in interaction. One way to explicitly by-pass this restriction is
offered by allowBiggerThanPeriod, which can be turned on to insert a floor in the form of a
very large box for instance (see examples/periodicSandPile.py).

2.No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their displacements and only re-run if they might have gone out of that bounds (see Verlet
list for brief description and background) . This requires cooperation from NewtonIntegrator as
well as BoundDispatcher, which will be found among engines automatically (exception is thrown
if they are not found).
If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 × typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.
If targetInterv is >1, not all particles will have their bound enlarged by verletDist; instead,
they will have bounds increased by a length in order to trigger a new colliding after targetInterv
iteration, assuming they move at almost constant velocity. Ideally in this method, all particles
would reach their bounds at the sime iteration. This is of course not the case as soon as velocities
fluctuate in time. Bound::sweepLength is tuned on the basis of the displacement recorded between
the last two runs of the collider. In this situation, verletDist defines the maximum sweep length.

allowBiggerThanPeriod
If true, tests on bodies sizes will be disabled, and the simulation will run normaly even if
bodies larger than period are found. It can be useful when the periodic problem include e.g.
a floor modelized with wall/box/facet. Be sure you know what you are doing if you touch this
flag. The result is undefined if one large body moves out of the (0,0,0) period.

138 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/Colliders_performace
http://en.wikipedia.org/wiki/Verlet_list
http://en.wikipedia.org/wiki/Verlet_list


Reference Manual, Release Yade documentation 2nd ed.

avoidSelfInteractionMask
This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

doSort(=false)
Do forced resorting of interactions.

dumpBounds() → tuple
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

•coordinate (float)
•body id (int), but negated for negative bounds
•period numer (int), if the collider is in the periodic regime.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fastestBodyMaxDist(=-1)
Normalized maximum displacement of the fastest body since last run; if >= 1, we could get
out of bboxes and will trigger full run. (auto-updated)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.1)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of verlet-
Dist when lower that (minSweepDistFactor x verletDist).

numReinit(=0)
Cummulative number of bound array re-initialization.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

1.3. Global engines 139



Reference Manual, Release Yade documentation 2nd ed.

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=50)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

useless(=uninitalized)
for compatibility of scripts defining the old collider’s attributes - see deprecated attributes

verletDist(=-.5, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled. The actual length added to one bound can be only a fraction of verletDist when
InsertionSortCollider::targetInterv is > 0.

class yade.wrapper.PersistentTriangulationCollider((object)arg1)
Collision detection engine based on regular triangulation. Handles spheres and flat boundaries
(considered as infinite-sized bounding spheres).
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

haveDistantTransient(=false)
Keep distant interactions? If True, don’t delete interactions once bodies don’t overlap any-
more; constitutive laws will be responsible for requesting deletion. If False, delete as soon as
there is no object penetration.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes

140 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.SpatialQuickSortCollider((object)arg1)
Collider using quicksort along axes at each step, using Aabb bounds.
Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.ZECollider((object)arg1)
Collider with O(n log(n)) complexity, using a CGAL algorithm from Zomorodian and Edels-
brunner [Kettner2011] (http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_inter-
section_d/Chapter_main.html)
avoidSelfInteractionMask

This mask is used to avoid the interactions inside a group of particles. To do so, the particles
must have the same mask and this mask have to be compatible with this one.

boundDispatcher(=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

1.3. Global engines 141

https://yade-dem.org/index.php/Colliders_performace
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html
http://www.cgal.org/Manual/beta/doc_html/cgal_manual/Box_intersection_d/Chapter_main.html


Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fastestBodyMaxDist(=-1)
Maximum displacement of the fastest body since last run; if >= verletDist, we could get out of
bboxes and will trigger full run. DEPRECATED, was only used without bins. (auto-updated)

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

numReinit(=0)
Cummulative number of bound array re-initialization.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

targetInterv(=30)
(experimental) Target number of iterations between bound update, used to define a smaller
sweep distance for slower grains if >0, else always use 1*verletDist. Useful in simulations with
strong velocity contrasts between slow bodies and fast bodies.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
(experimental) Displacement factor used to trigger bound update: the bound is updated only
if updatingDispFactor*disp>sweepDist when >0, else all bounds are updated.

verletDist(=-.15, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will

142 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

be verletDist × minimum spherical particle radius; if there are no spherical particles, it will
be disabled.

1.3.4 FieldApplier

FieldApplier

CentralGravityEngine

AxialGravityEngine

HdapsGravityEngineGravityEngine

class yade.wrapper.FieldApplier((object)arg1)
Base for engines applying force files on particles. Not to be used directly.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.AxialGravityEngine((object)arg1)
Apply acceleration (independent of distance) directed towards an axis.
acceleration(=0)

Acceleration magnitude [kgms−²]
axisDirection(=Vector3r::UnitX())

direction of the gravity axis (will be normalized automatically)
axisPoint(=Vector3r::Zero())

Point through which the axis is passing.

1.3. Global engines 143



Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CentralGravityEngine((object)arg1)
Engine applying acceleration to all bodies, towards a central body.
accel(=0)

Acceleration magnitude [kgms−²]
centralBody(=Body::ID_NONE)

The body towards which all other bodies are attracted.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can

144 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

reciprocal(=false)
If true, acceleration will be applied on the central body as well.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GravityEngine((object)arg1)
Engine applying constant acceleration to all bodies. DEPRECATED, use Newton::gravity unless
you need energy tracking or selective gravity application using groupMask).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Acceleration [kgms−²]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

warnOnce(=true)
For deprecation warning once.

class yade.wrapper.HdapsGravityEngine((object)arg1)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.
accel(=Vector2i::Zero())

reading from the sysfs file

1.3. Global engines 145

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
https://github.com/yade/trunk/blob/master/scripts/test/hdaps.py


Reference Manual, Release Yade documentation 2nd ed.

calibrate(=Vector2i::Zero())
Zero position; if NaN, will be read from the hdapsDir / calibrate.

calibrated(=false)
Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

gravity(=Vector3r::Zero())
Acceleration [kgms−²]

hdapsDir(=”/sys/devices/platform/hdaps”)
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be affected by this engine. If
0, all bodies will be affected.

msecUpdate(=50)
How often to update the reading.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateThreshold(=4)
Minimum difference of reading from the file before updating gravity, to avoid jitter.

warnOnce(=true)
For deprecation warning once.

zeroGravity(=Vector3r(0, 0, -1))
Gravity if the accelerometer is in flat (zero) position.

146 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.4 Partial engines

PartialEngine

CombinedKinematicEngine

DragEngine

RadialForceEngine

BicyclePedalEngine

KinematicEngine

HarmonicMotionEngine

InterpolatingDirectedForceEngine

ForceEngine

LawTester

InterpolatingHelixEngineHelixEngineRotationEngine

TorqueEngine

HydroForceEngine

ServoPIDControllerTranslationEngine

HarmonicRotationEngine

FlowEngineT

PeriodicFlowEngineFlowEngine_PeriodicInfo

LinearDragEngine

FlowEngine

StepDisplacer

class yade.wrapper.PartialEngine((object)arg1)
Engine affecting only particular bodies in the simulation, defined by ids.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1.4. Partial engines 147



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.BicyclePedalEngine((object)arg1)
Engine applying the linear motion of bicycle pedal e.g. moving points around the axis without
rotation
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fi(=Mathr::PI/2.0)
Initial phase [radians]

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

radius(=-1.0)
Rotation radius. [m]

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CombinedKinematicEngine((object)arg1)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator
on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).
comb(=uninitalized)

Kinematic engines that will be combined by this one, run in the order given.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

148 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.DragEngine((object)arg1)
Apply drag force on some particles at each step, decelerating them proportionally to their linear
velocities. The applied force reads

Fd = −
v

|v|

1

2
ρ|v|2CdA

where ρ is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cd is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles, listed in ids.

Cd(=0.47)
Drag coefficient <http://en.wikipedia.org/wiki/Drag_coefficient>‘_.

Rho(=1.225)
Density of the medium (fluid or air), by default - the density of the air.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

1.4. Partial engines 149

http://en.wikipedia.org/wiki/Drag_equation
http://en.wikipedia.org/wiki/Drag_coefficient


Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.FlowEngine((object)arg1)
An engine to solve flow problem in saturated granular media. Model description can be found in
[Chareyre2012a] and [Catalano2014a]. See the example script FluidCouplingPFV/oedometer.py.
More documentation to come.
OSI() → float

Return the number of interactions only between spheres.
avFlVelOnSph((int)idSph) → object

compute a sphere-centered average fluid velocity
averagePressure() → float

Measure averaged pore pressure in the entire volume
averageSlicePressure((float)posY) → float

Measure slice-averaged pore pressure at height posY
averageVelocity() → Vector3

measure the mean velocity in the period
blockCell((int)id, (bool)blockPressure) → None

block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(=”“)
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
TemplateFlowEngine_FlowEngineT.blockCell), or apply exotic types of boundary conditions
which need to visit the newly built mesh

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)idSph) → Matrix3
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((int)idSph) → Matrix3
Return the shear lubrication stress on sphere idSph.

boundaryPressure(=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngineT::boundaryXPos

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

150 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

boundaryXPos(=vector<Real>())
values of the x-coordinate for which pressure is defined. See also
FlowEngineT::boundaryPressure

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compTessVolumes() → None
Like TesselationWrapper::computeVolumes()

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug(=false)
Activate debug messages

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

dict() → dict
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt(=0)
timestep [s]

edgeSize() → float
Return the number of interactions.

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’ ]) → None
Export system matrix to a file with all entries (even zeros will displayed).

1.4. Partial engines 151



Reference Manual, Release Yade documentation 2nd ed.

exportTriplets([(str)filename=’triplets’ ]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)idSph) → Vector3
Return the fluid force on sphere idSph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getCell((float)arg2, (float)arg3, (float)pos) → int
get id of the cell containing (X,Y,Z).

getCellBarycenter((int)id) → Vector3
get barycenter of cell ‘id’.

getCellCenter((int)id) → Vector3
get voronoi center of cell ‘id’.

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellPImposed((int)id) → bool
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((int)id) → float
get pressure in cell ‘id’.

getConstrictions([(bool)all=True ]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull([(bool)all=True ]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

152 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

imposeFlux((Vector3)pos, (float)p) → None
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((int)id, (float)p) → int
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

meanKStat(=false)
report the local permeabilities’ correction

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)idSph) → Vector3
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect((int)idSph) → Vector3
Return the normal vector between particles.

normalVelocity((int)idSph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1.4. Partial engines 153



Reference Manual, Release Yade documentation 2nd ed.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
permability multiplier

permeabilityMap(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

pressureForce(=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

pumpTorque(=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

saveVtk([(str)folder=’./VTK’ ]) → None
Save pressure field in vtk format. Specify a folder name for output.

setCellPImposed((int)id, (bool)pImposed) → None
make cell ‘id’ assignable with imposed pressure.

setCellPressure((int)id, (float)pressure) → None
set pressure in cell ‘id’.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

shearLubForce((int)idSph) → Vector3
Return the shear lubrication force on sphere idSph.

shearLubTorque((int)idSph) → Vector3
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((int)idSph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p )

slipBoundary(=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

154 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque(=false)
Compute twist torque applied on particles

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
compute normal viscous stress applied on each body

viscousShear(=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress(=false)
compute shear viscous stress applied on each body

volume([(int)id=0 ]) → float
Returns the volume of Voronoi’s cell of a sphere.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness(=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax(=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.FlowEngineT((object)arg1)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not

1.4. Partial engines 155



Reference Manual, Release Yade documentation 2nd ed.

be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.
OSI() → float

Return the number of interactions only between spheres.
avFlVelOnSph((int)idSph) → object

compute a sphere-centered average fluid velocity
averagePressure() → float

Measure averaged pore pressure in the entire volume
averageSlicePressure((float)posY) → float

Measure slice-averaged pore pressure at height posY
averageVelocity() → Vector3

measure the mean velocity in the period
blockCell((int)id, (bool)blockPressure) → None

block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(=”“)
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
TemplateFlowEngine_FlowEngineT.blockCell), or apply exotic types of boundary conditions
which need to visit the newly built mesh

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)idSph) → Matrix3
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((int)idSph) → Matrix3
Return the shear lubrication stress on sphere idSph.

boundaryPressure(=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngineT::boundaryXPos

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

boundaryXPos(=vector<Real>())
values of the x-coordinate for which pressure is defined. See also
FlowEngineT::boundaryPressure

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

156 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compTessVolumes() → None
Like TesselationWrapper::computeVolumes()

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug(=false)
Activate debug messages

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

dict() → dict
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt(=0)
timestep [s]

edgeSize() → float
Return the number of interactions.

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’ ]) → None
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets([(str)filename=’triplets’ ]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)idSph) → Vector3
Return the fluid force on sphere idSph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

1.4. Partial engines 157



Reference Manual, Release Yade documentation 2nd ed.

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getCell((float)arg2, (float)arg3, (float)pos) → int
get id of the cell containing (X,Y,Z).

getCellBarycenter((int)id) → Vector3
get barycenter of cell ‘id’.

getCellCenter((int)id) → Vector3
get voronoi center of cell ‘id’.

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellPImposed((int)id) → bool
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((int)id) → float
get pressure in cell ‘id’.

getConstrictions([(bool)all=True ]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull([(bool)all=True ]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

imposeFlux((Vector3)pos, (float)p) → None
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((int)id, (float)p) → int
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

158 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

meanKStat(=false)
report the local permeabilities’ correction

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)idSph) → Vector3
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect((int)idSph) → Vector3
Return the normal vector between particles.

normalVelocity((int)idSph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
permability multiplier

permeabilityMap(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

1.4. Partial engines 159



Reference Manual, Release Yade documentation 2nd ed.

pressureForce(=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

pumpTorque(=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

saveVtk([(str)folder=’./VTK’ ]) → None
Save pressure field in vtk format. Specify a folder name for output.

setCellPImposed((int)id, (bool)pImposed) → None
make cell ‘id’ assignable with imposed pressure.

setCellPressure((int)id, (float)pressure) → None
set pressure in cell ‘id’.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

shearLubForce((int)idSph) → Vector3
Return the shear lubrication force on sphere idSph.

shearLubTorque((int)idSph) → Vector3
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((int)idSph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p )

slipBoundary(=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque(=false)
Compute twist torque applied on particles

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

160 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
compute normal viscous stress applied on each body

viscousShear(=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

viscousShearBodyStress(=false)
compute shear viscous stress applied on each body

volume([(int)id=0 ]) → float
Returns the volume of Voronoi’s cell of a sphere.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness(=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax(=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.FlowEngine_PeriodicInfo((object)arg1)
A generic engine from wich more specialized engines can inherit. It is defined for the sole purpose
of inserting the right data classes CellInfo and VertexInfo in the triangulation, and it should not
be used directly. Instead, look for specialized engines, e.g. FlowEngine, PeriodicFlowEngine, or
DFNFlowEngine.
OSI() → float

Return the number of interactions only between spheres.
avFlVelOnSph((int)idSph) → object

compute a sphere-centered average fluid velocity
averagePressure() → float

Measure averaged pore pressure in the entire volume
averageSlicePressure((float)posY) → float

Measure slice-averaged pore pressure at height posY

1.4. Partial engines 161



Reference Manual, Release Yade documentation 2nd ed.

averageVelocity() → Vector3
measure the mean velocity in the period

blockCell((int)id, (bool)blockPressure) → None
block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all
incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(=”“)
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
TemplateFlowEngine_FlowEngine_PeriodicInfo.blockCell), or apply exotic types of bound-
ary conditions which need to visit the newly built mesh

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)idSph) → Matrix3
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((int)idSph) → Matrix3
Return the shear lubrication stress on sphere idSph.

boundaryPressure(=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngine_Period-
icInfo::boundaryXPos

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

boundaryXPos(=vector<Real>())
values of the x-coordinate for which pressure is defined. See also FlowEngine_Period-
icInfo::boundaryPressure

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compTessVolumes() → None
Like TesselationWrapper::computeVolumes()

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug(=false)
Activate debug messages

162 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

dict() → dict
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt(=0)
timestep [s]

edgeSize() → float
Return the number of interactions.

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’ ]) → None
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets([(str)filename=’triplets’ ]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)idSph) → Vector3
Return the fluid force on sphere idSph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getCell((float)arg2, (float)arg3, (float)pos) → int
get id of the cell containing (X,Y,Z).

1.4. Partial engines 163



Reference Manual, Release Yade documentation 2nd ed.

getCellBarycenter((int)id) → Vector3
get barycenter of cell ‘id’.

getCellCenter((int)id) → Vector3
get voronoi center of cell ‘id’.

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellPImposed((int)id) → bool
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((int)id) → float
get pressure in cell ‘id’.

getConstrictions([(bool)all=True ]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull([(bool)all=True ]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

imposeFlux((Vector3)pos, (float)p) → None
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((int)id, (float)p) → int
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

meanKStat(=false)
report the local permeabilities’ correction

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

164 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)idSph) → Vector3
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect((int)idSph) → Vector3
Return the normal vector between particles.

normalVelocity((int)idSph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
permability multiplier

permeabilityMap(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

pressureForce(=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

pumpTorque(=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

saveVtk([(str)folder=’./VTK’ ]) → None
Save pressure field in vtk format. Specify a folder name for output.

1.4. Partial engines 165



Reference Manual, Release Yade documentation 2nd ed.

setCellPImposed((int)id, (bool)pImposed) → None
make cell ‘id’ assignable with imposed pressure.

setCellPressure((int)id, (float)pressure) → None
set pressure in cell ‘id’.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

shearLubForce((int)idSph) → Vector3
Return the shear lubrication force on sphere idSph.

shearLubTorque((int)idSph) → Vector3
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((int)idSph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p )

slipBoundary(=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque(=false)
Compute twist torque applied on particles

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
compute normal viscous stress applied on each body

viscousShear(=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

166 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

viscousShearBodyStress(=false)
compute shear viscous stress applied on each body

volume([(int)id=0 ]) → float
Returns the volume of Voronoi’s cell of a sphere.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness(=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax(=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.ForceEngine((object)arg1)
Apply contact force on some particles at each step.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

force(=Vector3r::Zero())
Force to apply.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1.4. Partial engines 167



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.HarmonicMotionEngine((object)arg1)
This engine implements the harmonic oscillation of bodies. http://en.wikipedia.org/wiki/Simple_-
harmonic_motion#Dynamics_of_simple_harmonic_motion
A(=Vector3r::Zero())

Amplitude [m]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f(=Vector3r::Zero())
Frequency [hertz]

fi(=Vector3r(Mathr::PI/2.0, Mathr::PI/2.0, Mathr::PI/2.0))
Initial phase [radians]. By default, the body oscillates around initial position.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.HarmonicRotationEngine((object)arg1)
This engine implements the harmonic-rotation oscillation of bodies.
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_-
motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude will be
2x more, than awaited.
A(=0)

Amplitude [rad]
angularVelocity(=0)

Angular velocity. [rad/s]

168 Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion


Reference Manual, Release Yade documentation 2nd ed.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

f(=0)
Frequency [hertz]

fi(=Mathr::PI/2.0)
Initial phase [radians]. By default, the body oscillates around initial position.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.HelixEngine((object)arg1)
Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

angleTurned(=0)
How much have we turned so far. (auto-updated) [rad]

angularVelocity(=0)
Angular velocity. [rad/s]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

1.4. Partial engines 169



Reference Manual, Release Yade documentation 2nd ed.

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

linearVelocity(=0)
Linear velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.HydroForceEngine((object)arg1)
Apply drag and lift due to a fluid flow vector (1D) to each sphere + the buoyant weight.

The applied drag force reads
Fd = 1

2
CdAρf|vf − v|vecvf − v

where ρ is the medium density (densFluid), v is particle’s velocity, vf is the velocity of the fluid
at the particle center(vxFluid), A is particle projected area (disc), Cd is the drag coefficient.
The formulation of the drag coefficient depends on the local particle reynolds number and
the solid volume fraction. The formulation of the drag is [Dallavalle1948] [RevilBaudard2013]
with a correction of Richardson-Zaki [Richardson1954] to take into account the hindrance
effect. This law is classical in sediment transport. It is possible to activate a fluctuation of the
drag force for each particle which account for the turbulent fluctuation of the fluid velocity
(velFluct). The model implemented for the turbulent velocity fluctuation is a simple discrete
random walk which takes as input the Reynolds stress tensor Rf

xz as a function of the depth,
and allows to recover the main property of the fluctuations by imposing < u ′

xu
′
z > (z) =<

Rf
xz > (z)/ρf. It requires as input < Rf

xz > (z)/ρf called simplifiedReynoldStresses in the
code. The formulation of the lift is taken from [Wiberg1985] and is such that :
FL = 1

2
CLAρf((vf − v)2top − (vf − v)2bottom)

Where the subscript top and bottom means evaluated at the top (respectively the bottom)
of the sphere considered. This formulation of the lift account for the difference of pressure
at the top and the bottom of the particle inside a turbulent shear flow. As this formulation
is controversial when approaching the threshold of motion [Schmeeckle2007] it is possible to
desactivate it with the variable lift. The buoyancy is taken into account through the buoyant
weight :
Fbuoyancy = −ρfVpg

170 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

, where g is the gravity vector along the vertical, and Vp is the volume of the particle. This engine
also evaluate the average particle velocity, solid volume fraction and drag force depth profiles,
through the function averageProfile. This is done as the solid volume fraction depth profile is
required for the drag calculation, and as the three are required for the independent fluid resolution.

Cl(=0.2)
Value of the lift coefficient taken from [Wiberg1985]

activateAverage(=false)
If true, activate the calculation of the average depth profiles of drag, solid volume fraction,
and solid velocity for the application of the force (phiPart in hindrance function) and to use
in python for the coupling with the fluid.

averageDrag(=uninitalized)
Discretized drag depth profile. No role in the engine, output parameter. For practical reason,
it can be evaluated directly inside the engine, calling from python the averageProfile() method
of the engine, or puting activateAverage to True.

averageProfile() → None
Compute and store the particle velocity (vxPart, vyPart, vzPart) and solid volume fraction
(phiPart) depth profile. For each defined cell z, the k component of the average particle
velocity reads:

< vk >z=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles contained in the cell, vpk is the k component
of the velocity associated to particle p, and Vp is the part of the volume of the particle
p contained inside the cell. This definition allows to smooth the averaging, and is
equivalent to taking into account the center of the particles only when there is a lot
of particles in each cell. As for the solid volume fraction, it is evaluated in the same
way: for each defined cell z, it reads:
< φ >z= 1

Vcell

∑
p Vp, where Vcell is the volume of the cell consid-

ered, and Vp is the volume of particle p contained in cell z. This func-
tion gives depth profiles of average velocity and solid volume fraction, re-
turning the average quantities in each cell of height dz, from the refer-
ence horizontal plane at elevation zRef (input parameter) until the plane of
elevation zRef<HydroForceEngine.zRef>‘+:yref:‘nCell<HydroForceEngine.zRef>‘x
:yref:‘deltaZ (input parameters).

bedElevation(=uninitalized)
Elevation of the bed above which the fluid flow is turbulent and the particles undergo turbulent
velocity fluctuation.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

deltaZ(=uninitalized)
Height of the discretization cell.

densFluid(=1000)
Density of the fluid, by default - density of water

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

expoRZ(=3.1)
Value of the Richardson-Zaki exponent, for the drag correction due to hindrance

1.4. Partial engines 171



Reference Manual, Release Yade documentation 2nd ed.

gravity(=Vector3r(0, 0, -9.81))
Gravity vector (may depend on the slope).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

lift(=false)
Option to activate or not the evaluation of the lift

nCell(=uninitalized)
Number of cell in the depth

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

phiPart(=uninitalized)
Discretized solid volume fraction depth profile. Can be taken as input parameter, or evalu-
ated directly inside the engine, calling from python the averageProfile() function, or puting
activateAverage to True.

simplifiedReynoldStresses(=uninitalized)
Vector of size equal to nCell containing the Reynolds stresses divided by the fluid density in
function of the depth. simplifiedReynoldStresses(z) =< u ′

xu
′
z > (z)2

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vCell(=uninitalized)
Volume of averaging cell

vFluctX(=uninitalized)
Vector associating a streamwise fluid velocity fluctuation to each particle. Fluctuation calcu-
lated in the C++ code from the discrete random walk model

vFluctZ(=uninitalized)
Vector associating a normal fluid velocity fluctuation to each particle. Fluctuation calculated
in the C++ code from the discrete random walk model

velFluct(=false)
If true, activate the determination of turbulent fluid velocity fluctuation for the next time
step only at the position of each particle, using a simple discrete random walk (DRW) model
based on the Reynolds stresses profile (simplifiedReynoldStresses)

viscoDyn(=1e-3)
Dynamic viscosity of the fluid, by default - viscosity of water

vxFluid(=uninitalized)
Discretized streamwise fluid velocity depth profile

vxPart(=uninitalized)
Discretized streamwise solid velocity depth profile. Can be taken as input parameter, or
evaluated directly inside the engine, calling from python the averageProfile() function, or
puting activateAverage to True.

172 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

vyPart(=uninitalized)
Discretized spanwise solid velocity depth profile. No role in the engine, output parameter.
For practical reason, it can be evaluated directly inside the engine, calling from python the
averageProfile() method of the engine, or puting activateAverage to True.

vzPart(=uninitalized)
Discretized normal solid velocity depth profile. No role in the engine, output parameter.
For practical reason, it can be evaluated directly inside the engine, calling from python the
averageProfile() method of the engine, or puting activateAverage to True.

zRef(=uninitalized)
Position of the reference point which correspond to the first value of the fluid velocity, i.e. to
the ground.

class yade.wrapper.InterpolatingDirectedForceEngine((object)arg1)
Engine for applying force of varying magnitude but constant direction on subscribed bodies. times
and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.
As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

direction(=Vector3r::UnitX())
Contact force direction (normalized automatically)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

force(=Vector3r::Zero())
Force to apply.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

magnitudes(=uninitalized)
Force magnitudes readings [N]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

times(=uninitalized)
Time readings [s]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

1.4. Partial engines 173



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wrap(=false)
wrap to the beginning of the sequence if beyond the last time point

class yade.wrapper.InterpolatingHelixEngine((object)arg1)
Engine applying spiral motion, finding current angular velocity by linearly interpolating in times
and velocities and translation by using slope parameter.
The interpolation assumes the margin value before the first time point and last value after the last
time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).
angleTurned(=0)

How much have we turned so far. (auto-updated) [rad]
angularVelocities(=uninitalized)

List of angular velocities; manadatorily of same length as times. [rad/s]
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

linearVelocity(=0)
Linear velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

slope(=0)
Axial translation per radian turn (can be negative) [m/rad]

times(=uninitalized)
List of time points at which velocities are given; must be increasing [s]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

174 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wrap(=false)
Wrap t if t>times_n, i.e. t_wrapped=t-N*(times_n-times_0)

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.KinematicEngine((object)arg1)
Abstract engine for applying prescribed displacement.

Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all
subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LawTester((object)arg1)
Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements ux, uy, uz, φx, φy, φz) or disPath (ux, uy, uz) and rotPath (φx, φy,
φz). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.
LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation
loop, since it controls motion via setting linear/angular velocities on particles; those velocities are
integrated by NewtonIntegrator to yield an actual position change, which in turn causes IGeom
to be updated (and contact law applied) when InteractionLoop is executed. Constitutive law

1.4. Partial engines 175



Reference Manual, Release Yade documentation 2nd ed.

generating forces on particles will not affect prescribed particle motion, since both particles have
all DoFs blocked when first used with LawTester.
LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:

IGeom #DoFs LawTester support level
L3Geom 3 full
L6Geom 6 full
ScGeom 3 emulate local coordinate system
ScGeom6D 6 emulate local coordinate system

Depending on IGeom, 3 (ux, uy, uz) or 6 (ux, uy, uz, φx, φy, φz) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.
When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.
idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for ux, uy, uz, φx

however ; bending rotations φy, φz are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.
LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.
LawTester-operated interactions can be rendered with GlExtra_LawTester renderer.
See scripts/test/law-test.py for an example.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

disPath(=uninitalized)
Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

displIsRel(=true)
Whether displacement values in disPath are normalized by reference contact length (r1+r2
for 2 spheres).

doneHook(=uninitalized)
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

hooks(=uninitalized)
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

176 Chapter 1. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/test/law-test.py


Reference Manual, Release Yade documentation 2nd ed.

idWeight(=1)
Float, usually �〈0,1〉, determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs IGeom.

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

pathSteps(=vector<int>(1, 1), (constant step))
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

refLength(=0)
Reference contact length, for rendering only.

renderLength(=0)
Characteristic length for the purposes of rendering, set equal to the smaller radius.

rotPath(=uninitalized)
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

rotWeight(=1)
Float �〈0,1〉 determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

step(=1)
Step number in which this engine is active; determines position in path, using pathSteps.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

trsf(=uninitalized)
Transformation matrix for the local coordinate system. (auto-updated)

uGeom(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

uTest(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

uuPrev(=Vector6r::Zero())
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

class yade.wrapper.LinearDragEngine((object)arg1)
Apply viscous resistance or linear drag on some particles at each step, decelerating them propor-
tionally to their linear velocities. The applied force reads

Fd = −bv

1.4. Partial engines 177

http://en.wikipedia.org/wiki/Drag_%28physics%29#Very_low_Reynolds_numbers_.E2.80.94_Stokes.27_drag


Reference Manual, Release Yade documentation 2nd ed.

where b is the linear drag, v is particle’s velocity.

b = 6πνr

where ν is the medium viscosity, r is the Stokes radius of the particle (but in this case we accept
it equal to sphere radius for simplification),

Note: linear drag is only applied to spherical particles, listed in ids.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

nu(=0.001)
Viscosity of the medium.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.PeriodicFlowEngine((object)arg1)
A variant of FlowEngine implementing periodic boundary conditions. The API is very similar.
OSI() → float

Return the number of interactions only between spheres.
avFlVelOnSph((int)idSph) → object

compute a sphere-centered average fluid velocity
averagePressure() → float

Measure averaged pore pressure in the entire volume
averageSlicePressure((float)posY) → float

Measure slice-averaged pore pressure at height posY
averageVelocity() → Vector3

measure the mean velocity in the period
blockCell((int)id, (bool)blockPressure) → None

block cell ‘id’. The cell will be excluded from the fluid flow problem and the conductivity of all

178 Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Stokes_radius


Reference Manual, Release Yade documentation 2nd ed.

incident facets will be null. If blockPressure=False, deformation is reflected in the pressure,
else it is constantly 0.

blockHook(=”“)
Python command to be run when remeshing. Anticipated usage: define blocked cells (see also
TemplateFlowEngine_FlowEngine_PeriodicInfo.blockCell), or apply exotic types of bound-
ary conditions which need to visit the newly built mesh

bndCondIsPressure(=vector<bool>(6, false))
defines the type of boundary condition for each side. True if pressure is imposed, False for
no-flux. Indexes can be retrieved with FlowEngine::xmin and friends.

bndCondValue(=vector<double>(6, 0))
Imposed value of a boundary condition. Only applies if the boundary condition is imposed
pressure, else the imposed flux is always zero presently (may be generalized to non-zero im-
posed fluxes in the future).

bodyNormalLubStress((int)idSph) → Matrix3
Return the normal lubrication stress on sphere idSph.

bodyShearLubStress((int)idSph) → Matrix3
Return the shear lubrication stress on sphere idSph.

boundaryPressure(=vector<Real>())
values defining pressure along x-axis for the top surface. See also FlowEngine_Period-
icInfo::boundaryXPos

boundaryUseMaxMin(=vector<bool>(6, true))
If true (default value) bounding sphere is added as function of max/min sphere coord, if false
as function of yade wall position

boundaryVelocity(=vector<Vector3r>(6, Vector3r::Zero()))
velocity on top boundary, only change it using FlowEngine::setBoundaryVel

boundaryXPos(=vector<Real>())
values of the x-coordinate for which pressure is defined. See also FlowEngine_Period-
icInfo::boundaryPressure

cholmodStats() → None
get statistics of cholmod solver activity

clampKValues(=true)
If true, clamp local permeabilities in [minKdivKmean,maxKdivKmean]*globalK. This clamp-
ing can avoid singular values in the permeability matrix and may reduce numerical errors in the
solve phase. It will also hide junk values if they exist, or bias all values in very heterogeneous
problems. So, use this with care.

clearImposedFlux() → None
Clear the list of points with flux imposed.

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compTessVolumes() → None
Like TesselationWrapper::computeVolumes()

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

debug(=false)
Activate debug messages

defTolerance(=0.05)
Cumulated deformation threshold for which retriangulation of pore space is performed.
If negative, the triangulation update will occure with a fixed frequency on the basis of
FlowEngine::meshUpdateInterval

1.4. Partial engines 179



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

doInterpolate(=false)
Force the interpolation of cell’s info while remeshing. By default, interpolation would be done
only for compressible fluids. It can be forced with this flag.

dt(=0)
timestep [s]

duplicateThreshold(=0.06)
distance from cell borders that will triger periodic duplication in the triangulation (auto-
updated)

edgeSize() → float
Return the number of interactions.

emulateAction() → None
get scene and run action (may be used to manipulate an engine outside the timestepping
loop).

eps(=0.00001)
roughness defined as a fraction of particles size, giving the minimum distance between particles
in the lubrication model.

epsVolMax(=0)
Maximal absolute volumetric strain computed at each iteration. (auto-updated)

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

exportMatrix([(str)filename=’matrix’ ]) → None
Export system matrix to a file with all entries (even zeros will displayed).

exportTriplets([(str)filename=’triplets’ ]) → None
Export system matrix to a file with only non-zero entries.

first(=true)
Controls the initialization/update phases

fluidBulkModulus(=0.)
Bulk modulus of fluid (inverse of compressibility) K=-dP*V/dV [Pa]. Flow is compressible if
fluidBulkModulus > 0, else incompressible.

fluidForce((int)idSph) → Vector3
Return the fluid force on sphere idSph.

forceMetis
If true, METIS is used for matrix preconditioning, else Cholmod is free to choose the best
method (which may be METIS to, depending on the matrix). See nmethods in Cholmod
documentation

getBoundaryFlux((int)boundary) → float
Get total flux through boundary defined by its body id.

Note: The flux may be not zero even for no-flow condition. This artifact comes from
cells which are incident to two or more boundaries (along the edges of the sample, typically).
Such flux evaluation on impermeable boundary is just irrelevant, it does not imply that the
boundary condition is not applied properly.

getCell((float)arg2, (float)arg3, (float)pos) → int
get id of the cell containing (X,Y,Z).

getCellBarycenter((int)id) → Vector3
get barycenter of cell ‘id’.

180 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

getCellCenter((int)id) → Vector3
get voronoi center of cell ‘id’.

getCellFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

getCellPImposed((int)id) → bool
get the status of cell ‘id’ wrt imposed pressure.

getCellPressure((int)id) → float
get pressure in cell ‘id’.

getConstrictions([(bool)all=True ]) → list
Get the list of constriction radii (inscribed circle) for all finite facets (if all==True) or all
facets not incident to a virtual bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres.

getConstrictionsFull([(bool)all=True ]) → list
Get the list of constrictions (inscribed circle) for all finite facets (if all==True), or all facets
not incident to a fictious bounding sphere (if all==False). When all facets are returned,
negative radii denote facet incident to one or more fictious spheres. The constrictions are
returned in the format {{cell1,cell2}{rad,nx,ny,nz}}

getPorePressure((Vector3)pos) → float
Measure pore pressure in position pos[0],pos[1],pos[2]

getVertices((int)id) → list
get the vertices of a cell

gradP(=Vector3r::Zero())
Macroscopic pressure gradient

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

ignoredBody(=-1)
Id of a sphere to exclude from the triangulation.)

imposeFlux((Vector3)pos, (float)p) → None
Impose a flux in cell located at ‘pos’ (i.e. add a source term in the flow problem). Outflux
positive, influx negative.

imposePressure((Vector3)pos, (float)p) → int
Impose pressure in cell of location ‘pos’. The index of the condition is returned (for multiple
imposed pressures at different points).

imposePressureFromId((int)id, (float)p) → int
Impose pressure in cell of index ‘id’ (after remeshing the same condition will apply for the
same location, regardless of what the new cell index is at this location). The index of the
condition itself is returned (for multiple imposed pressures at different points).

isActivated(=true)
Activates Flow Engine

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxKdivKmean(=100)
define the max K value (see FlowEngine::clampKValues)

meanKStat(=false)
report the local permeabilities’ correction

meshUpdateInterval(=1000)
Maximum number of timesteps between re-triangulation events. See also
FlowEngine::defTolerance.

1.4. Partial engines 181



Reference Manual, Release Yade documentation 2nd ed.

metisUsed() → bool
check wether metis lib is effectively used

minKdivKmean(=0.0001)
define the min K value (see FlowEngine::clampKValues)

multithread(=false)
Build triangulation and factorize in the background (multi-thread mode)

nCells() → int
get the total number of finite cells in the triangulation.

normalLubForce((int)idSph) → Vector3
Return the normal lubrication force on sphere idSph.

normalLubrication(=false)
compute normal lubrication force as developped by Brule

normalVect((int)idSph) → Vector3
Return the normal vector between particles.

normalVelocity((int)idSph) → Vector3
Return the normal velocity of the interaction.

numFactorizeThreads(=1)
number of openblas threads in the factorization phase

numSolveThreads(=1)
number of openblas threads in the solve phase.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

onlySpheresInteractions((int)interaction) → int
Return the id of the interaction only between spheres.

pZero(=0)
The value used for initializing pore pressure. It is useless for incompressible fluid, but impor-
tant for compressible model.

permeabilityFactor(=1.0)
permability multiplier

permeabilityMap(=false)
Enable/disable stocking of average permeability scalar in cell infos.

porosity(=0)
Porosity computed at each retriangulation (auto-updated)

pressureForce(=true)
compute the pressure field and associated fluid forces. WARNING: turning off means fluid
flow is not computed at all.

pressureProfile((float)wallUpY, (float)wallDownY) → None
Measure pore pressure in 6 equally-spaced points along the height of the sample

pumpTorque(=false)
Compute pump torque applied on particles

relax(=1.9)
Gauss-Seidel relaxation

saveVtk([(str)folder=’./VTK’ ]) → None
Save pressure field in vtk format. Specify a folder name for output.

182 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

setCellPImposed((int)id, (bool)pImposed) → None
make cell ‘id’ assignable with imposed pressure.

setCellPressure((int)id, (float)pressure) → None
set pressure in cell ‘id’.

setImposedPressure((int)cond, (float)p) → None
Set pressure value at the point indexed ‘cond’.

shearLubForce((int)idSph) → Vector3
Return the shear lubrication force on sphere idSph.

shearLubTorque((int)idSph) → Vector3
Return the shear lubrication torque on sphere idSph.

shearLubrication(=false)
compute shear lubrication force as developped by Brule (FIXME: ref.)

shearVelocity((int)idSph) → Vector3
Return the shear velocity of the interaction.

sineAverage(=0)
Pressure value (average) when sinusoidal pressure is applied

sineMagnitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied (p )

slipBoundary(=true)
Controls friction condition on lateral walls

stiffness(=10000)
equivalent contact stiffness used in the lubrication model

surfaceDistanceParticle((int)interaction) → float
Return the distance between particles.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

tolerance(=1e-06)
Gauss-Seidel tolerance

twistTorque(=false)
Compute twist torque applied on particles

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateBCs() → None
tells the engine to update it’s boundary conditions before running (especially useful when
changing boundary pressure - should not be needed for point-wise imposed pressure)

updateTriangulation(=0)
If true the medium is retriangulated. Can be switched on to force retriangulation af-
ter some events (else it will be true periodicaly based on FlowEngine::defTolerance and
FlowEngine::meshUpdateInterval. Of course, it costs CPU time.

useSolver(=0)
Solver to use 0=G-Seidel, 1=Taucs, 2-Pardiso, 3-CHOLMOD

viscosity(=1.0)
viscosity of the fluid

viscousNormalBodyStress(=false)
compute normal viscous stress applied on each body

viscousShear(=false)
compute viscous shear terms as developped by Donia Marzougui (FIXME: ref.)

1.4. Partial engines 183



Reference Manual, Release Yade documentation 2nd ed.

viscousShearBodyStress(=false)
compute shear viscous stress applied on each body

volume([(int)id=0 ]) → float
Returns the volume of Voronoi’s cell of a sphere.

wallIds(=vector<int>(6))
body ids of the boundaries (default values are ok only if aabbWalls are appended before
spheres, i.e. numbered 0,...,5)

wallThickness(=0)
Walls thickness

waveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

xmax(=1)
See FlowEngine::xmin.

xmin(=0)
Index of the boundary xmin. This index is not equal the the id of the corre-
sponding body in general, it may be used to access the corresponding attributes (e.g.
flow.bndCondValue[flow.xmin], flow.wallId[flow.xmin],...).

ymax(=3)
See FlowEngine::xmin.

ymin(=2)
See FlowEngine::xmin.

zmax(=5)
See FlowEngine::xmin.

zmin(=4)
See FlowEngine::xmin.

class yade.wrapper.RadialForceEngine((object)arg1)
Apply force of given magnitude directed away from spatial axis.
axisDir(=Vector3r::UnitX())

Axis direction (normalized automatically)
axisPt(=Vector3r::Zero())

Point on axis
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

fNorm(=0)
Applied force magnitude

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be

184 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.RotationEngine((object)arg1)
Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero
is set, then each body is also displaced around zeroPoint.
angularVelocity(=0)

Angular velocity. [rad/s]
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rotateAroundZero(=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis(=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

zeroPoint(=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.ServoPIDController((object)arg1)
PIDController servo-engine for applying prescribed force on bodies.
http://en.wikipedia.org/wiki/PID_controller

1.4. Partial engines 185

http://en.wikipedia.org/wiki/PID_controller


Reference Manual, Release Yade documentation 2nd ed.

axis(=Vector3r::Zero())
Unit vector along which apply the velocity [-]

curVel(=0.0)
Current applied velocity [m/s]

current(=Vector3r::Zero())
Current value for the controller [N]

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

errorCur(=0.0)
Current error [N]

errorPrev(=0.0)
Previous error [N]

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

iTerm(=0.0)
Integral term [N]

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

iterPeriod(=100.0)
Periodicity criterion of velocity correlation [-]

iterPrevStart(=-1.0)
Previous iteration of velocity correlation [-]

kD(=0.0)
Derivative gain/coefficient for the PID-controller [-]

kI(=0.0)
Integral gain/coefficient for the PID-controller [-]

kP(=0.0)
Proportional gain/coefficient for the PID-controller [-]

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

maxVelocity(=0.0)
Velocity [m/s]

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

target(=0.0)
Target value for the controller [N]

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

186 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

translationAxis(=uninitalized)
Direction [Vector3]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=uninitalized)
Velocity [m/s]

class yade.wrapper.StepDisplacer((object)arg1)
Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to another), but in this
case, see rather LawTester
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

mov(=Vector3r::Zero())
Linear displacement step to be applied per iteration, by addition to State.pos.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

rot(=Quaternionr::Identity())
Rotation step to be applied per iteration (via rotation composition with State.ori).

setVelocities(=false)
If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TorqueEngine((object)arg1)
Apply given torque (momentum) value at every subscribed particle, at every step.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

1.4. Partial engines 187



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

moment(=Vector3r::Zero())
Torque value to be applied.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.TranslationEngine((object)arg1)
This engine is the base class for different engines, which require any kind of motion.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

ids(=uninitalized)
Ids of bodies affected by this PartialEngine.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

188 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

translationAxis(=uninitalized)
Direction [Vector3]

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velocity(=uninitalized)
Velocity [m/s]

1.5 Bounding volume creation

1.5.1 BoundFunctor

BoundFunctor

Bo1_ChainedCylinder_Aabb

Bo1_Sphere_Aabb

Bo1_Box_Aabb

Bo1_Facet_Aabb

Bo1_Polyhedra_Aabb

Bo1_GridConnection_Aabb

Bo1_Tetra_Aabb

Bo1_Wall_Aabb

Bo1_Cylinder_Aabb

class yade.wrapper.BoundFunctor((object)arg1)
Functor for creating/updating Body::bound.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.5. Bounding volume creation 189



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Bo1_Box_Aabb((object)arg1)
Create/update an Aabb of a Box.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_ChainedCylinder_Aabb((object)arg1)
Functor creating Aabb from ChainedCylinder.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Cylinder_Aabb((object)arg1)
Functor creating Aabb from Cylinder.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

190 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Facet_Aabb((object)arg1)
Creates/updates an Aabb of a Facet.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_GridConnection_Aabb((object)arg1)
Functor creating Aabb from a GridConnection.
aabbEnlargeFactor(=-1, deactivated)

Relative enlargement of the bounding box; deactivated if negative.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Polyhedra_Aabb((object)arg1)
Create/update Aabb of a Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.5. Bounding volume creation 191



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Bo1_Sphere_Aabb((object)arg1)
Functor creating Aabb from Sphere.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
ScGeom::interactionDetectionFactor should have the same value as aabbEnlargeFactor.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Tetra_Aabb((object)arg1)
Create/update Aabb of a Tetra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Bo1_Wall_Aabb((object)arg1)
Creates/updates an Aabb of a Wall
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

192 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.5.2 BoundDispatcher

class yade.wrapper.BoundDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
activated(=true)

Whether the engine is activated (only should be changed by the collider)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2) → BoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

minSweepDistFactor(=0.2)
Minimal distance by which enlarge all bounding boxes; superseeds computed value of sweep-
Dist when lower that (minSweepDistFactor x sweepDist). Updated by the collider. (auto-
updated).

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

sweepDist(=0)
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

targetInterv(=-1)
see InsertionSortCollider::targetInterv (auto-updated)

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updatingDispFactor(=-1)
see InsertionSortCollider::updatingDispFactor (auto-updated)

1.5. Bounding volume creation 193



Reference Manual, Release Yade documentation 2nd ed.

1.6 Interaction Geometry creation

1.6.1 IGeomFunctor

IGeomFunctor

Ig2_Wall_Polyhedra_PolyhedraGeom

Ig2_Sphere_Sphere_L6Geom

Ig2_Sphere_Sphere_L3Geom

Ig2_Box_Sphere_ScGeom6DIg2_Box_Sphere_ScGeom

Ig2_Facet_Sphere_ScGeom

Ig2_Facet_Polyhedra_PolyhedraGeom

Ig2_Sphere_ChainedCylinder_CylScGeom

Ig2_Tetra_Tetra_TTetraGeom

Ig2_Sphere_Polyhedra_ScGeom

Ig2_Polyhedra_Polyhedra_PolyhedraGeom

Ig2_GridConnection_GridConnection_GridCoGridCoGeom

Ig2_Sphere_ChainedCylinder_CylScGeom6D

Ig2_Sphere_Sphere_ScGeom

Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D

Ig2_Wall_Sphere_ScGeom

Ig2_Tetra_Tetra_TTetraSimpleGeom

Ig2_Facet_Sphere_ScGeom6D

Ig2_Sphere_GridConnection_ScGridCoGeom

Ig2_GridNode_GridNode_GridNodeGeom6D

Ig2_Wall_Sphere_L3Geom

Ig2_Facet_Sphere_L3Geom

Ig2_Sphere_Sphere_ScGeom6D

class yade.wrapper.IGeomFunctor((object)arg1)
Functor for creating/updating Interaction::geom objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the

194 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

source code and O.timingEnabled==True.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Ig2_Box_Sphere_ScGeom((object)arg1)

Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Box_Sphere_ScGeom6D((object)arg1)
Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a
projected virtual sphere of same radius.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D((object)arg1)
Create/update a ScGeom instance representing connexion between chained cylinders.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
halfLengthContacts(=true)

If True, Cylinders nodes interact like spheres of radius 0.5*length, else one node has size length
while the other has size 0. The difference is mainly the locus of rotation definition.

interactionDetectionFactor(=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

1.6. Interaction Geometry creation 195



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between Facet and Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_L3Geom((object)arg1)
Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

196 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Ig2_Facet_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of Facet and Sphere.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

shrinkFactor(=0, no shrinking)
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Facet_Sphere_ScGeom6D((object)arg1)
Create an interaction geometry ScGeom6D from Facet and Sphere, representing the Facet with a
projected virtual sphere of same radius.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

shrinkFactor(=0, no shrinking)
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_GridConnection_GridConnection_GridCoGridCoGeom((object)arg1)
Create/update a GridCoGridCoGeom instance representing the geometry of a contact point be-
tween two GridConnection , including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.6. Interaction Geometry creation 197



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_GridNode_GridNode_GridNodeGeom6D((object)arg1)
Create/update a GridNodeGeom6D instance representing the geometry of a contact point between
two GridNode, including relative rotations.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,

198 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateRotations(=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Polyhedra_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between 2 Polyhedras
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of two Spheres.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom6D((object)arg1)
Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.

1.6. Interaction Geometry creation 199



Reference Manual, Release Yade documentation 2nd ed.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor(=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

updateRotations(=false)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Sphere_GridConnection_ScGridCoGeom((object)arg1)
Create/update a ScGridCoGeom6D instance representing the geometry of a contact point between
a GricConnection and a Sphere including relative rotations.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Polyhedra_ScGeom((object)arg1)
Create/update geometry of collision between Sphere and Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
edgeCoeff(=1.0)

multiplier of penetrationDepth when sphere contacts edge (simulating smaller volume of actual
intersection or when several polyhedrons has common edge)

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

200 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

vertexCoeff(=1.0)
multiplier of penetrationDepth when sphere contacts vertex (simulating smaller volume of
actual intersection or when several polyhedrons has common vertex)

class yade.wrapper.Ig2_Sphere_Sphere_L3Geom((object)arg1)
Functor for computing incrementally configuration of 2 Spheres stored in L3Geom; the configuration
is positioned in global space by local origin c (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2_Sphere_Sphere_L6Geom and L6Geom, there is additionally φ.
The first row of T , i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of u0 (and φ0) are stored as shifted origins of u (and φ); therefore, current value
of displacement is always u◦ − u0.
Suppose two spheres with radii ri, positions xi, velocities vi, angular velocities ωi.
When there is not yet contact, it will be created if uN = |x◦2 − x◦1| − |fd|(r1 + r2) < 0, where fd is
distFactor (sometimes also called ‘‘interaction radius’‘). If fd > 0, then u0x will be initalized to
uN, otherwise to 0. In another words, contact will be created if spheres enlarged by |fd| touch, and
the ‘‘equilibrium distance” (where ux − u − 0x is zero) will be set to the current distance if fd is
positive, and to the geometrically-touching distance if negative.
Local axes (rows of T ) are initially defined as follows:

•local x-axis is n = xl = ̂x2 − x1;
•local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny < nz) or xy plane (otherwise);

•local z-axis zl = xl × yl.
If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed
in rigid translation (affecting c), and rigid rotation (affecting T ), which can be split in rotation or

perpendicular to the normal and rotation ot (‘‘twist’‘) parallel with the normal:

o⊖
r = n− × n◦.

Since velocities are known at previous midstep (t− ∆t/2), we consider mid-step normal

n⊖ =
n− + n◦

2
.

For the sake of numerical stability, n⊖ is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n⊖ ≈ n−.
Rigid rotation parallel with the normal is

o⊖
t = n⊖

(
n⊖ ·

ω⊖
1 +ω⊖

2

2

)
∆t.

Branch vectors b1, b2 (connecting x◦1, x◦2 with c◦ are computed depending on noRatch (see here).

b1 =

{
r1n

◦ with noRatch
c◦ − x◦1 otherwise

b2 =

{
−r2n

◦ with noRatch
c◦ − x◦2 otherwise

1.6. Interaction Geometry creation 201



Reference Manual, Release Yade documentation 2nd ed.

Relative velocity at c◦ can be computed as

v⊖r = (ṽ⊖2 +ω2 × b2) − (v1 +ω1 × b1)

where ṽ2 is v2 without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v⊖r2 = v⊖r − (n⊖ · v⊖r )n⊖.
Any vector a expressed in global coordinates transforms during one timestep as

a◦ = a− + v⊖r ∆t− a− × o⊖
r − a− × t⊖r

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T , is updated by
rows, i.e.

T ◦ =

n◦
x n◦

y n◦
z

T−
1,• − T−

1,• × o⊖
r − T−

1,• × o⊖
t

T−
2,• − T−

2,• × o⊖
r − T−

,• × o⊖
t


This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T⊖ = Slerp
(
T−; T◦; t = 1/2

)
.

Depending on approxMask, this computation can be avoided by approximating T⊖ = T−.
Finally, current displacement is evaluated as

u◦ = u− + T⊖v⊖r ∆t.

For the normal component, non-incremental evaluation is preferred, giving

u◦
x = |x◦2 − x◦1|− (r1 + r2)

If this functor is called for L6Geom, local rotation is updated as

φ◦ = φ− + T⊖∆t(ω2 −ω1)

approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

202 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_L6Geom((object)arg1)
Incrementally compute L6Geom for contact of 2 spheres.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing the geometry of a contact point between two
Spheres s.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.

1.6. Interaction Geometry creation 203



Reference Manual, Release Yade documentation 2nd ed.

Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom6D((object)arg1)
Create/update a ScGeom6D instance representing the geometry of a contact point between two
Spheres, including relative rotations.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),

204 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant
impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis
of a cycle that differs from the one shown above. One will find interesting discussions in
e.g. [McNamara2008], even though solution it suggests is not fully applied here (equations of
motion are not incorporating alpha, in contradiction with what is suggested by McNamara et
al.).

bases
Ordered list of types (as strings) this functor accepts.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

dict() → dict
Return dictionary of attributes.

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.6. Interaction Geometry creation 205



Reference Manual, Release Yade documentation 2nd ed.

updateRotations(=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Tetra_Tetra_TTetraGeom((object)arg1)
Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Tetra_Tetra_TTetraSimpleGeom((object)arg1)
EXPERIMANTAL. Create/update geometry of collision between 2 tetrahedra (TTetraSimpleGeom
instance)
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Polyhedra_PolyhedraGeom((object)arg1)
Create/update geometry of collision between Wall and Polyhedra
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

206 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Ig2_Wall_Sphere_L3Geom((object)arg1)
Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.
approxMask

Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

distFactor(=1)
Create interaction if spheres are not futher than distFactor *(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘’zero”
one).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ig2_Wall_Sphere_ScGeom((object)arg1)
Create/update a ScGeom instance representing intersection of Wall and Sphere.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noRatch(=true)
Avoid granular ratcheting

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.6. Interaction Geometry creation 207



Reference Manual, Release Yade documentation 2nd ed.

1.6.2 IGeomDispatcher

class yade.wrapper.IGeomDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2, (Shape)arg3) → IGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

208 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.7 Interaction Physics creation

1.7.1 IPhysFunctor

IPhysFunctor

Ip2_FrictMat_FrictMat_CapillaryPhys

Ip2_LudingMat_LudingMat_LudingPhys

Ip2_FrictMat_PolyhedraMat_FrictPhys

Ip2_FrictMat_CpmMat_FrictPhys

Ip2_ElastMat_ElastMat_NormShearPhys

Ip2_JCFpmMat_JCFpmMat_JCFpmPhys

Ip2_FrictMat_FrictMat_FrictPhys

Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys

Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys

Ip2_2xInelastCohFrictMat_InelastCohFrictPhys

Ip2_FrictMat_FrictMat_ViscoFrictPhys

Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhysIp2_ViscElMat_ViscElMat_ViscElPhys

Ip2_ElastMat_ElastMat_NormPhys

Ip2_FrictMat_FrictViscoMat_FrictViscoPhys

Ip2_FrictMat_FrictMat_MindlinCapillaryPhys

Ip2_WireMat_WireMat_WirePhys

Ip2_CpmMat_CpmMat_CpmPhys

Ip2_2xNormalInelasticMat_NormalInelasticityPhys

Ip2_CohFrictMat_CohFrictMat_CohFrictPhys

Ip2_BubbleMat_BubbleMat_BubblePhys

Ip2_FrictMat_FrictMat_MindlinPhys

class yade.wrapper.IPhysFunctor((object)arg1)
Functor for creating/updating Interaction::phys objects.

1.7. Interaction Physics creation 209



Reference Manual, Release Yade documentation 2nd ed.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_2xInelastCohFrictMat_InelastCohFrictPhys((object)arg1)
Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_InelastCohFrictPhys_CohesionMoment.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_2xNormalInelasticMat_NormalInelasticityPhys((object)arg1)
Computes interaction attributes (of NormalInelasticityPhys type) from NormalInelasticMat mate-
rial parameters. For simulations using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelas-
ticity. Note that, as for others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.
bases

Ordered list of types (as strings) this functor accepts.
betaR(=0.12)

Parameter for computing the torque-stifness : T-stifness = betaR * Rmoy^2
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_BubbleMat_BubbleMat_BubblePhys((object)arg1)
Generates bubble interactions.Used in the contact law Law2_ScGeom_BubblePhys_Bubble.
bases

Ordered list of types (as strings) this functor accepts.

210 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys((object)arg1)
Generates cohesive-frictional interactions with moments, used in the contact law Law2_Sc-
Geom6D_CohFrictPhys_CohesionMoment. The normal/shear stiffness and friction definitions
are the same as in Ip2_FrictMat_FrictMat_FrictPhys, check the documentation there for details.
Adhesions related to the normal and the shear components are calculated form CohFrict-
Mat::normalCohesion (Cn) and CohFrictMat::shearlCohesion (Cs). For particles of size R1,R2

the adhesion will be ai = Cimin(R1, R2)
2, i = ns.

Twist and rolling stiffnesses are proportional to the shear stiffness through dimensionless factors
alphaKtw and alphaKr, such that the rotational stiffnesses are defined by ksαiR1R2, i = tw r

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

setCohesionNow(=false)
If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

setCohesionOnNewContacts(=false)
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_CpmMat_CpmMat_CpmPhys((object)arg1)
Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arith-
metic) averages if material are different. Simple copy of parameters is performed if the material is
shared between both particles. See cpm-model for detals.
bases

Ordered list of types (as strings) this functor accepts.
cohesiveThresholdIter(=10)

Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

dict() → dict
Return dictionary of attributes.

1.7. Interaction Physics creation 211



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormPhys((object)arg1)
Create a NormPhys from two ElastMats. TODO. EXPERIMENTAL
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ElastMat_ElastMat_NormShearPhys((object)arg1)
Create a NormShearPhys from two ElastMats. TODO. EXPERIMENTAL
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_CpmMat_FrictPhys((object)arg1)
Convert CpmMat instance and FrictMat instance to FrictPhys with corresponding parameters
(young, poisson, frictionAngle). Uses simple (arithmetic) averages if material parameters are dif-
ferent.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

212 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhys((object)arg1)
RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity.

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_FrictPhys((object)arg1)
Create a FrictPhys from two FrictMats. The compliance of one sphere under point load is defined
here as 1/(E.D), with E the stiffness of the sphere and D its diameter. The compliance of the
contact itself will be the sum of compliances from each sphere, i.e. 1/(E1.D1) + 1/(E2.D2) in the
general case, or 2/(E.D) in the special case of equal sizes and equal stiffness. Note that summing
compliances corresponds to an harmonic average of stiffnesss (as in e.g. [Scholtes2009a]), which is
how kn is actually computed in the Ip2_FrictMat_FrictMat_FrictPhys functor:
kn = E1D1∗E2D2

E1D1+E2D2
= k1∗k2

k1+k2
, with ki = EiDi.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.
In the case of a contact between a ViscElMat and a FrictMat, be sure to set FrictMat::young and
FrictMat::poisson, otherwise the default value will be used.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
frictAngle(=uninitalized)

Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinCapillaryPhys((object)arg1)
RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

1.7. Interaction Physics creation 213



Reference Manual, Release Yade documentation 2nd ed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

bases
Ordered list of types (as strings) this functor accepts.

betan(=uninitalized)
Normal viscous damping ratio βn.

betas(=uninitalized)
Shear viscous damping ratio βs.

dict() → dict
Return dictionary of attributes.

en(=uninitalized)
Normal coefficient of restitution en.

es(=uninitalized)
Shear coefficient of restitution es.

eta(=0.0)
Coefficient to determine the plastic bending moment

gamma(=0.0)
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

krot(=0.0)
Rotational stiffness for moment contact law

ktwist(=0.0)
Torsional stiffness for moment contact law

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinPhys((object)arg1)
Calculate some physical parameters needed to obtain the normal and shear stiffnesses according to
the Hertz-Mindlin formulation (as implemented in PFC).
Viscous parameters can be specified either using coefficients of restitution (en, es) or viscous
damping ratio (βn, βs). The following rules apply: #. If the βn (βs) ratio is given, it is assigned to
MindlinPhys.betan (MindlinPhys.betas) directly. #. If en is given, MindlinPhys.betan is computed
using βn = −(log en)/

√
π2 + (log en)2. The same applies to es, MindlinPhys.betas. #. It is an

error (exception) to specify both en and βn (es and βs). #. If neither en nor βn is given, zero
value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither es nor βs is
given, the value of MindlinPhys.betan is used for MindlinPhys.betas as well.
The en, βn, es, βs are MatchMaker objects; they can be constructed from float values to always
return constant value.
See scripts/test/shots.py for an example of specifying en based on combination of parameters.
bases

Ordered list of types (as strings) this functor accepts.
betan(=uninitalized)

Normal viscous damping ratio βn.

214 Chapter 1. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/scripts/test/shots.py


Reference Manual, Release Yade documentation 2nd ed.

betas(=uninitalized)
Shear viscous damping ratio βs.

dict() → dict
Return dictionary of attributes.

en(=uninitalized)
Normal coefficient of restitution en.

es(=uninitalized)
Shear coefficient of restitution es.

eta(=0.0)
Coefficient to determine the plastic bending moment

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute the friction angle of an interaction. If
None, minimum value is used.

gamma(=0.0)
Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

krot(=0.0)
Rotational stiffness for moment contact law

ktwist(=0.0)
Torsional stiffness for moment contact law

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictMat_ViscoFrictPhys((object)arg1)
Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.
The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.7. Interaction Physics creation 215



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_FrictViscoMat_FrictViscoPhys((object)arg1)
Converts a FrictMat and FrictViscoMat instance to FrictViscoPhys with corresponding parameters.
Basically this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference
that damping in normal direction can be considered.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
frictAngle(=uninitalized)

Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

kRatio(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

kn(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictMat_PolyhedraMat_FrictPhys((object)arg1)

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_FrictViscoMat_FrictViscoMat_FrictViscoPhys((object)arg1)
Converts 2 FrictViscoMat instances to FrictViscoPhys with corresponding parameters. Basically
this functor corresponds to Ip2_FrictMat_FrictMat_FrictPhys with the only difference that damp-
ing in normal direction can be considered.

216 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

kRatio(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s shear contact stiffnesses.
If this value is not given the elastic properties (i.e. poisson) of the two colliding materials are
used to calculate the stiffness.

kn(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s normal contact stiffnesses.
If this value is not given the elastic properties (i.e. young) of the two colliding materials are
used to calculate the stiffness.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_JCFpmMat_JCFpmMat_JCFpmPhys((object)arg1)
Converts 2 JCFpmMat instances to one JCFpmPhys instance, with corresponding parameters.
bases

Ordered list of types (as strings) this functor accepts.
cohesiveTresholdIteration(=1)

should new contacts be cohesive? If strictly negativ, they will in any case. If positiv, they
will before this iter, they won’t afterward.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_LudingMat_LudingMat_LudingPhys((object)arg1)
Convert 2 instances of LudingMat to LudingPhys using the rule of consecutive connection.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.7. Interaction Physics creation 217



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys((object)arg1)

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ViscElCapMat_ViscElCapMat_ViscElCapPhys((object)arg1)
Convert 2 instances of ViscElCapMat to ViscElCapPhys using the rule of consecutive connection.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
en(=uninitalized)

Instance of MatchMaker determining restitution coefficient in normal direction
et(=uninitalized)

Instance of MatchMaker determining restitution coefficient in tangential direction
frictAngle(=uninitalized)

Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

tc(=uninitalized)
Instance of MatchMaker determining contact time

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_ViscElMat_ViscElMat_ViscElPhys((object)arg1)
Convert 2 instances of ViscElMat to ViscElPhys using the rule of consecutive connection.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.

218 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

en(=uninitalized)
Instance of MatchMaker determining restitution coefficient in normal direction

et(=uninitalized)
Instance of MatchMaker determining restitution coefficient in tangential direction

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

tc(=uninitalized)
Instance of MatchMaker determining contact time

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Ip2_WireMat_WireMat_WirePhys((object)arg1)
Converts 2 WireMat instances to WirePhys with corresponding parameters.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

linkThresholdIteration(=1)
Iteration to create the link.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.7.2 IPhysDispatcher

class yade.wrapper.IPhysDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Material)arg2, (Material)arg3) → IPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

1.7. Interaction Physics creation 219



Reference Manual, Release Yade documentation 2nd ed.

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

220 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.7. Interaction Physics creation 221



Reference Manual, Release Yade documentation 2nd ed.

1.8 Constitutive laws

1.8.1 LawFunctor

LawFunctor

Law2_ScGeom_BubblePhys_Bubble

Law2_ScGeom_CpmPhys_Cpm

Law2_ScGeom_FrictViscoPhys_CundallStrackVisco

Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment

Law2_ScGeom_ViscoFrictPhys_CundallStrack

Law2_ScGeom_FrictPhys_CundallStrack

Law2_PolyhedraGeom_PolyhedraPhys_Volumetric

Law2_CylScGeom_FrictPhys_CundallStrack

Law2_ScGeom_MindlinPhys_HertzWithLinearShear

Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity

Law2_ScGeom_ViscElPhys_Basic

Law2_TTetraSimpleGeom_NormPhys_Simple

Law2_L6Geom_FrictPhys_LinearLaw2_L3Geom_FrictPhys_ElPerfPl

Law2_ScGridCoGeom_FrictPhys_CundallStrack

Law2_ScGeom_WirePhys_WirePM

Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment

Law2_ScGeom6D_CohFrictPhys_CohesionMoment

Law2_CylScGeom6D_CohFrictPhys_CohesionMoment

Law2_ScGridCoGeom_CohFrictPhys_CundallStrack

Law2_ScGeom_MindlinPhys_Mindlin

Law2_ScGeom_LudingPhys_Basic

Law2_ScGeom_MindlinPhys_MindlinDeresiewitz

Law2_ScGeom_ViscElCapPhys_Basic

Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM

Law2_GridCoGridCoGeom_FrictPhys_CundallStrack

class yade.wrapper.LawFunctor((object)arg1)
Functor for applying constitutive laws on interactions.222 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

1.8. Constitutive laws 223



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.Law2_CylScGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
This law generalises Law2_CylScGeom_FrictPhys_CundallStrack by adding cohesion and mo-
ments at contact.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_CylScGeom_FrictPhys_CundallStrack((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.

Note: This law uses ScGeom.

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

224 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_GridCoGridCoGeom_FrictPhys_CundallStrack((object)arg1)
Frictional elastic contact law between two gridConnection . See Law2_ScGeom_FrictPhys_Cun-
dallStrack for more details.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_L3Geom_FrictPhys_ElPerfPl((object)arg1)
Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys
the Mohr-Coulomb criterion (unless noSlip is True).
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.8. Constitutive laws 225



Reference Manual, Release Yade documentation 2nd ed.

noBreak(=false)
Do not break contacts when particles separate.

noSlip(=false)
No plastic slipping.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_L6Geom_FrictPhys_Linear((object)arg1)
Basic law for testing L6Geom – linear in both normal and shear sense, without slip or breakage.
bases

Ordered list of types (as strings) this functor accepts.
charLen(=1)

Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

noBreak(=false)
Do not break contacts when particles separate.

noSlip(=false)
No plastic slipping.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_PolyhedraGeom_PolyhedraPhys_Volumetric((object)arg1)
Calculate physical response of 2 vector in interaction, based on penetration configuration given by
PolyhedraGeom. Normal force is proportional to the volume of intersection
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
PolyhedraGeom_PolyhedraPhys_Volumetric::traceEnergy is true.

shearForce(=Vector3r::Zero())
Shear force from last step

226 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

volumePower(=1.)
Power of volume used in evaluation of normal force. Default is 1.0 - normal force is linearly
proportional to volume. 1.0/3.0 would mean that normal force is proportional to the cube
root of volume, approximation of penetration depth.

class yade.wrapper.Law2_ScGeom6D_CohFrictPhys_CohesionMoment((object)arg1)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb
plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.
The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗un, an), with an

the normal adhesion. The shear force is Fs = ks ∗us, the plasticity condition defines the maximum
value of the shear force, by default Fmax

s = Fn ∗ tan(φ) + as, with φ the friction angle and as

the shear adhesion. If CohFrictPhys::cohesionDisableFriction is True, friction is ignored as long as
adhesion is active, and the maximum shear force is only Fmax

s = as.
If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present, the
contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(φ). If CohFrictPhys::fragile =False, the
behaviour is perfectly plastic, and the shear strength is kept constant.
If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr, so that
the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with Θb,t the relative rotations between
interacting bodies (details can be found in [Bourrier2013]). The maximum value of moments can
be defined and takes the form of rolling friction. Cohesive -type moment may also be included in
the future.
Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

bases
Ordered list of types (as strings) this functor accepts.

bendingElastEnergy() → float
Compute bending elastic energy.

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys.

dict() → dict
Return dictionary of attributes.

elasticEnergy() → float
Compute total elastic energy.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.8. Constitutive laws 227



Reference Manual, Release Yade documentation 2nd ed.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normElastEnergy() → float
Compute normal elastic energy.

shearElastEnergy() → float
Compute shear elastic energy.

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

twistElastEnergy() → float
Compute twist elastic energy.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment((object)arg1)
This law is currently under developpement. Final version and documentation will come before the
end of 2014.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normElastEnergy() → float
Compute normal elastic energy.

shearElastEnergy() → float
Compute shear elastic energy.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity((object)arg1)
Contact law used to simulate granular filler in rock joints [Duriez2009a], [Duriez2011]. It includes
possibility of cohesion, moment transfer and inelastic compression behaviour (to reproduce the
normal inelasticity observed for rock joints, for the latter).
The moment transfer relation corresponds to the adaptation of the work of Plassiard & Belheine
(see in [DeghmReport2006] for example), which was realized by J. Kozicki, and is now coded in
ScGeom6D.

228 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

As others LawFunctor, it uses pre-computed data of the interactions (rigidities, friction angles
-with their tan()-, orientations of the interactions); this work is done here in Ip2_2xNormalInelas-
ticMat_NormalInelasticityPhys.
To use this you should also use NormalInelasticMat as material type of the bodies.
The effects of this law are illustrated in examples/normalInelasticity-test.py
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

momentAlwaysElastic(=false)
boolean, true=> the part of the contact torque (caused by relative rotations, which is com-
puted only if momentRotationLaw..) is not limited by a plastic threshold

momentRotationLaw(=true)
boolean, true=> computation of a torque (against relative rotation) exchanged between par-
ticles

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_BubblePhys_Bubble((object)arg1)
Constitutive law for Bubble model.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

pctMaxForce(=0.1)
Chan[2011] states the contact law is valid only for small interferences; therefore an exponential
force-displacement curve models the contact stiffness outside that regime (large penetration).
This artificial stiffening ensures that bubbles will not pass through eachother or completely
overlap during the simulation. The maximum force is Fmax = (2*pi*surfaceTension*rAvg).
pctMaxForce is the percentage of the maximum force dictates the separation threshold, Dmax,
for each contact. Penetrations less than Dmax calculate the reaction force from the derived
contact law, while penetrations equal to or greater than Dmax calculate the reaction force
from the artificial exponential curve.

surfaceTension(=0.07197)
The surface tension in the liquid surrounding the bubbles. The default value is that of water
at 25 degrees Celcius.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_CpmPhys_Cpm((object)arg1)
Constitutive law for the cpm-model.

1.8. Constitutive laws 229



Reference Manual, Release Yade documentation 2nd ed.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

elasticEnergy() → float
Compute and return the total elastic energy in all “CpmPhys” contacts

epsSoft(=-3e-3, approximates confinement -20MPa precisely, -100MPa a little over, -200 and
-400 are OK (secant))

Strain at which softening in compression starts (non-negative to deactivate)
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

omegaThreshold(=1., >=1. to deactivate, i.e. never delete any contacts)
damage after which the contact disappears (<1), since omega reaches 1 only for strain →+∞

relKnSoft(=.3)
Relative rigidity of the softening branch in compression (0=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

yieldEllipseShift(=NaN)
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

yieldLogSpeed(=.1)
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude((float)sigmaN, (float)omega, (float)undamagedCohesion,
(float)tanFrictionAngle) → float

Return radius of yield surface for given material and state parameters; uses attributes of the
current instance (yieldSurfType etc), change them before calling if you need that.

yieldSurfType(=2)
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_tension,
4: elliptic, 5: elliptic+log

class yade.wrapper.Law2_ScGeom_FrictPhys_CundallStrack((object)arg1)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(φ), with φ the friction angle.
This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts

230 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

initPlasticDissipation((float)arg2) → None
Initialize cummulated plastic dissipation to a value (0 by default).

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_FrictViscoPhys_CundallStrackVisco((object)arg1)
Constitutive law for the FrictViscoPM. Corresponds to Law2_ScGeom_FrictPhys_CundallStrack
with the only difference that viscous damping in normal direction can be considered.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictViscoPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if
:yref:Law2_ScGeom_FrictViscoPhys_CundallStrackVisco::traceEnergy‘ is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

1.8. Constitutive laws 231



Reference Manual, Release Yade documentation 2nd ed.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM((object)arg1)
Interaction law for cohesive frictional material, e.g. rock, possibly presenting joint surfaces, that
can be mechanically described with a smooth contact logic [Ivars2011] (implemented in Yade in
[Scholtes2012]). See examples/jointedCohesiveFrictionalPM for script examples. Joint surface
definitions (through stl meshes or direct definition with gts module) are illustrated there.
Key(=”“)

string specifying the name of saved file ‘cracks___.txt’, when recordCracks is true.
bases

Ordered list of types (as strings) this functor accepts.
cracksFileExist(=false)

if true (and if recordCracks), data are appended to an existing ‘cracksKey’ text file; otherwise
its content is reset.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene

recordCracks(=false)
if true, data about interactions that lose their cohesive feature are stored in a text file
cracksKey.txt (see Key and cracksFileExist). It contains 9 columns: the break iteration,
the 3 coordinates of the contact point, the type (1 means shear break, while 0 corresponds to
tensile break), the ‘’cross section” (mean radius of the 2 spheres) and the 3 coordinates of the
contact normal.

smoothJoint(=false)
if true, interactions of particles belonging to joint surface (JCFpmPhys.isOnJoint) are handled
according to a smooth contact logic [Ivars2011], [Scholtes2012].

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_LudingPhys_Basic((object)arg1)
Linear viscoelastic model operating on ScGeom and LudingPhys.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

232 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_HertzWithLinearShear((object)arg1)
Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear beahvior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).

Note: No viscosity or damping. If you need those, look at Law2_ScGeom_MindlinPhys_Mindlin,
which also includes non-linear Mindlin shear.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

nonLin(=0)
Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_Mindlin((object)arg1)
Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal
direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters βn and βs.
bases

Ordered list of types (as strings) this functor accepts.
calcEnergy(=false)

bool to calculate energy terms (shear potential energy, dissipation of energy due to friction
and dissipation of energy due to normal and tangential damping)

contactsAdhesive() → float
Compute total number of adhesive contacts.

dict() → dict
Return dictionary of attributes.

frictionDissipation(=uninitalized)
Energy dissipation due to sliding

includeAdhesion(=false)
bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

1.8. Constitutive laws 233



Reference Manual, Release Yade documentation 2nd ed.

includeMoment(=false)
bool to consider rolling resistance (if Ip2_FrictMat_FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

normDampDissip(=uninitalized)
Energy dissipated by normal damping

normElastEnergy() → float
Compute normal elastic potential energy. It handles the DMT formulation if Law2_ScGeom_-
MindlinPhys_Mindlin::includeAdhesion is set to true.

preventGranularRatcheting(=true)
bool to avoid granular ratcheting

ratioSlidingContacts() → float
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip(=uninitalized)
Energy dissipated by tangential damping

shearEnergy(=uninitalized)
Shear elastic potential energy

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz((object)arg1)
Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscElCapPhys_Basic((object)arg1)
Extended version of Linear viscoelastic model with capillary parameters.
NLiqBridg(=uninitalized)

The total number of liquid bridges
VLiqBridg(=uninitalized)

The total volume of liquid bridges

234 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscElPhys_Basic((object)arg1)
Linear viscoelastic model operating on ScGeom and ViscElPhys. The contact law is visco-elastic
in the normal direction, and visco-elastic frictional in the tangential direction. The normal contact
is modelled as a spring of equivalent stiffness kn, placed in parallel with a viscous damper of
equivalent viscosity cn. As for the tangential contact, it is made of a spring-dashpot system (in
parallel with equivalent stiffness ks and viscosity cs) in serie with a slider of friction coefficient
µ = tanφ.
The friction coefficient µ = tanφ is always evaluated as tan(min(φ1, φ2)), where φ1 and φ2

are respectively the friction angle of particle 1 and 2. For the other parameters, depending on the
material input, the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ) are evaluated differently.
In the following, the quantities in parenthesis are the material constant which are precised for each
particle. They are then associated to particle 1 and 2 (e.g. kn1,kn2,cn1...), and should not be
confused with the equivalent parameters of the contact (Kn,Cn,Ks,Cs,φ).

•If contact time (tc), normal and tangential restitution coefficient (en,et) are precised, the
equivalent parameters are evaluated following the formulation of Pournin [Pournin2001].

•If normal and tangential stiffnesses (kn, ks) and damping constant (cn,cs) of each particle
are precised, the equivalent stiffnesses and damping constants of each contact made of two
particles 1 and 2 is made A = 2 a1a2

a1+a2
, where A is Kn, Ks, Cn and Cs, and 1 and 2 refer to

the value associated to particle 1 and 2.
•Alternatively it is possible to precise the Young modulus (young) and poisson’s ratio (poisson)
instead of the normal and spring constant (kn and ks). In this case, the equivalent parameters
are evaluated the same way as the previous case with knx = Exdx, ksx = vxknx, where Ex,
vx and dx are Young modulus, poisson’s ratio and diameter of particle x.

•If Yound modulus (young), poisson’s ratio (poisson), normal and tangential restitution co-
efficient (en,et) are precised, the equivalent stiffnesses are evaluated as previously: Kn =
2 kn1kn2

kn1+kn2
, knx = Exdx, Ks = 2(ks1ks2)/(ks1 + ks2), ksx = vknx. The damping con-

stant is computed at each contact in order to fulfill the normal restitution coefficient
en = (en1en2)/(en1 + en2). This is achieved resolving numerically equation 21 of [Schwa-
ger2007] (There is in fact a mistake in the article from equation 18 to 19, so that there is a
change in sign). Be careful in this configuration the tangential restitution coefficient is set to 1
(no tangential damping). This formulation imposes directly the normal restitution coefficient
of the collisions instead of the damping constant.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.8. Constitutive laws 235



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGeom_ViscoFrictPhys_CundallStrack((object)arg1)
Law similar to Law2_ScGeom_FrictPhys_CundallStrack with the addition of shear creep at con-
tacts.
bases

Ordered list of types (as strings) this functor accepts.
creepStiffness(=1)
dict() → dict

Return dictionary of attributes.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

shearCreep(=false)
sphericalBodies(=true)

If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

viscosity(=1)
class yade.wrapper.Law2_ScGeom_WirePhys_WirePM((object)arg1)

Constitutive law for the wire model.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

236 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

linkThresholdIteration(=1)
Iteration to create the link.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_CohFrictPhys_CundallStrack((object)arg1)
Law between a cohesive frictional GridConnection and a cohesive frictional Sphere. Almost the
same than Law2_ScGeom6D_CohFrictPhys_CohesionMoment, but THE ROTATIONAL MO-
MENTS ARE NOT COMPUTED.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_ScGridCoGeom_FrictPhys_CundallStrack((object)arg1)
Law between a frictional GridConnection and a frictional Sphere. Almost the same than Law2_-
ScGeom_FrictPhys_CundallStrack, but the force is divided and applied on the two GridNodes
only.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Law2_TTetraSimpleGeom_NormPhys_Simple((object)arg1)
EXPERIMENTAL. TODO
bases

Ordered list of types (as strings) this functor accepts.

1.8. Constitutive laws 237



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.8.2 LawDispatcher

class yade.wrapper.LawDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IGeom)arg2, (IPhys)arg3) → LawFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

238 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

1.9 Callbacks

IntrCallback SumIntrForcesCb

class yade.wrapper.IntrCallback((object)arg1)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.
At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.

Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

dict() → dict
Return dictionary of attributes.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.SumIntrForcesCb((object)arg1)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).
dict() → dict

Return dictionary of attributes.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary

1.10 Preprocessors

FileGenerator

CapillaryTriaxialTest

CohesiveTriaxialTest

SimpleShear

TriaxialTest

class yade.wrapper.FileGenerator((object)arg1)
Base class for scene generators, preprocessors.
dict() → dict

Return dictionary of attributes.
generate((str)out) → None

Generate scene, save to given file

1.9. Callbacks 239



Reference Manual, Release Yade documentation 2nd ed.

load() → None
Generate scene, save to temporary file and load immediately

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.CapillaryTriaxialTest((object)arg1)
This preprocessor is a variant of TriaxialTest, including the model of capillary forces developed
as part of the PhD of Luc Scholtès. See the documentation of Law2_ScGeom_CapillaryPhys_-
Capillarity or the main page https://yade-dem.org/wiki/CapillaryTriaxialTest, for more details.
Results obtained with this preprocessor were reported for instance in ‘Scholtes et al. Microme-
chanics of granular materials with capillary effects. International Journal of Engineering Science
2009,(47)1, 64-75.’
Key(=”“)

A code that is added to output filenames.
Rdispersion(=0.3)

Normalized standard deviation of generated sizes.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStressesWater”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

binaryFusion(=true)
Defines how overlapping bridges affect the capillary forces (see CapillaryTriaxial-
Test::fusionDetection). If binary=true, the force is null as soon as there is an overlap detected,
if not, the force is divided by the number of overlaps.

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

capillaryPressure(=0)
Define succion in the packing [Pa]. This is the value used in the capillary model.

capillaryStressRecordFile(=”./capStresses”+Key)
compactionFrictionDeg(=sphereFrictionDeg)

Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

contactStressRecordFile(=”./contStresses”+Key)

240 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/wiki/CapillaryTriaxialTest


Reference Manual, Release Yade documentation 2nd ed.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=0.0001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

dict() → dict
Return dictionary of attributes.

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

fusionDetection(=false)
test overlaps between liquid bridges on modify forces if overlaps exist

generate((str)out) → None
Generate scene, save to given file

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

1.10. Preprocessors 241



Reference Manual, Release Yade documentation 2nd ed.

recordIntervalIter(=20)
interval between file outputs

sigmaIsoCompaction(=-50000)
Confining stress during isotropic compaction (< 0 for real - compressive - compaction).

sigmaLateralConfinement(=-50000)
Lateral stress during triaxial loading (< 0 for classical compressive cases). An isotropic un-
loading is performed if the value is not equal to CapillaryTriaxialTest::SigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepOutputInterval(=50)
interval for outputing general information on the simulation (stress,unbalanced force,...)

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

water(=true)
activate capillary model

class yade.wrapper.CohesiveTriaxialTest((object)arg1)
This preprocessor is a variant of TriaxialTest using the cohesive-frictional contact law with mo-
ments. It sets up a scene for cohesive triaxial tests. See full documentation at http://yade-
dem.org/wiki/TriaxialTest.
Cohesion is initially 0 by default. The suggested usage is to define cohesion values in a second step,
after isotropic compaction : define shear and normal cohesions in Ip2_CohFrictMat_CohFrict-
Mat_CohFrictPhys, then turn Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow
true to assign them at each contact at next iteration.
Key(=”“)

A code that is added to output filenames.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./CohesiveWallStresses”+Key)

242 Chapter 1. Class reference (yade.wrapper module)

http://yade-dem.org/wiki/TriaxialTest
http://yade-dem.org/wiki/TriaxialTest


Reference Manual, Release Yade documentation 2nd ed.

autoCompressionActivation(=true)
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=0.001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

dict() → dict
Return dictionary of attributes.

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

generate((str)out) → None
Generate scene, save to given file

importFilename(=”“)
File with positions and sizes of spheres.

1.10. Preprocessors 243



Reference Manual, Release Yade documentation 2nd ed.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

normalCohesion(=0)
Material parameter used to define contact strength in tension.

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusDeviation(=0.3)
Normalized standard deviation of generated sizes.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervalIter(=20)
interval between file outputs

setCohesionOnNewContacts(=false)
create cohesionless (False) or cohesive (True) interactions for new contacts.

shearCohesion(=0)
Material parameter used to define shear strength of contacts.

sigmaIsoCompaction(=-50000)
Confining stress during isotropic compaction (< 0 for real - compressive - compaction).

sigmaLateralConfinement(=-50000)
Lateral stress during triaxial loading (< 0 for classical compressive cases). An isotropic un-
loading is performed if the value is not equal to TriaxialTest::sigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

244 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

class yade.wrapper.SimpleShear((object)arg1)
Preprocessor for creating a numerical model of a simple shear box.

•Boxes (6) constitute the different sides of the box itself
•Spheres are contained in the box. The sample is generated by default via the same method
used in TriaxialTest Preprocesor (=> see in source function GenerateCloud). But import of
a list of spheres from a text file can be also performed after few changes in the source code.

Launching this preprocessor will carry out an oedometric compression, until a value of
normal stress equal to 2 MPa (and stable). But with others Engines KinemCNDEngine,
KinemCNSEngine and KinemCNLEngine, respectively constant normal displacement,
constant normal rigidity and constant normal stress paths can be carried out for such
simple shear boxes.

NB about micro-parameters : their default values correspond to those used in [Duriez2009a] and
[Duriez2011] to simulate infilled rock joints.
boxPoissonRatio(=0.04)

value of ElastMat::poisson for the spheres [-]
boxYoungModulus(=4.0e9)

value of ElastMat::young for the boxes [Pa]
density(=2600)

density of the spheres [kg/m3]
dict() → dict

Return dictionary of attributes.
generate((str)out) → None

Generate scene, save to given file
gravApplied(=false)

depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles

gravity(=Vector3r(0, -9.81, 0))
vector corresponding to used gravity (if gravApplied) [m/s2]

height(=0.02)
initial height (along y-axis) of the shear box [m]

length(=0.1)
initial length (along x-axis) of the shear box [m]

load() → None
Generate scene, save to temporary file and load immediately

sphereFrictionDeg(=37)
value of ElastMat::poisson for the spheres [◦] (the necessary conversion in rad is done auto-
matically)

spherePoissonRatio(=0.04)
value of ElastMat::poisson for the spheres [-]

1.10. Preprocessors 245



Reference Manual, Release Yade documentation 2nd ed.

sphereYoungModulus(=4.0e9)
value of ElastMat::young for the spheres [Pa]

thickness(=0.001)
thickness of the boxes constituting the shear box [m]

timeStepUpdateInterval(=50)
value of TimeStepper::timeStepUpdateInterval for the TimeStepper used here

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

width(=0.04)
initial width (along z-axis) of the shear box [m]

class yade.wrapper.TriaxialTest((object)arg1)
Create a scene for triaxal test.
Introduction Yade includes tools to simulate triaxial tests on particles assemblies. This pre-

processor (and variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates
a scene which will - by default - go through the following steps :
• generate random loose packings in a parallelepiped.
• compress the packing isotropicaly, either squeezing the packing between moving rigid

boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmaIsoCompaction.

• when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmaLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is
performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.
Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmaN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.

Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on x and z.

Essential engines
1. The TriaxialCompressionEngine is used for controlling the state of the sample and simu-

lating loading paths. TriaxialCompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.
3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate ∆t for the

numerical scheme.

Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked

246 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

by TriaxialCompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

Frequently Asked Questions
1.How is generated the packing? How to change particles sizes distribution? Why do I have a message “Exceeded 3000 tries to insert non-overlapping sphere?

The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.
If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.
You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2.How is the compaction done, what are the parameters maxWallVelocity and finalMaxMultiplier?

Compaction is done
(a) by moving rigid boxes or
(b) by increasing the sizes of the particles (decided using the option internalCompaction

� size increase).
Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

3.During the simulation of triaxial compression test, the wall in one direction moves with an increment of strain while the stresses in other two directions are adjusted to sigma_iso. How the stresses in other directions are maintained constant to sigma_iso? What is the mechanism? Where is it implemented in Yade?
The control of stress on a boundary is based on the total stiffness K of all contacts
between the packing and this boundary. In short, at each step, displacement=stress_-
error/K. This algorithm is implemented in TriaxialStressController, and the control
itself is in TriaxialStressController::ControlExternalStress. The control can
be turned off independently for each boundary, using the flags wall_XXX_activated,
with XXX�{top, bottom, left, right, back, front}. The imposed sress is a unique value
(sigma_iso) for all directions if TriaxialStressController.isAxisymetric, or 3 independent
values sigma1, sigma2, sigma3.

4.Which value of friction angle do you use during the compaction phase of the Triaxial Test?
The friction during the compaction (whether you are using the expansion method or
the compression one for the specimen generation) can be anything between 0 and the
final value used during the Triaxial phase. Note that higher friction than the final one
would result in volumetric collapse at the beginning of the test. The purpose of using a
different value of friction during this phase is related to the fact that the final porosity
you get at the end of the sample generation essentially depends on it as well as on the
assumed Particle Size Distribution. Changing the initial value of friction will get to a
different value of the final porosity.

5.Which is the aim of the bool isRadiusControlIteration? This internal variable (up-
dated automatically) is true each N timesteps (with N=radiusControlInterval). For other
timesteps, there is no expansion. Cycling without expanding is just a way to speed up the
simulation, based on the idea that 1% increase each 10 iterations needs less operations
than 0.1% at each iteration, but will give similar results.

6.How comes the unbalanced force reaches a low value only after many timesteps in the compaction phase?
The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction

1.10. Preprocessors 247



Reference Manual, Release Yade documentation 2nd ed.

phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

Key(=”“)
A code that is added to output filenames.

StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStresses”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxYoungModulus(=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=-1)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

dict() → dict
Return dictionary of attributes.

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

generate((str)out) → None
Generate scene, save to given file

248 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

load() → None
Generate scene, save to temporary file and load immediately

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

radiusStdDev(=0.3)
Normalized standard deviation of generated sizes.

recordIntervalIter(=20)
interval between file outputs

sigmaIsoCompaction(=-50000)
Confining stress during isotropic compaction (< 0 for real - compressive - compaction).

sigmaLateralConfinement(=-50000)
Lateral stress during triaxial loading (< 0 for classical compressive cases). An isotropic un-
loading is performed if the value is not equal to TriaxialTest::sigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

1.10. Preprocessors 249



Reference Manual, Release Yade documentation 2nd ed.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

1.11 Rendering

1.11.1 OpenGLRenderer

class yade.wrapper.OpenGLRenderer((object)arg1)
Class responsible for rendering scene on OpenGL devices.
bgColor(=Vector3r(.2, .2, .2))

Color of the background canvas (RGB)
bound(=false)

Render body Bound
cellColor(=Vector3r(1, 1, 0))

Color of the periodic cell (RGB).
clipPlaneActive(=vector<bool>(numClipPlanes, false))

Activate/deactivate respective clipping planes
clipPlaneSe3(=vector<Se3r>(numClipPlanes, Se3r(Vector3r::Zero(), Quater-

nionr::Identity())))
Position and orientation of clipping planes

dict() → dict
Return dictionary of attributes.

dispScale(=Vector3r::Ones(), disable scaling)
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

dof(=false)
Show which degrees of freedom are blocked for each body

extraDrawers(=uninitalized)
Additional rendering components (GlExtraDrawer).

ghosts(=true)
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).

hideBody((int)id) → None
Hide body from id (see OpenGLRenderer::showBody)

id(=false)
Show body id’s

intrAllWire(=false)
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

intrGeom(=false)
Render Interaction::geom objects.

intrPhys(=false)
Render Interaction::phys objects

intrWire(=false)
If rendering interactions, use only wires to represent them.

250 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

light1(=true)
Turn light 1 on.

light2(=true)
Turn light 2 on.

light2Color(=Vector3r(0.5, 0.5, 0.1))
Per-color intensity of secondary light (RGB).

light2Pos(=Vector3r(-130, 75, 30))
Position of secondary OpenGL light source in the scene.

lightColor(=Vector3r(0.6, 0.6, 0.6))
Per-color intensity of primary light (RGB).

lightPos(=Vector3r(75, 130, 0))
Position of OpenGL light source in the scene.

mask(=~0, draw everything)
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

render() → None
Render the scene in the current OpenGL context.

rotScale(=1., disable scaling)
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

selId(=Body::ID_NONE)
Id of particle that was selected by the user.

setRefSe3() → None
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

shape(=true)
Render body Shape

showBody((int)id) → None
Make body visible (see OpenGLRenderer::hideBody)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire(=false)
Render all bodies with wire only (faster)

1.11. Rendering 251



Reference Manual, Release Yade documentation 2nd ed.

1.11.2 GlShapeFunctor

GlShapeFunctor

Gl1_Wall

Gl1_Box

Gl1_ChainedCylinderGl1_Cylinder

Gl1_Sphere

Gl1_Tetra

Gl1_GridConnection

Gl1_Polyhedra

Gl1_Facet

class yade.wrapper.GlShapeFunctor((object)arg1)
Abstract functor for rendering Shape objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_Box((object)arg1)
Renders Box object
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

252 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_ChainedCylinder((object)arg1)
Renders ChainedCylinder object including a shift for compensating flexion.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Cylinder((object)arg1)

Renders Cylinder object
wire(=false) [static]

Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize(=true) [static]

Fix normals for non-wire rendering
glutSlices(=8) [static]

Number of sphere slices.
glutStacks(=4) [static]

Number of sphere stacks.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Facet((object)arg1)

Renders Facet object

1.11. Rendering 253



Reference Manual, Release Yade documentation 2nd ed.

normals(=false) [static]
In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normals = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_GridConnection((object)arg1)
Renders Cylinder object
wire(=false) [static]

Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize(=true) [static]

Fix normals for non-wire rendering
glutSlices(=8) [static]

Number of cylinder slices.
glutStacks(=4) [static]

Number of cylinder stacks.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
glutNormalize = True
glutSlices = 8
glutStacks = 4
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Polyhedra((object)arg1)

Renders Polyhedra object
wire(=false) [static]

Only show wireframe
bases

Ordered list of types (as strings) this functor accepts.

254 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Sphere((object)arg1)

Renders Sphere object
quality(=1.0) [static]

Change discretization level of spheres. quality>1 for better image quality, at the price
of more cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color spheres are dis-
played (Gl1_Sphere::stripes = False), quality mutiplies Gl1_Sphere::glutSlices and Gl1_-
Sphere::glutStacks. If striped spheres are displayed (Gl1_Sphere::stripes = True), only integer
increments are meaningfull : quality=1 and quality=1.9 will give the same result, quality=2
will give finer result.

wire(=false) [static]
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=false) [static]
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true) [static]
Compute specular light in local eye coordinate system.

glutSlices(=12) [static]
Base number of sphere slices, multiplied by Gl1_Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6) [static]
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

circleView(=false) [static]
For 2D simulations : display tori instead of spheres, so they will appear like circles if the viewer
is looking in the right direction. In this case, remember to disable perspective by pressing
“t”-key in the viewer.

circleRelThickness(=0.2) [static]
If Gl1_Sphere::circleView is enabled, this is the torus diameter relative to the sphere radius
(i.e. the circle relative thickness).

circleAllowedRotationAxis(=’z’) [static]
If Gl1_Sphere::circleView is enabled, this is the only axis (‘x’, ‘y’ or ‘z’) along which rotation
is allowed for the 2D simulation. It allows right orientation of the tori to appear like circles in
the viewer. For example, if circleAllowedRotationAxis=’x’ is set, blockedDOFs=”YZ” should
also be set for all your particles.

bases
Ordered list of types (as strings) this functor accepts.

circleAllowedRotationAxis = ‘z’
circleRelThickness = 0.2
circleView = False

1.11. Rendering 255

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html


Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

glutSlices = 12
glutStacks = 6
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

localSpecView = True
quality = 1.0
stripes = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = False
class yade.wrapper.Gl1_Tetra((object)arg1)

Renders Tetra object
wire(=true) [static]

TODO
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

wire = True
class yade.wrapper.Gl1_Wall((object)arg1)

Renders Wall object
div(=20) [static]

Number of divisions of the wall inside visible scene part.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
div = 20
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

256 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.11.3 GlStateFunctor

class yade.wrapper.GlStateFunctor((object)arg1)
Abstract functor for rendering State objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.11.4 GlBoundFunctor

GlBoundFunctor Gl1_Aabb

class yade.wrapper.GlBoundFunctor((object)arg1)
Abstract functor for rendering Bound objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_Aabb((object)arg1)
Render Axis-aligned bounding box (Aabb).
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

1.11. Rendering 257



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.11.5 GlIGeomFunctor

GlIGeomFunctor

Gl1_PolyhedraGeom

Gl1_L6GeomGl1_L3Geom

class yade.wrapper.GlIGeomFunctor((object)arg1)
Abstract functor for rendering IGeom objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_L3Geom((object)arg1)
Render L3Geom geometry.
axesLabels(=false) [static]

Whether to display labels for local axes (x,y,z)
axesScale(=1.) [static]

Scale local axes, their reference length being half of the minimum radius.
axesWd(=1.) [static]

Width of axes lines, in pixels; not drawn if non-positive
uPhiWd(=2.) [static]

Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1.) [static]
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

axesLabels = False
axesScale = 1.0
axesWd = 1.0
bases

Ordered list of types (as strings) this functor accepts.

258 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0
uScale = 1.0
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Gl1_L6Geom((object)arg1)

Render L6Geom geometry.
phiScale(=1.) [static]

Scale local rotations (phi - phi0). The default scale is to draw π rotation with length equal
to minimum radius.

axesLabels = False
axesScale = 1.0
axesWd = 1.0
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

phiScale = 1.0
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

uPhiWd = 2.0
uScale = 1.0
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Gl1_PolyhedraGeom((object)arg1)

Render PolyhedraGeom geometry.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

1.11. Rendering 259



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.11.6 GlIPhysFunctor

GlIPhysFunctor

Gl1_CpmPhys

Gl1_PolyhedraPhys

Gl1_NormPhys

class yade.wrapper.GlIPhysFunctor((object)arg1)
Abstract functor for rendering IPhys objects.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_CpmPhys((object)arg1)
Render CpmPhys objects of interactions.
contactLine(=true) [static]

Show contact line
dmgLabel(=true) [static]

Numerically show contact damage parameter
dmgPlane(=false) [static]

[what is this?]
epsT(=false) [static]

Show shear strain
epsTAxes(=false) [static]

Show axes of shear plane
normal(=false) [static]

Show contact normal
colorStrainRatio(=-1) [static]

If positive, set the interaction (wire) color based on εN normalized by ε0 × colorStrainRatio
(ε0 = CpmPhys.epsCrackOnset ). Otherwise, color based on the residual strength.

epsNLabel(=false) [static]
Numerically show normal strain

bases
Ordered list of types (as strings) this functor accepts.

260 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

colorStrainRatio = -1.0
contactLine = True
dict() → dict

Return dictionary of attributes.
dmgLabel = True
dmgPlane = False
epsNLabel = False
epsT = False
epsTAxes = False
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

normal = False
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Gl1_NormPhys((object)arg1)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys.normalForce magnitude.
maxFn(=0) [static]

Value of NormPhys.normalForce corresponding to maxRadius. This value will be increased
(but not decreased ) automatically.

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased ) automatically. (auto-updated)

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

maxWeakFn(=NaN) [static]
Value that divides contacts by their normal force into the ‘weak fabric’ and ‘strong fabric’.
This value is set as side-effect by utils.fabricTensor.

weakFilter(=0) [static]
If non-zero, only display contacts belonging to the ‘weak’ (-1) or ‘strong’ (+1) fabric.

weakScale(=1.) [static]
If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

bases
Ordered list of types (as strings) this functor accepts.

1.11. Rendering 261

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml


Reference Manual, Release Yade documentation 2nd ed.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0
maxRadius = -1.0
maxWeakFn = nan
refRadius = inf
signFilter = 0
slices = 6
stacks = 1
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

weakFilter = 0
weakScale = 1.0

class yade.wrapper.Gl1_PolyhedraPhys((object)arg1)
Renders PolyhedraPhys objects as cylinders of which diameter and color depends on Polyhedra-
Phys::normForce magnitude.
maxFn(=0) [static]

Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased ) automatically.

refRadius(=std::numeric_limits<Real>::infinity()) [static]
Reference (minimum) particle radius

signFilter(=0) [static]
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

maxRadius(=-1) [static]
Cylinder radius corresponding to the maximum normal force.

slices(=6) [static]
Number of sphere slices; (see glutCylinder reference)

stacks(=1) [static]
Number of sphere stacks; (see glutCylinder reference)

bases
Ordered list of types (as strings) this functor accepts.

dict() → dict
Return dictionary of attributes.

label(=uninitalized)
Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

maxFn = 0.0
maxRadius = -1.0
refRadius = inf
signFilter = 0

262 Chapter 1. Class reference (yade.wrapper module)

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml


Reference Manual, Release Yade documentation 2nd ed.

slices = 6
stacks = 1
timingDeltas

Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.12 Simulation data

1.12.1 Omega

class yade.wrapper.Omega((object)arg1)

addScene() → int
Add new scene to Omega, returns its number

bodies
Bodies in the current simulation (container supporting index access by id and iteration)

cell
Periodic cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive((str)arg2) → list
Return list of all classes deriving from given class, as registered in the class factory

disableGdb() → None
Revert SEGV and ABRT handlers to system defaults.

dt
Current timestep (∆t) value.

dynDt
Whether a TimeStepper is used for dynamic ∆t control. See dt on how to enable/disable
TimeStepper.

dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.

energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)

engines
List of engines in the simulation (Scene::engines).

exitNoBacktrace([(int)status=0 ]) → None
Disable SEGV handler and exit, optionally with given status number.

filename
Filename under which the current simulation was saved (None if never saved).

forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

forces
ForceContainer (forces, torques, displacements) in the current simulation.

interactions
Interactions in the current simulation (container supporting index acces by either (id1,id2) or
interactionNumber and iteration)

isChildClassOf((str)arg2, (str)arg3) → bool
Tells whether the first class derives from the second one (both given as strings).

1.12. Simulation data 263



Reference Manual, Release Yade documentation 2nd ed.

iter
Get current step number

labeledEngine((str)arg2) → object
Return instance of engine/functor with the given label. This function shouldn’t be called
by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.
For example:
O.engines=[InsertionSortCollider(label=’collider’)]
collider.nBins=5 # collider has become a variable after assignment to O.engines automatically

load((str)file[, (bool)quiet=False ]) → None
Load simulation from file. The file should be saved in the same version of Yade, otherwise
compatibility is not guaranteed.

loadTmp([(str)mark=’‘[, (bool)quiet=False ] ]) → None
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

lsTmp() → list
Return list of all memory-saved simulations.

materials
Shared materials; they can be accessed by id or by label

miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

numThreads
Get maximum number of threads openMP can use.

pause() → None
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

periodic
Get/set whether the scene is periodic or not (True/False).

plugins() → list
Return list of all plugins registered in the class factory.

realtime
Return clock (human world) time the simulation has been running.

reload([(bool)quiet=False ]) → None
Reload current simulation

reset() → None
Reset simulations completely (including another scenes!).

resetAllScenes() → None
Reset all scenes.

resetCurrentScene() → None
Reset current scene.

resetThisScene() → None
Reset current scene.

resetTime() → None
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run([(int)nSteps=-1[, (bool)wait=False ] ]) → None
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

264 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

runEngine((Engine)arg2) → None
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

running
Whether background thread is currently running a simulation.

save((str)file[, (bool)quiet=False ]) → None
Save current simulation to file (should be .xml or .xml.bz2 or .yade or .yade.gz). .xml files are
bigger than .yade, but can be more or less easily (due to their size) opened and edited, e.g.
with text editors. .bz2 and .gz correspond both to compressed versions. All saved files should
be loaded in the same version of Yade, otherwise compatibility is not guaranteed.

saveTmp([(str)mark=’‘[, (bool)quiet=False ] ]) → None
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

sceneToString() → str
Return the entire scene as a string. Equivalent to using O.save(...) except that the scene goes
to a string instead of a file. (see also stringToScene())

speed
Return current calculation speed [iter/sec].

step() → None
Advance the simulation by one step. Returns after the step will have finished.

stopAtIter
Get/set number of iteration after which the simulation will stop.

stopAtTime
Get/set time after which the simulation will stop.

stringToScene((str)arg2[, (str)mark=’‘ ]) → None
Load simulation from a string passed as argument (see also sceneToString).

subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

subStepping
Get/set whether subStepping is active.

switchScene() → None
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still
refer to the first simulation even after the switch (e.g. b=O.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

switchToScene((int)arg2) → None
Switch to defined scene. Default scene has number 0, other scenes have to be created by
addScene method.

tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

thisScene
Return current scene’s id.

time
Return virtual (model world) time of the simulation.

timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

1.12. Simulation data 265



Reference Manual, Release Yade documentation 2nd ed.

tmpFilename() → str
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((str)fileName[, (str)mark=’‘ ]) → None
Save XML of saveTmp‘d simulation into fileName.

tmpToString([(str)mark=’‘ ]) → str
Return XML of saveTmp‘d simulation as string.

trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait() → None
Don’t return until the simulation will have been paused. (Returns immediately if not running).

1.12.2 BodyContainer

class yade.wrapper.BodyContainer((object)arg1, (BodyContainer)arg2)

__init__((BodyContainer)arg2) → None

addToClump((object)arg2, (int)arg3[, (int)discretization=0 ]) → None
Add body b (or a list of bodies) to an existing clump c. c must be clump and b may not be
a clump member of c. Clump masses and inertia are adapted automatically (for details see
clump()).
See examples/clumps/addToClump-example.py for an example script.

Note: If b is a clump itself, then all members will be added to c and b will be deleted. If
b is a clump member of clump d, then all members from d will be added to c and d will be
deleted. If you need to add just clump member b, release this member from d first.

append((Body)arg2) → int
Append one Body instance, return its id.

append( (BodyContainer)arg1, (object)arg2) → object : Append list of Body in-
stance, return list of ids

appendClumped((object)arg2[, (int)discretization=0 ]) → tuple
Append given list of bodies as a clump (rigid aggregate); returns a tuple of
(clumpId,[memberId1,memberId2,...]). Clump masses and inertia are adapted automati-
cally (for details see clump()).

clear() → None
Remove all bodies (interactions not checked)

clump((object)arg2[, (int)discretization=0 ]) → int
Clump given bodies together (creating a rigid aggregate); returns clumpId. Clump masses and
inertia are adapted automatically when discretization>0. If clump members are overlapping
this is done by integration/summation over mass points using a regular grid of cells (grid cells
length is defined as Rmin/discretization, where Rmin is minimum clump member radius).
For non-overlapping members inertia of the clump is the sum of inertias from members. If
discretization<=0 sum of inertias from members is used (faster, but inaccurate).

erase((int)arg2[, (bool)eraseClumpMembers=0 ]) → bool
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step. If a clump is erased use O.bodies.erase(clumpId,True) to erase the clump AND its
members.

getRoundness([(list)excludeList=[ ] ]) → float
Returns roundness coefficient RC = R2/R1. R1 is the equivalent sphere radius of a clump.
R2 is the minimum radius of a sphere, that imbeds the clump. If just spheres are present

266 Chapter 1. Class reference (yade.wrapper module)

https://github.com/yade/trunk/blob/master/examples/clumps/addToClump-example.py


Reference Manual, Release Yade documentation 2nd ed.

RC = 1. If clumps are present 0 < RC < 1. Bodies can be excluded from the calculation by
giving a list of ids: O.bodies.getRoundness([ids]).
See examples/clumps/replaceByClumps-example.py for an example script.

releaseFromClump((int)arg2, (int)arg3[, (int)discretization=0 ]) → None
Release body b from clump c. b must be a clump member of c. Clump masses and inertia
are adapted automatically (for details see clump()).
See examples/clumps/releaseFromClump-example.py for an example script.

Note: If c contains only 2 members b will not be released and a warning will appear. In
this case clump c should be erased.

replace((object)arg2) → object

replaceByClumps((list)arg2, (object)arg3[, (int)discretization=0 ]) → list
Replace spheres by clumps using a list of clump tem-
plates and a list of amounts; returns a list of tuples:
[(clumpId1,[memberId1,memberId2,...]),(clumpId2,[memberId1,memberId2,...]),...].
A new clump will have the same volume as the sphere, that was replaced. Clump masses and
inertia are adapted automatically (for details see clump()).
O.bodies.replaceByClumps( [utils.clumpTemplate([1,1],[.5,.5])] , [.9] ) #will replace 90 % of
all standalone spheres by ‘dyads’
See examples/clumps/replaceByClumps-example.py for an example script.

updateClumpProperties([(list)excludeList=[][, (int)discretization=5 ] ]) → None
Manually force Yade to update clump properties mass, volume and inertia (for details of
‘discretization’ value see clump()). Can be used, when clumps are modified or erased dur-
ing a simulation. Clumps can be excluded from the calculation by giving a list of ids:
O.bodies.updateProperties([ids]).

1.12.3 InteractionContainer

class yade.wrapper.InteractionContainer((object)arg1, (InteractionContainer)arg2)
Access to interactions of simulation, by using

1.id’s of both Bodies of the interactions, e.g. O.interactions[23,65]
2.iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are not real.

__init__((InteractionContainer)arg2) → None
clear() → None

Remove all interactions, and invalidate persistent collider data (if the collider supports it).
countReal() → int

Return number of interactions that are “real”, i.e. they have phys and geom.
erase((int)arg2, (int)arg3) → None

Erase one interaction, given by id1, id2 (internally, requestErase is called – the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal() → None
Erase all interactions that are not real .

nth((int)arg2) → Interaction
Return n-th interaction from the container (usable for picking random interaction).

serializeSorted

1.12. Simulation data 267

https://github.com/yade/trunk/blob/master/examples/clumps/replaceByClumps-example.py
https://github.com/yade/trunk/blob/master/examples/clumps/releaseFromClump-example.py
https://github.com/yade/trunk/blob/master/examples/clumps/replaceByClumps-example.py


Reference Manual, Release Yade documentation 2nd ed.

withBody((int)arg2) → list
Return list of real interactions of given body.

withBodyAll((int)arg2) → list
Return list of all (real as well as non-real) interactions of given body.

1.12.4 ForceContainer

class yade.wrapper.ForceContainer((object)arg1, (ForceContainer)arg2)

__init__((ForceContainer)arg2) → None

addF((int)id, (Vector3)f [, (bool)permanent=False ]) → None
Apply force on body (accumulates).

# If permanent=false (default), the force applies for one iteration, then it is reset
by ForceResetter. # If permanent=true, it persists over iterations, until it is over-
written by another call to addF(id,f,True) or removed by reset(resetAll=True). The
permanent force on a body can be checked with permF(id).

addMove((int)id, (Vector3)m) → None
Apply displacement on body (accumulates).

addRot((int)id, (Vector3)r) → None
Apply rotation on body (accumulates).

addT((int)id, (Vector3)t[, (bool)permanent=False ]) → None
Apply torque on body (accumulates).

# If permanent=false (default), the torque applies for one iteration, then it is reset
by ForceResetter. # If permanent=true, it persists over iterations, until it is over-
written by another call to addT(id,f,True) or removed by reset(resetAll=True). The
permanent torque on a body can be checked with permT(id).

f((int)id[, (bool)sync=False ]) → Vector3
Force applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

getPermForceUsed() → bool
Check wether permanent forces are present.

m((int)id[, (bool)sync=False ]) → Vector3
Deprecated alias for t (torque).

move((int)id) → Vector3
Displacement applied on body.

permF((int)id) → Vector3
read the value of permanent force on body (set with setPermF()).

permT((int)id) → Vector3
read the value of permanent torque on body (set with setPermT()).

reset([(bool)resetAll=True ]) → None
Reset the force container, including user defined permanent forces/torques. resetAll=False
will keep permanent forces/torques unchanged.

rot((int)id) → Vector3
Rotation applied on body.

syncCount
Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

268 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

t((int)id[, (bool)sync=False ]) → Vector3
Torque applied on body. For clumps in openMP, synchronize the force container with
sync=True, else the value will be wrong.

1.12.5 MaterialContainer

class yade.wrapper.MaterialContainer((object)arg1, (MaterialContainer)arg2)
Container for Materials. A material can be accessed using

1.numerical index in range(0,len(cont)), like cont[2];
2.textual label that was given to the material, like cont[’steel’]. This etails traversing all mate-
rials and should not be used frequently.

__init__((MaterialContainer)arg2) → None
append((Material)arg2) → int

Add new shared Material; changes its id and return it.

append( (MaterialContainer)arg1, (object)arg2) → object : Append list of Material
instances, return list of ids.

index((str)arg2) → int
Return id of material, given its label.

1.12.6 Scene

class yade.wrapper.Scene((object)arg1)
Object comprising the whole simulation.
compressionNegative

Whether the convention is that compression has negative sign (set by IGeomFunctor).
dict() → dict

Return dictionary of attributes.
doSort(=false)

Used, when new body is added to the scene.
dt(=1e-8)

Current timestep for integration.
flags(=0)

Various flags of the scene; 1 (Scene::LOCAL_COORDS): use local coordinate system rather
than global one for per-interaction quantities (set automatically from the functor).

isPeriodic(=false)
Whether periodic boundary conditions are active.

iter(=0)
Current iteration (computational step) number

localCoords
Whether local coordianate system is used on interactions (set by IGeomFunctor).

selectedBody(=-1)
Id of body that is selected by the user

speed(=0)
Current calculation speed [iter/s]

stopAtIter(=0)
Iteration after which to stop the simulation.

stopAtTime(=0)
Time after which to stop the simulation

1.12. Simulation data 269



Reference Manual, Release Yade documentation 2nd ed.

subStep(=-1)
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0…n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

subStepping(=false)
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

tags(=uninitalized)
Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)

time(=0)
Simulation time (virtual time) [s]

trackEnergy(=false)
Whether energies are being traced.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.12.7 Cell

class yade.wrapper.Cell((object)arg1)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
dict() → dict

Return dictionary of attributes.
getDefGrad() → Matrix3

Returns deformation gradient tensor F of the cell deformation
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain() → Matrix3
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT )−1) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLCauchyGreenDef() → Matrix3

Returns left Cauchy-Green deformation tensor b = FFT of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLagrangianStrain() → Matrix3
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLeftStretch() → Matrix3

Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU )
getPolarDecOfDefGrad() → tuple

Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell ( F = RU )

getRCauchyGreenDef() → Matrix3
Returns right Cauchy-Green deformation tensor C = FTF of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getRightStretch() → Matrix3
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT )

getRotation() → Matrix3
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU )

getSmallStrain() → Matrix3
Returns small strain tensor ε = 1

2
(F+FT )−I of the cell (http://en.wikipedia.org/wiki/Finite_-

strain_theory)

270 Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory


Reference Manual, Release Yade documentation 2nd ed.

hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf −¹ × hSize.

homoDeform(=true)
Deform (velGrad) the cell homothetically, by adjusting positions and velocities of bodies. The
velocity change is obtained by deriving the expression v=�v.x, where �v is the macroscopic
velocity gradient, giving in an incremental form: ∆v=∆ �v x + �v ∆x. As a result, velocities
are modified as soon as velGrad changes, according to the first term: ∆v(t)=∆ �v x(t), while
the 2nd term reflects a convective term: ∆v’= �v v(t-dt/2).

nextVelGrad(=Matrix3r::Zero())
see Cell.velGrad.

prevHSize(=Matrix3r::Identity())
hSize from the previous step, used in the definition of relative velocity across periods.

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox( (Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

1.12. Simulation data 271



Reference Manual, Release Yade documentation 2nd ed.

velGrad
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

NOTE: changing velGrad at the beginning of a simulation loop would lead to inacu-
rate integration for one step, as it should normaly be changed after the contact laws
(but before Newton). To avoid this problem, assignment is deferred automatically.
The target value typed in terminal is actually stored in Cell.nextVelGrad and will be
applied right in time by Newton integrator.

Note: Assigning individual components of velGrad is not possible (it will not return
any error but it will have no effect). Instead, you can assign to Cell.nextVelGrad, as in
O.cell.nextVelGrad[1,2]=1.

velGradChanged(=false)
true when velGrad has been changed manually (see also Cell.nextVelGrad)

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

1.13 Other classes

class yade.wrapper.TimingDeltas((object)arg1)

data
Get timing data as list of tuples (label, execTime[nsec], execCount) (one tuple per checkpoint)

reset() → None
Reset timing information

class yade.wrapper.GlShapeDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Shape)arg2) → GlShapeFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

272 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LBMlink((object)arg1)
Link class for Lattice Boltzmann Method
DistMid(=Vector3r::Zero())

Distance between middle of the link and mass center of body
PointingOutside(=false)

True if it is a link pointing outside to the system (from a fluid or solid node)
VbMid(=Vector3r::Zero())

Velocity of boundary at midpoint
ct(=0.)

Coupling term in modified bounce back rule
dict() → dict

Return dictionary of attributes.
fid(=-1)

Fluid node identifier
i(=-1)

direction index of the link
idx_sigma_i(=-1)

sigma_i direction index (Fluid->Solid)
isBd(=false)

True if it is a boundary link
nid1(=-1)

fixed node identifier
nid2(=-1)

fixed node identifier or -1 if node points outside
sid(=-1)

Solid node identifier
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.GlExtra_LawTester((object)arg1)

Find an instance of LawTester and show visually its data.
dead(=false)

Deactivate the object (on error/exception).
dict() → dict

Return dictionary of attributes.

1.13. Other classes 273



Reference Manual, Release Yade documentation 2nd ed.

tester(=uninitalized)
Associated LawTester object.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.MatchMaker((object)arg1)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.

Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.

algo
Alogorithm used to compute value when no match for ids is found. Possible values are

•‘avg’ (arithmetic average)
•‘min’ (minimum value)
•‘max’ (maximum value)
•‘harmAvg’ (harmonic average)

The following algo algorithms do not require meaningful input values in order to work:
•‘val’ (return value specified by val)
•‘zero’ (always return 0.)

computeFallback((float)val1, (float)val2) → float
Compute algo value for val1 and val2, using algorithm specified by algo.

dict() → dict
Return dictionary of attributes.

matches(=uninitalized)
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

val(=NaN)
Constant value returned if there is no match and algo is val

class yade.wrapper.GlBoundDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((Bound)arg2) → GlBoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

274 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.EnergyTracker((object)arg1)
Storage for tracing energies. Only to be used if O.trackEnergy is True.
clear() → None

Clear all stored values.
dict() → dict

Return dictionary of attributes.
energies(=uninitalized)

Energy values, in linear array
items() → list

Return contents as list of (name,value) tuples.
keys() → list

Return defined energies.
total() → float

Return sum of all energies.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.Engine((object)arg1)

Basic execution unit of simulation, called from the simulation loop (O.engines)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

1.13. Other classes 275



Reference Manual, Release Yade documentation 2nd ed.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LBMnode((object)arg1)
Node class for Lattice Boltzmann Method
dict() → dict

Return dictionary of attributes.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
class yade.wrapper.GlIGeomDispatcher((object)arg1)

Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IGeom)arg2) → GlIGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

276 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

class yade.wrapper.ParallelEngine((object)arg1)
Engine for running other Engine in parallel.
__init__() → None

object __init__(tuple args, dict kwds)
__init__((list)arg2) → object : Construct from (possibly nested) list of slaves.

dead(=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.LBMbody((object)arg1)
Body class for Lattice Boltzmann Method
AVel(=Vector3r::Zero())

Angular velocity of body
Fh(=Vector3r::Zero())

Hydrodynamical force on body
Mh(=Vector3r::Zero())

Hydrodynamical momentum on body
dict() → dict

Return dictionary of attributes.
fm(=Vector3r::Zero())

Hydrodynamic force (LB unit) at t-0.5dt
force(=Vector3r::Zero())

Hydrodynamic force, need to be reinitialized (LB unit)
fp(=Vector3r::Zero())

Hydrodynamic force (LB unit) at t+0.5dt
isEroded(=false)

Hydrodynamical force on body

1.13. Other classes 277



Reference Manual, Release Yade documentation 2nd ed.

mm(=Vector3r::Zero())
Hydrodynamic momentum (LB unit) at t-0.5dt

momentum(=Vector3r::Zero())
Hydrodynamic momentum,need to be reinitialized (LB unit)

mp(=Vector3r::Zero())
Hydrodynamic momentum (LB unit) at t+0.5dt

pos(=Vector3r::Zero())
Position of body

radius(=-1000.)
Radius of body (for sphere)

saveProperties(=false)
To save properties of the body

type(=-1)
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary
vel(=Vector3r::Zero())

Velocity of body
class yade.wrapper.Functor((object)arg1)

Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.
bases

Ordered list of types (as strings) this functor accepts.
dict() → dict

Return dictionary of attributes.
label(=uninitalized)

Textual label for this object; must be a valid python identifier, you can refer to it directly
from python.

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Serializable((object)arg1)

dict() → dict
Return dictionary of attributes.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlStateDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((State)arg2) → GlStateFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

278 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlIPhysDispatcher((object)arg1)
Dispatcher calling functors based on received argument type(s).
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

dispFunctor((IPhys)arg2) → GlIPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True ]) → dict
Return dictionary with contents of the dispatch matrix.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

functors
Functors associated with this dispatcher.

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

1.13. Other classes 279



Reference Manual, Release Yade documentation 2nd ed.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlExtra_OctreeCubes((object)arg1)
Render boxed read from file
boxesFile(=uninitalized)

File to read boxes from; ascii files with x0 y0 z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

dead(=false)
Deactivate the object (on error/exception).

dict() → dict
Return dictionary of attributes.

fillRangeDraw(=Vector2i(-2, 2))
Range of fill indices that will be rendered.

fillRangeFill(=Vector2i(2, 2))
Range of fill indices that will be filled.

levelRangeDraw(=Vector2i(-2, 2))
Range of levels that will be rendered.

noFillZero(=true)
Do not fill 0-fill boxed (those that are further subdivided)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Dispatcher((object)arg1)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

dict() → dict
Return dictionary of attributes.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

ompThreads(=-1)
Number of threads to be used in the engine. If ompThreads<0 (default), the number will be
typically OMP_NUM_THREADS or the number N defined by ‘yade -jN’ (this behavior can
depend on the engine though). This attribute will only affect engines whose code includes
openMP parallel regions (e.g. InteractionLoop). This attribute is mostly useful for experi-
ments or when combining ParallelEngine with engines that run parallel regions, resulting in
nested OMP loops with different number of threads at each level.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

280 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.Cell((object)arg1)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
dict() → dict

Return dictionary of attributes.
getDefGrad() → Matrix3

Returns deformation gradient tensor F of the cell deformation
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getEulerianAlmansiStrain() → Matrix3
Returns Eulerian-Almansi strain tensor e = 1

2
(I − b−1) = 1

2
(I − (FFT )−1) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLCauchyGreenDef() → Matrix3

Returns left Cauchy-Green deformation tensor b = FFT of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getLagrangianStrain() → Matrix3
Returns Lagrangian strain tensor E = 1

2
(C − I) = 1

2
(FTF − I) = 1

2
(U2 − I) of the cell

(http://en.wikipedia.org/wiki/Finite_strain_theory)
getLeftStretch() → Matrix3

Returns left (spatial) stretch tensor of the cell (matrix U from polar decomposition F = RU )
getPolarDecOfDefGrad() → tuple

Returns orthogonal matrix R and symmetric positive semi-definite matrix U as polar decom-
position of deformation gradient F of the cell ( F = RU )

getRCauchyGreenDef() → Matrix3
Returns right Cauchy-Green deformation tensor C = FTF of the cell
(http://en.wikipedia.org/wiki/Finite_strain_theory)

getRightStretch() → Matrix3
Returns right (material) stretch tensor of the cell (matrix V from polar decomposition F =
RU = VR → V = FRT )

getRotation() → Matrix3
Returns rotation of the cell (orthogonal matrix R from polar decomposition F = RU )

getSmallStrain() → Matrix3
Returns small strain tensor ε = 1

2
(F+FT )−I of the cell (http://en.wikipedia.org/wiki/Finite_-

strain_theory)
hSize

Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf −¹ × hSize.

homoDeform(=true)
Deform (velGrad) the cell homothetically, by adjusting positions and velocities of bodies. The
velocity change is obtained by deriving the expression v=�v.x, where �v is the macroscopic
velocity gradient, giving in an incremental form: ∆v=∆ �v x + �v ∆x. As a result, velocities
are modified as soon as velGrad changes, according to the first term: ∆v(t)=∆ �v x(t), while
the 2nd term reflects a convective term: ∆v’= �v v(t-dt/2).

nextVelGrad(=Matrix3r::Zero())
see Cell.velGrad.

prevHSize(=Matrix3r::Identity())
hSize from the previous step, used in the definition of relative velocity across periods.

1.13. Other classes 281

http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory
http://en.wikipedia.org/wiki/Finite_strain_theory


Reference Manual, Release Yade documentation 2nd ed.

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the Reference button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox( (Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

velGrad
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

NOTE: changing velGrad at the beginning of a simulation loop would lead to inacu-
rate integration for one step, as it should normaly be changed after the contact laws
(but before Newton). To avoid this problem, assignment is deferred automatically.
The target value typed in terminal is actually stored in Cell.nextVelGrad and will be
applied right in time by Newton integrator.

Note: Assigning individual components of velGrad is not possible (it will not return
any error but it will have no effect). Instead, you can assign to Cell.nextVelGrad, as in
O.cell.nextVelGrad[1,2]=1.

velGradChanged(=false)
true when velGrad has been changed manually (see also Cell.nextVelGrad)

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

282 Chapter 1. Class reference (yade.wrapper module)



Reference Manual, Release Yade documentation 2nd ed.

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

class yade.wrapper.GlExtraDrawer((object)arg1)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.
This class itself does not render anything, derived classes should override the render method.
dead(=false)

Deactivate the object (on error/exception).
dict() → dict

Return dictionary of attributes.
updateAttrs((dict)arg2) → None

Update object attributes from given dictionary

1.13. Other classes 283



Reference Manual, Release Yade documentation 2nd ed.

284 Chapter 1. Class reference (yade.wrapper module)



Chapter 2

Yade modules

2.1 yade.bodiesHandling module

Miscellaneous functions, which are useful for handling bodies.

yade.bodiesHandling.facetsDimensions(idFacets=[ ], mask=-1)
The function accepts the list of facet id’s or list of facets and calculates max and min dimensions,
geometrical center.

Parameters
• idFacets (list) – list of spheres
• mask (int) – Body.mask for the checked bodies

Returns dictionary with keys min (minimal dimension, Vector3), max (maximal dimen-
sion, Vector3), minId (minimal dimension facet Id, Vector3), maxId (maximal dimen-
sion facet Id, Vector3), center (central point of bounding box, Vector3), extends
(sizes of bounding box, Vector3), number (number of facets, int),

yade.bodiesHandling.sphereDuplicate(idSphere)
The functions makes a copy of sphere

yade.bodiesHandling.spheresModify(idSpheres=[ ], mask=-1, shift=Vector3(0, 0, 0),
scale=1.0, orientation=Quaternion((1, 0, 0), 0),
copy=False)

The function accepts the list of spheres id’s or list of bodies and modifies them: rotating, scaling,
shifting. if copy=True copies bodies and modifies them. Also the mask can be given. If idSpheres
not empty, the function affects only bodies, where the mask passes. If idSpheres is empty, the
function search for bodies, where the mask passes.

Parameters
• shift (Vector3) – Vector3(X,Y,Z) parameter moves spheres.
• scale (float) – factor scales given spheres.
• orientation (Quaternion) – orientation of spheres
• mask (int) – Body.mask for the checked bodies

Returns list of bodies if copy=True, and Boolean value if copy=False

yade.bodiesHandling.spheresPackDimensions(idSpheres=[ ], mask=-1)
The function accepts the list of spheres id’s or list of bodies and calculates max and min dimensions,
geometrical center.

Parameters
• idSpheres (list) – list of spheres
• mask (int) – Body.mask for the checked bodies

285



Reference Manual, Release Yade documentation 2nd ed.

Returns dictionary with keys min (minimal dimension, Vector3), max (maximal di-
mension, Vector3), minId (minimal dimension sphere Id, Vector3), maxId (maximal
dimension sphere Id, Vector3), center (central point of bounding box, Vector3),
extends (sizes of bounding box, Vector3), volume (volume of spheres, Real), mass
(mass of spheres, Real), number (number of spheres, int),

2.2 yade.export module

Export (not only) geometry to various formats.
class yade.export.VTKExporter

Class for exporting data to VTK Simple Legacy File (for example if, for some reason, you are not
able to use VTKRecorder). Export of spheres, facets, interactions and polyhedra is supported.
USAGE: create object vtkExporter = VTKExporter(‘baseFileName’), add to engines PyRun-
ner with command=’vtkExporter.exportSomething(params)’ alternatively just use vtkEx-
porter.exportSomething(...) at the end of the script for instance
Example: examples/test/vtk-exporter/vtkExporter.py, examples/test/unv-
read/unvReadVTKExport.py.

Parameters
• baseName (string) – name of the exported files. The files would be named

baseName-spheres-snapNb.vtk or baseName-facets-snapNb.vtk
• startSnap (int) – the numbering of files will start form startSnap

exportContactPoints()
exports constact points and defined properties.
:param [(int,int)] ids: see exportInteractions :param [tuple(2)] what: what to export. pa-
rameter is list of couple (name,command). Name is string under which it is save to vtk,
command is string to evaluate. Note that the CPs are labeled as i in this function (sccord-
ing to their interaction). Scalar, vector and tensor variables are supported. For example,
to export stiffness difference from certain value (1e9) (named as dStiff) you should write: ...
what=[(‘dStiff’,’i.phys.kn-1e9’), ... :param {Interaction:Vector3} useRef: if not specified, cur-
rent position used. Otherwise use position from dict using interactions as keys. Interactions
not in dict are not exported :param string comment: comment to add to vtk file :param int
numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used

exportFacets()
exports facets (positions) and defined properties. Facets are exported with multiplicated nodes
:param [int]|”all” ids: if “all”, then export all facets, otherwise only facets from integer list
:param [tuple(2)] what: see exportSpheres :param string comment: comment to add to vtk
file :param int numLabel: number of file (e.g. time step), if unspecified, the last used value +
1 will be used

exportFacetsAsMesh()
exports facets (positions) and defined properties. Facets are exported as mesh (not with
multiplicated nodes). Therefore additional parameters connectivityTable is needed
:param [int]|”all” ids: if “all”, then export all facets, otherwise only facets from integer list
:param [tuple(2)] what: see exportSpheres :param string comment: comment to add to vtk
file :param int numLabel: number of file (e.g. time step), if unspecified, the last used value
+ 1 will be used :param [(float,float,float)|Vector3] nodes: list of coordinates of nodes :param
[(int,int,int)] connectivityTable: list of node ids of individual elements (facets)

exportInteractions()
exports interactions and defined properties.
:param [(int,int)]|”all” ids: if “all”, then export all interactions, otherwise only interac-
tions from (int,int) list :param [tuple(2)] what: what to export. parameter is list of couple

286 Chapter 2. Yade modules

https://github.com/yade/trunk/blob/master/examples/test/vtk-exporter/vtkExporter.py
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvReadVTKExport.py


Reference Manual, Release Yade documentation 2nd ed.

(name,command). Name is string under which it is save to vtk, command is string to eval-
uate. Note that the interactions are labeled as i in this function. Scalar, vector and tensor
variables are supported. For example, to export stiffness difference from certain value (1e9)
(named as dStiff) you should write: ... what=[(‘dStiff’,’i.phys.kn-1e9’), ... :param [tuple(2|3)]
verticesWhat: what to export on connected bodies. Bodies are labeled as ‘b’ (or ‘b1’ and ‘b2’
if you need treat both bodies differently) :param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1
will be used

exportPeriodicCell()
exports spheres (positions and radius) and defined properties.
:param string comment: comment to add to vtk file :param int numLabel: number of file (e.g.
time step), if unspecified, the last used value + 1 will be used

exportPolyhedra()
Exports polyhedrons and defined properties.
:param ids: if “all”, then export all polyhedrons, otherwise only polyhedrons from integer
list :type ids: [int] | “all” :param what: what other than then position to export. param-
eter is list of couple (name,command). Name is string under which it is save to vtk, com-
mand is string to evaluate. Note that the bodies are labeled as b in this function. Scalar,
vector and tensor variables are supported. For example, to export velocity (with name
particleVelocity) and the distance form point (0,0,0) (named as dist) you should write: ...
what=[(‘particleVelocity’,’b.state.vel’),(‘dist’,’b.state.pos.norm()’, ... :type what: [tuple(2)]
:param string comment: comment to add to vtk file :param int numLabel: number of file (e.g.
time step), if unspecified, the last used value + 1 will be used

exportSpheres()
exports spheres (positions and radius) and defined properties.
:param [int]|”all” ids: if “all”, then export all spheres, otherwise only spheres from inte-
ger list :param [tuple(2)] what: what other than then position and radius export. param-
eter is list of couple (name,command). Name is string under which it is save to vtk, com-
mand is string to evaluate. Note that the bodies are labeled as b in this function. Scalar,
vector and tensor variables are supported. For example, to export velocity (with name
particleVelocity) and the distance form point (0,0,0) (named as dist) you should write: ...
what=[(‘particleVelocity’,’b.state.vel’),(‘dist’,’b.state.pos.norm()’, ... :param string comment:
comment to add to vtk file :param int numLabel: number of file (e.g. time step), if unspeci-
fied, the last used value + 1 will be used :param bool useRef: if False (default), use current
position of the spheres for export, use reference position otherwise

class yade.export.VTKWriter
USAGE: create object vtk_writer = VTKWriter(‘base_file_name’), add to engines PyRunner with
command=’vtk_writer.snapshot()’
snapshot()

yade.export.gmshGeo(filename, comment=’‘, mask=-1, accuracy=-1)
Save spheres in geo-file for the following using in GMSH (http://www.geuz.org/gmsh/doc/texinfo/)
program. The spheres can be there meshed.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• mask (int) – export only spheres with the corresponding mask export only

spheres with the corresponding mask
• accuracy (float) – the accuracy parameter, which will be set for the poinst in

geo-file. By default: 1./10. of the minimal sphere diameter.
Returns number of spheres which were exported.
Return type int

2.2. yade.export module 287

http://www.geuz.org/gmsh/doc/texinfo/


Reference Manual, Release Yade documentation 2nd ed.

yade.export.text(filename, mask=-1)
Save sphere coordinates into a text file; the format of the line is: x y z r. Non-spherical bodies are
silently skipped. Example added to examples/regular-sphere-pack/regular-sphere-pack.py

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• mask (int) – export only spheres with the corresponding mask

Returns number of spheres which were written.
Return type int

yade.export.text2vtk(inFileName, outFileName)
Converts text file (created by export.textExt function) into vtk file. See examples/test/paraview-
spheres-solid-section/export_text.py example

Parameters
• inFileName (str) – name of input text file
• outFileName (str) – name of output vtk file

yade.export.text2vtkSection(inFileName, outFileName, point, normal=(1, 0, 0))
Converts section through spheres from text file (created by export.textExt function) into vtk file.
See examples/test/paraview-spheres-solid-section/export_text.py example

Parameters
• inFileName (str) – name of input text file
• outFileName (str) – name of output vtk file
• point (Vector3|(float,float,float)) – coordinates of a point lying on the section

plane
• normal (Vector3|(float,float,float)) – normal vector of the section plane

yade.export.textClumps(filename, format=’x_y_z_r_clumpId’, comment=’‘, mask=-1)
Save clumps-members into a text file. Non-clumps members are bodies are silently skipped.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• comment (string) – the text, which will be added as a comment at the top of

file. If you want to create several lines of text, please use ‘\n#’ for next lines.
• mask (int) – export only spheres with the corresponding mask export only

spheres with the corresponding mask
Returns number of clumps, number of spheres which were written.
Return type int

yade.export.textExt(filename, format=’x_y_z_r’, comment=’‘, mask=-1, attrs=[ ])
Save sphere coordinates and other parameters into a text file in specific format. Non-spherical
bodies are silently skipped. Users can add here their own specific format, giving meaningful names.
The first file row will contain the format name. Be sure to add the same format specification in
ymport.textExt.

Parameters
• filename (string) – the name of the file, where sphere coordinates will be ex-

ported.
• format (string) – the name of output format. Supported ‘x_y_z_r’(default),

‘x_y_z_r_matId’, ‘x_y_z_r_attrs’ (use proper comment)

288 Chapter 2. Yade modules

https://github.com/yade/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py
https://github.com/yade/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py
https://github.com/yade/trunk/blob/master/examples/test/paraview-spheres-solid-section/export_text.py


Reference Manual, Release Yade documentation 2nd ed.

• comment (string) – the text, which will be added as a comment at the top of
file. If you want to create several lines of text, please use ‘\n#’ for next lines.
With ‘x_y_z_r_attrs’ format, the last (or only) line should consist of column
headers of quantities passed as attrs (1 comment word for scalars, 3 comment
words for vectors and 9 comment words for matrices)

• mask (int) – export only spheres with the corresponding mask export only
spheres with the corresponding mask

• attrs ([str]) – attributes to be exported with ‘x_y_z_r_attrs’ format. Each
str in the list is evaluated for every body exported with body=b (i.e.
‘b.state.pos.norm()’ would stand for distance of body from coordinate system
origin)

Returns number of spheres which were written.
Return type int

yade.export.textPolyhedra(fileName, comment=’‘, mask=-1, explanationComment=True, at-
trs=[ ])

Save polyhedra into a text file. Non-polyhedra bodies are silently skipped.
Parameters

• filename (string) – the name of the output file
• comment (string) – the text, which will be added as a comment at the top of

file. If you want to create several lines of text, please use ‘\n#’ for next lines.
• mask (int) – export only polyhedra with the corresponding mask
• explanationComment (str) – inclde explanation of format to the beginning of

file
Returns number of polyhedra which were written.
Return type int

2.3 yade.geom module

Creates geometry objects from facets.
yade.geom.facetBox(center, extents, orientation=Quaternion((1, 0, 0), 0), wallMask=63, **kw)

Create arbitrarily-aligned box composed of facets, with given center, extents and orientation. If
any of the box dimensions is zero, corresponding facets will not be created. The facets are oriented
outwards from the box.

Parameters
• center (Vector3) – center of the box
• extents (Vector3) – lengths of the box sides
• orientation (Quaternion) – orientation of the box
• wallMask (bitmask) – determines which walls will be created, in the order -x

(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet
Returns list of facets forming the box

yade.geom.facetBunker(center, dBunker, dOutput, hBunker, hOutput, hPipe=0.0, orienta-
tion=Quaternion((1, 0, 0), 0), segmentsNumber=10, wallMask=4, an-
gleRange=None, closeGap=False, **kw)

Create arbitrarily-aligned bunker, composed of facets, with given center, radii, heights and orien-
tation. Return List of facets forming the bunker;

2.3. yade.geom module 289



Reference Manual, Release Yade documentation 2nd ed.

dBunker
______________
| |
| |
| | hBunker
| |
| |
| |
|____________|
\ /
\ /
\ / hOutput
\ /
\____/
| |
|____| hPipe
dOutput

Parameters
• center (Vector3) – center of the created bunker
• dBunker (float) – bunker diameter, top
• dOutput (float) – bunker output diameter
• hBunker (float) – bunker height
• hOutput (float) – bunker output height
• hPipe (float) – bunker pipe height
• orientation (Quaternion) – orientation of the bunker; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the bunker surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of bunker by spec-
ifying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetCone(center, radiusTop, radiusBottom, height, orientation=Quaternion((1,
0, 0), 0), segmentsNumber=10, wallMask=7, angleRange=None,
closeGap=False, radiusTopInner=-1, radiusBottomInner=-1, **kw)

Create arbitrarily-aligned cone composed of facets, with given center, radius, height and orientation.
Return List of facets forming the cone;

Parameters
• center (Vector3) – center of the created cylinder
• radiusTop (float) – cone top radius
• radiusBottom (float) – cone bottom radius
• radiusTopInner (float) – inner radius of cones top, -1 by default
• radiusBottomInner (float) – inner radius of cones bottom, -1 by default
• height (float) – cone height
• orientation (Quaternion) – orientation of the cone; the reference orientation

has axis along the +x axis.

290 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

• segmentsNumber (int) – number of edges on the cone surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of cone by speci-
fying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;
yade.geom.facetCylinder(center, radius, height, orientation=Quaternion((1, 0, 0), 0), seg-

mentsNumber=10, wallMask=7, angleRange=None, closeGap=False,
radiusTopInner=-1, radiusBottomInner=-1, **kw)

Create arbitrarily-aligned cylinder composed of facets, with given center, radius, height and orien-
tation. Return List of facets forming the cylinder;

Parameters
• center (Vector3) – center of the created cylinder
• radius (float) – cylinder radius
• height (float) – cylinder height
• radiusTopInner (float) – inner radius of cylinders top, -1 by default
• radiusBottomInner (float) – inner radius of cylinders bottom, -1 by default
• orientation (Quaternion) – orientation of the cylinder; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the cylinder surface (>=5)
• wallMask (bitmask) – determines which walls will be created, in the order up

(1), down (2), side (4). The numbers are ANDed; the default 7 means to create
all walls

• angleRange ((ϑmin,Θmax)) – allows one to create only part of bunker by spec-
ifying range of angles; if None, (0,2*pi) is assumed.

• closeGap (bool) – close range skipped in angleRange with triangular facets at
cylinder bases.

• **kw – (unused keyword arguments) passed to utils.facet;
yade.geom.facetCylinderConeGenerator(center, radiusTop, height, orientation=Quaternion((1,

0, 0), 0), segmentsNumber=10, wallMask=7, an-
gleRange=None, closeGap=False, radiusBottom=-1,
radiusTopInner=-1, radiusBottomInner=-1, **kw)

Please, do not use this function directly! Use geom.facetCylinder and geom.facetCone instead.
This is the base function for generating cylinders and cones from facets. :param float radiusTop:
top radius :param float radiusBottom: bottom radius :param **kw: (unused keyword arguments)
passed to utils.facet;

yade.geom.facetHelix(center, radiusOuter, pitch, orientation=Quaternion((1, 0, 0), 0), seg-
mentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned helix composed of facets, with given center, radius (outer and inner),
pitch and orientation. Return List of facets forming the helix;

Parameters
• center (Vector3) – center of the created cylinder
• radiusOuter (float) – outer radius
• radiusInner (float) – inner height (can be 0)

2.3. yade.geom module 291



Reference Manual, Release Yade documentation 2nd ed.

• orientation (Quaternion) – orientation of the helix; the reference orientation
has axis along the +x axis.

• segmentsNumber (int) – number of edges on the helix surface (>=3)
• angleRange ((ϑmin,Θmax)) – range of angles; if None, (0,2*pi) is assumed.
• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetParallelepiped(center, extents, height, orientation=Quaternion((1, 0, 0), 0),
wallMask=63, **kw)

Create arbitrarily-aligned Parallelepiped composed of facets, with given center, extents, height and
orientation. If any of the parallelepiped dimensions is zero, corresponding facets will not be created.
The facets are oriented outwards from the parallelepiped.

Parameters
• center (Vector3) – center of the parallelepiped
• extents (Vector3) – lengths of the parallelepiped sides
• height (Real) – height of the parallelepiped (along axis z)
• orientation (Quaternion) – orientation of the parallelepiped
• wallMask (bitmask) – determines which walls will be created, in the order -x

(1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the
default 63 means to create all walls

• **kw – (unused keyword arguments) passed to utils.facet
Returns list of facets forming the parallelepiped

yade.geom.facetPolygon(center, radiusOuter, orientation=Quaternion((1, 0, 0), 0), seg-
mentsNumber=10, angleRange=None, radiusInner=0, **kw)

Create arbitrarily-aligned polygon composed of facets, with given center, radius (outer and inner)
and orientation. Return List of facets forming the polygon;

Parameters
• center (Vector3) – center of the created cylinder
• radiusOuter (float) – outer radius
• radiusInner (float) – inner height (can be 0)
• orientation (Quaternion) – orientation of the polygon; the reference orientation

has axis along the +x axis.
• segmentsNumber (int) – number of edges on the polygon surface (>=3)
• angleRange ((ϑmin,Θmax)) – allows one to create only part of polygon by

specifying range of angles; if None, (0,2*pi) is assumed.
• **kw – (unused keyword arguments) passed to utils.facet;

yade.geom.facetPolygonHelixGenerator(center, radiusOuter, pitch=0, orienta-
tion=Quaternion((1, 0, 0), 0), segmentsNumber=10,
angleRange=None, radiusInner=0, **kw)

Please, do not use this function directly! Use geom.facetPloygon and geom.facetHelix instead. This
is the base function for generating polygons and helixes from facets.

yade.geom.facetSphere(center, radius, thetaResolution=8, phiResolution=8, returnEle-
mentMap=False, **kw)

Create arbitrarily-aligned sphere composed of facets, with given center, radius and orientation.
Return List of facets forming the sphere. Parameters inspired by ParaView sphere glyph

Parameters
• center (Vector3) – center of the created sphere
• radius (float) – sphere radius
• thetaResolution (int) – number of facets around “equator”

292 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

• phiResolution (int) – number of facets between “poles” + 1
• returnElementMap (bool) – returns also tuple of nodes

((x1,y1,z1),(x2,y2,z2),...) and elements ((id01,id02,id03),(id11,id12,id13),...) if
true, only facets otherwise

• **kw – (unused keyword arguments) passed to utils.facet;

2.4 yade.linterpolation module

Module for rudimentary support of manipulation with piecewise-linear functions (which are usually
interpolations of higher-order functions, whence the module name). Interpolation is always given as two
lists of the same length, where the x-list must be increasing.
Periodicity is supported by supposing that the interpolation can wrap from the last x-value to the first
x-value (which should be 0 for meaningful results).
Non-periodic interpolation can be converted to periodic one by padding the interpolation with constant
head and tail using the sanitizeInterpolation function.
There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine/LinearInterpolate.hpp (stateful, therefore fast for sequential
reads).
TODO: Interpolating from within python is not (yet) supported.
yade.linterpolation.integral(x, y)

Return integral of piecewise-linear function given by points x0,x1,… and y0,y1,…
yade.linterpolation.revIntegrateLinear(I, x0, y0, x1, y1)

Helper function, returns value of integral variable x for linear function f passing through
(x0,y0),(x1,y1) such that 1. x�[x0,x1] 2. �_x0^x f dx=I and raise exception if such number doesn’t
exist or the solution is not unique (possible?)

yade.linterpolation.sanitizeInterpolation(x, y, x0, x1)
Extends piecewise-linear function in such way that it spans at least the x0…x1 interval, by adding
constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.

yade.linterpolation.xFractionalFromIntegral(integral, x, y)
Return x within range x0…xn such that �_x0^x f dx==integral. Raises error if the integral value
is not reached within the x-range.

yade.linterpolation.xFromIntegral(integralValue, x, y)
Return x such that �_x0^x f dx==integral. x wraps around at xn. For meaningful results, therefore,
x0 should == 0

2.5 yade.pack module

Creating packings and filling volumes defined by boundary representation or constructive solid geometry.
For examples, see

• scripts/test/gts-operators.py
• scripts/test/gts-random-pack-obb.py
• scripts/test/gts-random-pack.py
• scripts/test/pack-cloud.py
• scripts/test/pack-predicates.py
• examples/packs/packs.py
• examples/gts-horse/gts-horse.py
• examples/WireMatPM/wirepackings.py

2.4. yade.linterpolation module 293

https://github.com/yade/trunk/blob/master/scripts/test/gts-operators.py
https://github.com/yade/trunk/blob/master/scripts/test/gts-random-pack-obb.py
https://github.com/yade/trunk/blob/master/scripts/test/gts-random-pack.py
https://github.com/yade/trunk/blob/master/scripts/test/pack-cloud.py
https://github.com/yade/trunk/blob/master/scripts/test/pack-predicates.py
https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/gts-horse/gts-horse.py
https://github.com/yade/trunk/blob/master/examples/WireMatPM/wirepackings.py


Reference Manual, Release Yade documentation 2nd ed.

yade.pack.SpherePack_toSimulation(self, rot=Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method also
appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this could be
avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)

yade.pack.filterSpherePack(predicate, spherePack, returnSpherePack=None, **kw)
Using given SpherePack instance, return spheres that satisfy predicate. It returns either a
pack.SpherePack (if returnSpherePack) or a list. The packing will be recentered to match the
predicate and warning is given if the predicate is larger than the packing.

yade.pack.gtsSurface2Facets(surf, **kw)
Construct facets from given GTS surface. **kw is passed to utils.facet.

yade.pack.gtsSurfaceBestFitOBB(surf)
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) describing best-fit oriented
bounding box (OBB) for the given surface. See cloudBestFitOBB for details.

yade.pack.hexaNet(radius, cornerCoord=[0, 0, 0], xLength=1.0, yLength=0.5, mos=0.08,
a=0.04, b=0.04, startAtCorner=True, isSymmetric=False, **kw)

Definition of the particles for a hexagonal wire net in the x-y-plane for the WireMatPM.
Parameters

• radius – radius of the particle
• cornerCoord – coordinates of the lower left corner of the net
• xLenght – net length in x-direction
• yLenght – net length in y-direction
• mos – mesh opening size (horizontal distance between the double twists)
• a – length of double-twist
• b – height of single wire section
• startAtCorner – if true the generation starts with a double-twist at the lower

left corner
• isSymmetric – defines if the net is symmetric with respect to the y-axis

Returns set of spheres which defines the net (net) and exact dimensions of the net
(lx,ly).

294 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

note:: This packing works for the WireMatPM only. The particles at the corner are always gener-
ated first. For examples on how to use this packing see examples/WireMatPM. In order to create
the proper interactions for the net the interaction radius has to be adapted in the simulation.

class yade.pack.inGtsSurface_py(inherits Predicate)
This class was re-implemented in c++, but should stay here to serve as reference for implementing
Predicates in pure python code. C++ allows us to play dirty tricks in GTS which are not accessible
through pygts itself; the performance penalty of pygts comes from fact that if constructs and
destructs bb tree for the surface at every invocation of gts.Point().is_inside(). That is cached in
the c++ code, provided that the surface is not manipulated with during lifetime of the object
(user’s responsibility).
—
Predicate for GTS surfaces. Constructed using an already existing surfaces, which must be closed.

import gts surf=gts.read(open(‘horse.gts’)) inGtsSurface(surf)

Note: Padding is optionally supported by testing 6 points along the axes in the pad distance.
This must be enabled in the ctor by saying doSlowPad=True. If it is not enabled and pad is not
zero, warning is issued.

aabb()

center() → Vector3
dim() → Vector3

class yade.pack.inSpace(inherits Predicate)
Predicate returning True for any points, with infinite bounding box.
aabb()

center()

dim()

yade.pack.randomDensePack(predicate, radius, material=-1, dim=None, cropLayers=0, rRel-
Fuzz=0.0, spheresInCell=0, memoizeDb=None, useOBB=False,
memoDbg=False, color=None, returnSpherePack=None)

Generator of random dense packing with given geometry properties, using TriaxialTest (aperiodic)
or PeriIsoCompressor (periodic). The periodicity depens on whether the spheresInCell parameter
is given.
O.switchScene()magic is used to have clean simulation for TriaxialTest without deleting the original
simulation. This function therefore should never run in parallel with some code accessing your
simulation.

Parameters
• predicate – solid-defining predicate for which we generate packing
• spheresInCell – if given, the packing will be periodic, with given number of

spheres in the periodic cell.
• radius – mean radius of spheres
• rRelFuzz – relative fuzz of the radius – e.g. radius=10, rRelFuzz=.2, then

spheres will have radii 10 ± (10*.2)), with an uniform distribution. 0 by default,
meaning all spheres will have exactly the same radius.

• cropLayers – (aperiodic only) how many layers of spheres will be added to
the computed dimension of the box so that there no (or not so much, at least)
boundary effects at the boundaries of the predicate.

• dim – dimension of the packing, to override dimensions of the predicate (if it is
infinite, for instance)

• memoizeDb – name of sqlite database (existent or nonexistent) to find an
already generated packing or to store the packing that will be generated, if not

2.5. yade.pack module 295



Reference Manual, Release Yade documentation 2nd ed.

found (the technique of caching results of expensive computations is known as
memoization). Fuzzy matching is used to select suitable candidate – packing will
be scaled, rRelFuzz and dimensions compared. Packing that are too small are
dictarded. From the remaining candidate, the one with the least number spheres
will be loaded and returned.

• useOBB – effective only if a inGtsSurface predicate is given. If true (not de-
fault), oriented bounding box will be computed first; it can reduce substantially
number of spheres for the triaxial compression (like 10× depending on how much
asymmetric the body is), see examples/gts-horse/gts-random-pack-obb.py

• memoDbg – show packings that are considered and reasons why they are re-
jected/accepted

• returnSpherePack – see the corresponding argument in pack.filterSpherePack
Returns SpherePack object with spheres, filtered by the predicate.

yade.pack.randomPeriPack(radius, initSize, rRelFuzz=0.0, memoizeDb=None, noPrint=False)
Generate periodic dense packing.
A cell of initSize is stuffed with as many spheres as possible, then we run periodic compression
with PeriIsoCompressor, just like with randomDensePack.

Parameters
• radius – mean sphere radius
• rRelFuzz – relative fuzz of sphere radius (equal distribution); see the same

param for randomDensePack.
• initSize – initial size of the periodic cell.

Returns SpherePack object, which also contains periodicity information.
yade.pack.regularHexa(predicate, radius, gap, **kw)

Return set of spheres in regular hexagonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.regularOrtho(predicate, radius, gap, **kw)
Return set of spheres in regular orthogonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.revolutionSurfaceMeridians(sects, angles, origin=Vector3(0, 0, 0), orienta-
tion=Quaternion((1, 0, 0), 0))

Revolution surface given sequences of 2d points and sequence of corresponding angles, returning
sequences of 3d points representing meridian sections of the revolution surface. The 2d sections
are turned around z-axis, but they can be transformed using the origin and orientation arguments
to give arbitrary orientation.

yade.pack.sweptPolylines2gtsSurface(pts, threshold=0, capStart=False, capEnd=False)
Create swept suface (as GTS triangulation) given same-length sequences of points (as 3-tuples).
If threshold is given (>0), then

•degenerate faces (with edges shorter than threshold) will not be created
•gts.Surface().cleanup(threshold) will be called before returning, which merges vertices mutu-
ally closer than threshold. In case your pts are closed (last point concident with the first
one) this will the surface strip of triangles. If you additionally have capStart==True and
capEnd==True, the surface will be closed.

Note: capStart and capEnd make the most naive polygon triangulation (diagonals) and will
perhaps fail for non-convex sections.

Warning: the algorithm connects points sequentially; if two polylines are mutually rotated or
have inverse sense, the algorithm will not detect it and connect them regardless in their given
order.

296 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

Creation, manipulation, IO for generic sphere packings.

class yade._packSpheres.SpherePack((object)arg1[, (list)list ])
Set of spheres represented as centers and radii. This class is returned by pack.randomDensePack,
pack.randomPeriPack and others. The object supports iteration over spheres, as in

>>> sp=SpherePack()
>>> for center,radius in sp: print center,radius

>>> for sphere in sp: print sphere[0],sphere[1] ## same, but without unpacking the tuple automatically

>>> for i in range(0,len(sp)): print sp[i][0], sp[i][1] ## same, but accessing spheres by index

Special constructors
Construct from list of [(c1,r1),(c2,r2),…]. To convert two same-length lists of centers and
radii, construct with zip(centers,radii).

__init__([(list)list ]) → None
Empty constructor, optionally taking list [ ((cx,cy,cz),r), … ] for initial data.

aabb() → tuple
Get axis-aligned bounding box coordinates, as 2 3-tuples.

add((Vector3)arg2, (float)arg3) → None
Add single sphere to packing, given center as 3-tuple and radius

appliedPsdScaling
A factor between 0 and 1, uniformly applied on all sizes of of the PSD.

cellFill((Vector3)arg2) → None
Repeat the packing (if periodic) so that the results has dim() >= given size. The packing
retains periodicity, but changes cellSize. Raises exception for non-periodic packing.

cellRepeat((Vector3i)arg2) → None
Repeat the packing given number of times in each dimension. Periodicity is retained, cellSize
changes. Raises exception for non-periodic packing.

cellSize
Size of periodic cell; is Vector3(0,0,0) if not periodic. (Change this property only if you know
what you’re doing).

center() → Vector3
Return coordinates of the bounding box center.

dim() → Vector3
Return dimensions of the packing in terms of aabb(), as a 3-tuple.

fromList((list)arg2) → None
Make packing from given list, same format as for constructor. Discards current data.

fromList( (SpherePack)arg1, (object)centers, (object)radii) → None : Make pack-
ing from given list, same format as for constructor. Discards current data.

fromSimulation() → None
Make packing corresponding to the current simulation. Discards current data.

getClumps() → tuple
Return lists of sphere ids sorted by clumps they belong to. The return value is (stan-
dalones,[clump1,clump2,…]), where each item is list of id’s of spheres.

hasClumps() → bool
Whether this object contains clumps.

isPeriodic
was the packing generated in periodic boundaries?

2.5. yade.pack module 297



Reference Manual, Release Yade documentation 2nd ed.

load((str)fileName) → None
Load packing from external text file (current data will be discarded).

makeCloud([(Vector3)minCorner=Vector3(0, 0, 0)[, (Vector3)maxCorner=Vector3(0, 0, 0)[,
(float)rMean=-1[, (float)rRelFuzz=0[, (int)num=-1[, (bool)periodic=False[,
(float)porosity=0.65[, (object)psdSizes=[][, (object)psdCumm=[][,
(bool)distributeMass=False[, (int)seed=0[, (Matrix3)hSize=Matrix3(0, 0, 0,
0, 0, 0, 0, 0, 0) ] ] ] ] ] ] ] ] ] ] ] ]) → int

Create random loose packing enclosed in a parallelepiped (also works in 2D if min-
Corner[k]=maxCorner[k] for one coordinate). Sphere radius distribution can be specified
using one of the following ways:

1.rMean, rRelFuzz and num gives uniform radius distribution in rMean×(1 ± rRelFuzz).
Less than num spheres can be generated if it is too high.

2.rRelFuzz, num and (optional) porosity, which estimates mean radius so that porosity is
attained at the end. rMean must be less than 0 (default). porosity is only an initial guess
for the generation algorithm, which will retry with higher porosity until the prescibed
num is obtained.

3.psdSizes and psdCumm, two arrays specifying points of the particle size distribution func-
tion. As many spheres as possible are generated.

4.psdSizes, psdCumm, num, and (optional) porosity, like above but if num is not obtained,
psdSizes will be scaled down uniformly, until num is obtained (see appliedPsdScaling).

By default (with distributeMass==False), the distribution is applied to particle radii. The
usual sense of “particle size distribution” is the distribution of mass fraction (rather than
particle count); this can be achieved with distributeMass=True.
If num is defined, then sizes generation is deterministic, giving the best fit of target distribu-
tion. It enables spheres placement in descending size order, thus giving lower porosity than
the random generation.

Parameters
• minCorner (Vector3) – lower corner of an axis-aligned box
• maxCorner (Vector3) – upper corner of an axis-aligned box
• hSize (Matrix3) – base vectors of a generalized box (arbitrary parallelepiped,

typically Cell::hSize), superseeds minCorner and maxCorner if defined. For
periodic boundaries only.

• rMean (float) – mean radius or spheres
• rRelFuzz (float) – dispersion of radius relative to rMean
• num (int) – number of spheres to be generated. If negavite (default), generate

as many as possible with stochastic sizes, ending after a fixed number of tries to
place the sphere in space, else generate exactly num spheres with deterministic
size distribution.

• periodic (bool) – whether the packing to be generated should be periodic
• porosity (float) – initial guess for the iterative generation procedure (if

num>1). The algorithm will be retrying until the number of generated spheres
is num. The first iteration tries with the provided porosity, but next itera-
tions increase it if necessary (hence an initialy high porosity can speed-up the
algorithm). If psdSizes is not defined, rRelFuzz (z) and num (N) are used so
that the porosity given (ρ) is approximately achieved at the end of generation,
rm = 3

√
V(1−ρ)

4
3
π(1+z2)N

. The default is ρ=0.5. The optimal value depends on
rRelFuzz or psdSizes.

• psdSizes – sieve sizes (particle diameters) when particle size distribution
(PSD) is specified

298 Chapter 2. Yade modules

http://en.wikipedia.org/wiki/Particle_size_distribution


Reference Manual, Release Yade documentation 2nd ed.

• psdCumm – cummulative fractions of particle sizes given by psdSizes; must
be the same length as psdSizes and should be non-decreasing

• distributeMass (bool) – if True, given distribution will be used to distribute
sphere’s mass rather than radius of them.

• seed – number used to initialize the random number generator.
Returns number of created spheres, which can be lower than num depending on the

method used.
makeClumpCloud((Vector3)minCorner, (Vector3)maxCorner, (object)clumps[,

(bool)periodic=False[, (int)num=-1[, (int)seed=0 ] ] ]) → int
Create random loose packing of clumps within box given by minCorner and maxCorner.
Clumps are selected with equal probability. At most num clumps will be positioned if num is
positive; otherwise, as many clumps as possible will be put in space, until maximum number
of attempts to place a new clump randomly is attained. :param seed: number used to initialize
the random number generator.

particleSD((Vector3)minCorner, (Vector3)maxCorner, (float)rMean, (bool)periodic=False,
(str)name, (int)numSph[, (object)radii=[][, (object)passing=[][,
(bool)passingIsNotPercentageButCount=False[, (int)seed=0 ] ] ] ]) → int

Not working. Use makeCloud instead.

particleSD2((object)radii, (object)passing, (int)numSph[, (bool)periodic=False[,
(float)cloudPorosity=0.8[, (int)seed=0 ] ] ]) → int

Not working. Use makeCloud instead.
particleSD_2d((Vector2)minCorner, (Vector2)maxCorner, (float)rMean,

(bool)periodic=False, (str)name, (int)numSph[, (object)radii=[][, (ob-
ject)passing=[][, (bool)passingIsNotPercentageButCount=False[, (int)seed=0
] ] ] ]) → int

Not working. Use makeCloud instead.

psd([(int)bins=50[, (bool)mass=True ] ]) → tuple
Return particle size distribution of the packing. :param int bins: number of bins between
minimum and maximum diameter :param mass: Compute relative mass rather than relative
particle count for each bin. Corresponds to distributeMass parameter for makeCloud. :returns:
tuple of (cumm,edges), where cumm are cummulative fractions for respective diameters and
edges are those diameter values. Dimension of both arrays is equal to bins+1.

relDensity() → float
Relative packing density, measured as sum of spheres’ volumes / aabb volume. (Sphere
overlaps are ignored.)

rotate((Vector3)axis, (float)angle) → None
Rotate all spheres around packing center (in terms of aabb()), given axis and angle of the
rotation.

save((str)fileName) → None
Save packing to external text file (will be overwritten).

scale((float)arg2) → None
Scale the packing around its center (in terms of aabb()) by given factor (may be negative).

toList() → list
Return packing data as python list.

toSimulation()

Append spheres directly to the simulation. In addition calling O.bodies.append,
this method also appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

2.5. yade.pack module 299

http://en.wikipedia.org/wiki/Particle_size_distribution


Reference Manual, Release Yade documentation 2nd ed.

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation (this
could be avoided by explicitly passing “hSize=O.cell.hSize” as an argument):

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)

translate((Vector3)arg2) → None
Translate all spheres by given vector.

class yade._packSpheres.SpherePackIterator((object)arg1, (SpherePackIterator)arg2)

__init__((SpherePackIterator)arg2) → None
next() → tuple

Spatial predicates for volumes (defined analytically or by triangulation).
class yade._packPredicates.Predicate((object)arg1)

aabb() → tuple
aabb( (Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateBoolean(inherits Predicate)
Boolean operation on 2 predicates (abstract class)
A

B

__init__()
Raises an exception This class cannot be instantiated from Python

aabb() → tuple
aabb( (Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateDifference((object)arg1, (object)arg2, (object)arg3)
Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first
and outside the second predicate. Can be constructed using the - operator on predicates: pred1
- pred2.
A

300 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateIntersection((object)arg1, (object)arg2, (object)arg3)
Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be
constructed using the & operator on predicates: pred1 & pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateSymmetricDifference((object)arg1, (object)arg2, (ob-
ject)arg3)

SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one
predicate of the two. Can be constructed using the ^ operator on predicates: pred1 ^ pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateUnion((object)arg1, (object)arg2, (object)arg3)
Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates
to be inside. Can be constructed using the | operator on predicates: pred1 | pred2.
A

B

__init__((object)arg2, (object)arg3) → None
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inAlignedBox((object)arg1, (Vector3)minAABB, (Vec-
tor3)maxAABB)

Axis-aligned box predicate
__init__((Vector3)minAABB, (Vector3)maxAABB) → None

Ctor taking minumum and maximum points of the box (as 3-tuples).
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

2.5. yade.pack module 301



Reference Manual, Release Yade documentation 2nd ed.

class yade._packPredicates.inCylinder((object)arg1, (Vector3)centerBottom, (Vec-
tor3)centerTop, (float)radius)

Cylinder predicate
__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius) → None

Ctor taking centers of the lateral walls (as 3-tuples) and radius.
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inEllipsoid((object)arg1, (Vector3)centerPoint, (Vector3)abc)
Ellipsoid predicate
__init__((Vector3)centerPoint, (Vector3)abc) → None

Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple).
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inGtsSurface((object)arg1, (object)surface[, (bool)noPad ])
GTS surface predicate

__init__((object)surface[, (bool)noPad ]) → None
Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.
The optional noPad can disable padding (if set to True), which speeds up calls several times.
Note: padding checks inclusion of 6 points along +- cardinal directions in the pad distance
from given point, which is not exact.

aabb() → tuple
aabb( (Predicate)arg1) → None

center() → Vector3
dim() → Vector3
surf

The associated gts.Surface object.
class yade._packPredicates.inHyperboloid((object)arg1, (Vector3)centerBottom, (Vec-

tor3)centerTop, (float)radius, (float)skirt)
Hyperboloid predicate
__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius, (float)skirt) → None

Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius).
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.inParallelepiped((object)arg1, (Vector3)o, (Vector3)a, (Vec-
tor3)b, (Vector3)c)

Parallelepiped predicate
__init__((Vector3)o, (Vector3)a, (Vector3)b, (Vector3)c) → None

Ctor taking four points: o (for origin) and then a, b, c which define endpoints of 3 respective
edges from o.

aabb() → tuple
aabb( (Predicate)arg1) → None

center() → Vector3

302 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

dim() → Vector3
class yade._packPredicates.inSphere((object)arg1, (Vector3)center, (float)radius)

Sphere predicate.
__init__((Vector3)center, (float)radius) → None

Ctor taking center (as a 3-tuple) and radius
aabb() → tuple

aabb( (Predicate)arg1) → None
center() → Vector3
dim() → Vector3

class yade._packPredicates.notInNotch((object)arg1, (Vector3)centerPoint, (Vector3)edge,
(Vector3)normal, (float)aperture)

Outside of infinite, rectangle-shaped notch predicate
__init__((Vector3)centerPoint, (Vector3)edge, (Vector3)normal, (float)aperture) → None

Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and
aperture size. The side inside the notch is edge×normal. Normal is made perpendicular to
the edge. All vectors are normalized at construction time.

aabb() → tuple
aabb( (Predicate)arg1) → None

center() → Vector3
dim() → Vector3

Computation of oriented bounding box for cloud of points.
yade._packObb.cloudBestFitOBB((tuple)arg1) → tuple

Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

2.6 yade.plot module

Module containing utility functions for plotting inside yade. See examples/simple-scene/simple-scene-
plot.py or examples/concrete/uniax.py for example of usage.
yade.plot.data = {‘force’: [nan, nan, 1000.0], ‘sigma’: [12, nan, nan], ‘eps’: [0.0001, 0.001, nan]}

Global dictionary containing all data values, common for all plots, in the form {‘name’:[value,...],...}.
Data should be added using plot.addData function. All [value,...] columns have the same length,
they are padded with NaN if unspecified.

yade.plot.plots = {‘i’: (‘t’,), ‘i ‘: (‘z1’, ‘v1’)}
dictionary x-name -> (yspec,...), where yspec is either y-name or (y-name,’line-specification’). If
(yspec,...) is None, then the plot has meaning of image, which will be taken from respective
field of plot.imgData.

yade.plot.labels = {}
Dictionary converting names in data to human-readable names (TeX names, for instance); if a
variable is not specified, it is left untranslated.

yade.plot.live = True
Enable/disable live plot updating. Disabled by default for now, since it has a few rough edges.

yade.plot.liveInterval = 1
Interval for the live plot updating, in seconds.

yade.plot.autozoom = True
Enable/disable automatic plot rezooming after data update.

yade.plot.plot(noShow=False, subPlots=True)
Do the actual plot, which is either shown on screen (and nothing is returned: if noShow is False

2.6. yade.plot module 303

https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/simple-scene/simple-scene-plot.py
https://github.com/yade/trunk/blob/master/examples/concrete/uniax.py


Reference Manual, Release Yade documentation 2nd ed.

- note that your yade compilation should present qt4 feature so that figures can be displayed) or,
if noShow is True, returned as matplotlib’s Figure object or list of them.
You can use

>>> from yade import plot
>>> plot.resetData()
>>> plot.plots={'foo':('bar',)}
>>> plot.plot(noShow=True).savefig('someFile.pdf')
>>> import os
>>> os.path.exists('someFile.pdf')
True
>>> os.remove('someFile.pdf')

to save the figure to file automatically.

Note: For backwards compatibility reasons, noShow option will return list of figures for multiple
figures but a single figure (rather than list with 1 element) if there is only 1 figure.

yade.plot.reset()
Reset all plot-related variables (data, plots, labels)

yade.plot.resetData()
Reset all plot data; keep plots and labels intact.

yade.plot.splitData()
Make all plots discontinuous at this point (adds nan’s to all data fields)

yade.plot.reverseData()
Reverse yade.plot.data order.
Useful for tension-compression test, where the initial (zero) state is loaded and, to make data
continuous, last part must end in the zero state.

yade.plot.addData(*d_in, **kw)
Add data from arguments name1=value1,name2=value2 to yade.plot.data. (the old
{‘name1’:value1,’name2’:value2} is deprecated, but still supported)
New data will be padded with nan’s, unspecified data will be nan (nan’s don’t appear in graphs).
This way, equal length of all data is assured so that they can be plotted one against any other.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.resetData()
>>> plot.addData(a=1)
>>> plot.addData(b=2)
>>> plot.addData(a=3,b=4)
>>> pprint(plot.data)
{'a': [1, nan, 3], 'b': [nan, 2, 4]}

Some sequence types can be given to addData; they will be saved in synthesized columns for
individual components.

>>> plot.resetData()
>>> plot.addData(c=Vector3(5,6,7),d=Matrix3(8,9,10, 11,12,13, 14,15,16))
>>> pprint(plot.data)
{'c_x': [5.0],
'c_y': [6.0],
'c_z': [7.0],
'd_xx': [8.0],
'd_xy': [9.0],
'd_xz': [10.0],
'd_yy': [12.0],
'd_yz': [11.0],
'd_zx': [14.0],

304 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

'd_zy': [15.0],
'd_zz': [16.0]}

yade.plot.addAutoData()
Add data by evaluating contents of plot.plots. Expressions rasing exceptions will be handled
gracefully, but warning is printed for each.

>>> from yade import plot
>>> from pprint import pprint
>>> O.reset()
>>> plot.resetData()
>>> plot.plots={'O.iter':('O.time',None,'numParticles=len(O.bodies)')}
>>> plot.addAutoData()
>>> pprint(plot.data)
{'O.iter': [0], 'O.time': [0.0], 'numParticles': [0]}

Note that each item in plot.plots can be
•an expression to be evaluated (using the eval builtin);
•name=expression string, where name will appear as label in plots, and expression will be
evaluated each time;

•a dictionary-like object – current keys are labels of plots and current values are added to
plot.data. The contents of the dictionary can change over time, in which case new lines will
be created as necessary.

A simple simulation with plot can be written in the following way; note how the energy plot is
specified.

>>> from yade import plot, utils
>>> plot.plots={'i=O.iter':(O.energy,None,'total energy=O.energy.total()')}
>>> # we create a simple simulation with one ball falling down
>>> plot.resetData()
>>> O.bodies.append(utils.sphere((0,0,0),1))
0
>>> O.dt=utils.PWaveTimeStep()
>>> O.engines=[
... ForceResetter(),
... GravityEngine(gravity=(0,0,-10),warnOnce=False),
... NewtonIntegrator(damping=.4,kinSplit=True),
... # get data required by plots at every step
... PyRunner(command='yade.plot.addAutoData()',iterPeriod=1,initRun=True)
... ]
>>> O.trackEnergy=True
>>> O.run(2,True)
>>> pprint(plot.data)
{'gravWork': [0.0, -25.13274...],
'i': [0, 1],
'kinRot': [0.0, 0.0],
'kinTrans': [0.0, 7.5398...],
'nonviscDamp': [0.0, 10.0530...],
'total energy': [0.0, -7.5398...]}

yade.plot.saveGnuplot(baseName, term=’wxt’, extension=None, timestamp=False, com-
ment=None, title=None, varData=False)

Save data added with plot.addData into (compressed) file and create .gnuplot file that attempts
to mimick plots specified with plot.plots.

Parameters
• baseName – used for creating baseName.gnuplot (command file for gnuplot),

associated baseName.data.bz2 (data) and output files (if applicable) in the form
baseName.[plot number].extension

2.6. yade.plot module 305



Reference Manual, Release Yade documentation 2nd ed.

• term – specify the gnuplot terminal; defaults to x11, in which case gnuplot will
draw persistent windows to screen and terminate; other useful terminals are png,
cairopdf and so on

• extension – extension for baseName defaults to terminal name; fine for png for
example; if you use cairopdf, you should also say extension='pdf' however

• timestamp (bool) – append numeric time to the basename
• varData (bool) – whether file to plot will be declared as variable or be in-place

in the plot expression
• comment – a user comment (may be multiline) that will be embedded in the

control file
Returns name of the gnuplot file created.

yade.plot.saveDataTxt(fileName, vars=None)
Save plot data into a (optionally compressed) text file. The first line contains a comment (starting
with #) giving variable name for each of the columns. This format is suitable for being loaded for
further processing (outside yade) with numpy.genfromtxt function, which recognizes those variable
names (creating numpy array with named entries) and handles decompression transparently.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.reset()
>>> plot.addData(a=1,b=11,c=21,d=31) # add some data here
>>> plot.addData(a=2,b=12,c=22,d=32)
>>> pprint(plot.data)
{'a': [1, 2], 'b': [11, 12], 'c': [21, 22], 'd': [31, 32]}
>>> plot.saveDataTxt('/tmp/dataFile.txt.bz2',vars=('a','b','c'))
>>> import numpy
>>> d=numpy.genfromtxt('/tmp/dataFile.txt.bz2',dtype=None,names=True)
>>> d['a']
array([1, 2])
>>> d['b']
array([11, 12])

Parameters
• fileName – file to save data to; if it ends with .bz2 / .gz, the file will be

compressed using bzip2 / gzip.
• vars – Sequence (tuple/list/set) of variable names to be saved. If None (default),

all variables in plot.plot are saved.

yade.plot.savePlotSequence(fileBase, stride=1, imgRatio=(5, 7), title=None, titleFrames=20,
lastFrames=30)

Save sequence of plots, each plot corresponding to one line in history. It is especially meant to be
used for utils.makeVideo.

Parameters
• stride – only consider every stride-th line of history (default creates one frame

per each line)
• title – Create title frame, where lines of title are separated with newlines (\n)

and optional subtitle is separated from title by double newline.
• titleFrames (int) – Create this number of frames with title (by repeating its

filename), determines how long the title will stand in the movie.
• lastFrames (int) – Repeat the last frame this number of times, so that the

movie does not end abruptly.
Returns List of filenames with consecutive frames.

306 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

2.7 yade.polyhedra_utils module

Auxiliary functions for polyhedra
yade.polyhedra_utils.fillBox(mincoord, maxcoord, material, sizemin=[1, 1, 1], sizemax=[1,

1, 1], ratio=[0, 0, 0], seed=None, mask=1)
fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes
within the range (uniformly distributed) :param Vector3 mincoord: first corner :param Vector3
maxcoord: second corner :param Vector3 sizemin: minimal size of bodies :param Vector3 sizemax:
maximal size of bodies :param Vector3 ratio: scaling ratio :param float seed: random seed

yade.polyhedra_utils.fillBoxByBalls(mincoord, maxcoord, material, sizemin=[1, 1, 1], size-
max=[1, 1, 1], ratio=[0, 0, 0], seed=None, mask=1,
numpoints=60)

yade.polyhedra_utils.polyhedra(material, size=Vector3(1,1,1), seed=None, v=[], mask=1,
fixed=False, color=[-1, -1, -1])

create polyhedra, one can specify vertices directly, or leave it empty for random shape.
Parameters

• material (Material) – material of new body
• size (Vector3) – size of new body (see Polyhedra docs)
• seed (float) – seed for random operations
• v ([Vector3]) – list of body vertices (see Polyhedra docs)

yade.polyhedra_utils.polyhedraSnubCube(radius, material, centre, mask=1)
yade.polyhedra_utils.polyhedraTruncIcosaHed(radius, material, centre, mask=1)
yade.polyhedra_utils.polyhedralBall(radius, N, material, center, mask=1)

creates polyhedra having N vertices and resembling sphere
Parameters

• radius (float) – ball radius
• N (int) – number of vertices
• material (Material) – material of new body
• center (Vector3) – center of the new body

yade.polyhedra_utils.randomColor(seed=None)
yade._polyhedra_utils.MaxCoord((Shape)arg1, (State)arg2) → Vector3

returns max coordinates
yade._polyhedra_utils.MinCoord((Shape)arg1, (State)arg2) → Vector3

returns min coordinates
yade._polyhedra_utils.PWaveTimeStep() → float

Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade._polyhedra_utils.PrintPolyhedra((Shape)arg1) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.PrintPolyhedraActualPos((Shape)arg1, (State)arg2) → None
Print list of vertices sorted according to polyhedrons facets.

yade._polyhedra_utils.SieveCurve() → None
save sieve curve coordinates into file

yade._polyhedra_utils.SieveSize((Shape)arg1) → float
returns approximate sieve size of polyhedron

yade._polyhedra_utils.SizeOfPolyhedra((Shape)arg1) → Vector3
returns max, middle an min size in perpendicular directions

2.7. yade.polyhedra_utils module 307



Reference Manual, Release Yade documentation 2nd ed.

yade._polyhedra_utils.SizeRatio() → None
save sizes of polyhedra into file

yade._polyhedra_utils.Split((Body)arg1, (Vector3)arg2, (Vector3)arg3) → None
split polyhedron perpendicularly to given direction through given point

yade._polyhedra_utils.convexHull((object)arg1) → bool
yade._polyhedra_utils.do_Polyhedras_Intersect((Shape)arg1, (Shape)arg2, (State)arg3,

(State)arg4) → bool
check polyhedras intersection

yade._polyhedra_utils.fillBoxByBalls_cpp((Vector3)arg1, (Vector3)arg2, (Vector3)arg3,
(Vector3)arg4, (Vector3)arg5, (int)arg6, (Mate-
rial)arg7, (int)arg8) → object

Generate non-overlaping ‘spherical’ polyhedrons in box
yade._polyhedra_utils.fillBox_cpp((Vector3)arg1, (Vector3)arg2, (Vector3)arg3, (Vec-

tor3)arg4, (Vector3)arg5, (int)arg6, (Material)arg7) →
object

Generate non-overlaping polyhedrons in box

2.8 yade.post2d module

Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways, providing
basic but flexible framework for extracting arbitrary scalar values from bodies/interactions and plotting
the results. There are 2 basic components: flatteners and extractors.
The algorithms operate on bodies (default) or interactions, depending on the intr parameter of
post2d.data.

2.8.1 Flatteners

Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is defined
by the post2d.Flatten class (__call__, planar, normal).

2.8.2 Extractors

Callable objects returning scalar or vector value, given a body/interaction object. If a 3d vector is
returned, Flattener.planar is called, which should return only in-plane components of the vector.

2.8.3 Example

This example can be found in examples/concrete/uniax-post.py

from yade import post2d
import pylab # the matlab-like interface of matplotlib

O.load('/tmp/uniax-tension.xml.bz2')

# flattener that project to the xz plane
flattener=post2d.AxisFlatten(useRef=False,axis=1)
# return scalar given a Body instance
extractDmg=lambda b: b.state.normDmg
# will call flattener.planar implicitly
# the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
extractVelocity=lambda b: b.state.vel

# create new figure
pylab.figure()

308 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

# plot raw damage
post2d.plot(post2d.data(extractDmg,flattener))

# plot smooth damage into new figure
pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
# show color scale
pylab.colorbar(map,orientation='horizontal')

# raw velocity (vector field) plot
pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))

# smooth velocity plot; data are sampled at regular grid
pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
# save last (current) figure to file
pylab.gcf().savefig('/tmp/foo.png')

# show the figures
pylab.show()

class yade.post2d.AxisFlatten(inherits Flatten)

__init__()
:param bool useRef: use reference positions rather than actual positions (only meaningful
when operating on Bodies) :param {0,1,2} axis: axis normal to the plane; the return value
will be simply position with this component dropped.

normal()

planar()

class yade.post2d.CylinderFlatten(inherits Flatten)
Class for converting 3d point to 2d based on projection onto plane from circle. The y-axis in the
projection corresponds to the rotation axis; the x-axis is distance form the axis.
__init__()

:param useRef: (bool) use reference positions rather than actual positions :param axis: axis
of the cylinder, �{0,1,2}

normal()

planar()

class yade.post2d.Flatten
Abstract class for converting 3d point into 2d. Used by post2d.data2d.
normal()

Given position and vector value, return lenght of the vector normal to the flat plane.
planar()

Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.HelixFlatten(inherits Flatten)
Class converting 3d point to 2d based on projection from helix. The y-axis in the projection
corresponds to the rotation axis
__init__()

:param bool useRef: use reference positions rather than actual positions :param (ϑmin,ϑmax)
thetaRange: bodies outside this range will be discarded :param float dH_dTheta: inclination
of the spiral (per radian) :param {0,1,2} axis: axis of rotation of the spiral :param float
periodStart: height of the spiral for zero angle

normal()

planar()

2.8. yade.post2d module 309



Reference Manual, Release Yade documentation 2nd ed.

yade.post2d.data(extractor, flattener, intr=False, onlyDynamic=True, stDev=None, relThresh-
old=3.0, perArea=0, div=(50, 50), margin=(0, 0), radius=1)

Filter all bodies/interactions, project them to 2d and extract required scalar value; return either
discrete array of positions and values, or smoothed data, depending on whether the stDev value is
specified.
The intr parameter determines whether we operate on bodies or interactions; the extractor pro-
vided should expect to receive body/interaction.

Parameters
• extractor (callable) – receives Body (or Interaction, if intr is True) in-

stance, should return scalar, a 2-tuple (vector fields) or None (to skip that
body/interaction)

• flattener (callable) – post2d.Flatten instance, receiving body/interaction, re-
turns its 2d coordinates or None (to skip that body/interaction)

• intr (bool) – operate on interactions rather than bodies
• onlyDynamic (bool) – skip all non-dynamic bodies
• stDev (float/None) – standard deviation for averaging, enables smoothing; None

(default) means raw mode, where discrete points are returned
• relThreshold (float) – threshold for the gaussian weight function relative to

stDev (smooth mode only)
• perArea (int) – if 1, compute weightedSum/weightedArea rather than weighted

average (weightedSum/sumWeights); the first is useful to compute average stress;
if 2, compute averages on subdivision elements, not using weight function

• div ((int,int)) – number of cells for the gaussian grid (smooth mode only)
• margin ((float,float)) – x,y margins around bounding box for data (smooth

mode only)
• radius (float/callable) – Fallback value for radius (for raw plotting) for non-

spherical bodies or interactions; if a callable, receives body/interaction and re-
turns radius

Returns dictionary
Returned dictionary always containing keys ‘type’ (one of
‘rawScalar’,’rawVector’,’smoothScalar’,’smoothVector’, depending on value of smooth and on
return value from extractor), ‘x’, ‘y’, ‘bbox’.
Raw data further contains ‘radii’.
Scalar fields contain ‘val’ (value from extractor), vector fields have ‘valX’ and ‘valY’ (2 components
returned by the extractor).

yade.post2d.plot(data, axes=None, alpha=0.5, clabel=True, cbar=False, aspect=’equal’, **kw)
Given output from post2d.data, plot the scalar as discrete or smooth plot.
For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.
For smooth discrete data, plot image with optional contours and contour labels.
For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.

Parameters
• axes – matplotlib.axesinstance where the figure will be plotted; if None, will be

created from scratch.
• data – value returned by post2d.data
• clabel (bool) – show contour labels (smooth mode only), or annotate cells with

numbers inside (with perArea==2)
• cbar (bool) – show colorbar (equivalent to calling pylab.colorbar(mappable) on

the returned mappable)

310 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

Returns tuple of (axes,mappable); mappable can be used in further calls to py-
lab.colorbar.

2.9 yade.qt module

Common initialization core for yade.
This file is executed when anything is imported from yade for the first time. It loads yade plugins and
injects c++ class constructors to the __builtins__ (that might change in the future, though) namespace,
making them available everywhere.
yade.qt.bin(QTextStream) → QTextStream
yade.qt.hex(QTextStream) → QTextStream
yade.qt.oct(QTextStream) → QTextStream
class yade.qt._GLViewer.GLViewer

__init__()
Raises an exception This class cannot be instantiated from Python

axes
Show arrows for axes.

center([(bool)median=True ]) → None
Center view. View is centered either so that all bodies fit inside (median = False), or so that
75% of bodies fit inside (median = True).

close() → None
eyePosition

Camera position.
fitAABB((Vector3)mn, (Vector3)mx) → None

Adjust scene bounds so that Axis-aligned bounding box given by its lower and upper corners
mn, mx fits in.

fitSphere((Vector3)center, (float)radius) → None
Adjust scene bounds so that sphere given by center and radius fits in.

fps
Show frames per second indicator.

grid
Display square grid in zero planes, as 3-tuple of bools for yz, xz, xy planes.

loadState([(str)stateFilename=’.qglviewer.xml’ ]) → None
Load display parameters from file saved previously into.

lookAt
Point at which camera is directed.

ortho
Whether orthographic projection is used; if false, use perspective projection.

saveSnapshot((str)filename) → None
Save the current view to image file

saveState([(str)stateFilename=’.qglviewer.xml’ ]) → None
Save display parameters into a file. Saves state for both GLViewer and associated OpenGLRen-
derer.

scale
Scale of the view (?)

2.9. yade.qt module 311



Reference Manual, Release Yade documentation 2nd ed.

sceneRadius
Visible scene radius.

screenSize
Size of the viewer’s window, in scree pixels

selection

showEntireScene() → None
timeDisp

Time displayed on in the vindow; is a string composed of characters r, v, i standing respectively
for real time, virtual time, iteration number.

upVector
Vector that will be shown oriented up on the screen.

viewDir
Camera orientation (as vector).

yade.qt._GLViewer.Renderer() → OpenGLRenderer
Return the active OpenGLRenderer object.

yade.qt._GLViewer.View() → GLViewer
Create a new 3d view.

yade.qt._GLViewer.center() → None
Center all views.

yade.qt._GLViewer.views() → list
Return list of all open qt.GLViewer objects

2.10 yade.timing module

Functions for accessing timing information stored in engines and functors.
See timing section of the programmer’s manual, wiki page for some examples.
yade.timing.reset()

Zero all timing data.
yade.timing.stats()

Print summary table of timing information from engines and functors. Absolute times as well as
percentages are given. Sample output:
Name Count Time Rel. time
-------------------------------------------------------------------------------------------------------
ForceResetter 102 2150us 0.02%
"collider" 5 64200us 0.60%
InteractionLoop 102 10571887us 98.49%
"combEngine" 102 8362us 0.08%
"newton" 102 73166us 0.68%
"cpmStateUpdater" 1 9605us 0.09%
PyRunner 1 136us 0.00%
"plotDataCollector" 1 291us 0.00%
TOTAL 10733564us 100.00%

sample output (compiled with -DENABLE_PROFILING=1 option):
Name Count Time Rel. time
-------------------------------------------------------------------------------------------------------
ForceResetter 102 2150us 0.02%
"collider" 5 64200us 0.60%
InteractionLoop 102 10571887us 98.49%
Ig2_Sphere_Sphere_ScGeom 1222186 1723168us 16.30%

Ig2_Sphere_Sphere_ScGeom 1222186 1723168us 100.00%
Ig2_Facet_Sphere_ScGeom 753 1157us 0.01%

312 Chapter 2. Yade modules

http://yade-dem.org/index.php/Speed_profiling_using_TimingInfo_and_TimingDeltas_classes


Reference Manual, Release Yade documentation 2nd ed.

Ig2_Facet_Sphere_ScGeom 753 1157us 100.00%
Ip2_CpmMat_CpmMat_CpmPhys 11712 26015us 0.25%

end of Ip2_CpmPhys 11712 26015us 100.00%
Ip2_FrictMat_CpmMat_FrictPhys 0 0us 0.00%
Law2_ScGeom_CpmPhys_Cpm 3583872 4819289us 45.59%

GO A 1194624 1423738us 29.54%
GO B 1194624 1801250us 37.38%
rest 1194624 1594300us 33.08%
TOTAL 3583872 4819289us 100.00%

Law2_ScGeom_FrictPhys_CundallStrack 0 0us 0.00%
"combEngine" 102 8362us 0.08%
"newton" 102 73166us 0.68%
"cpmStateUpdater" 1 9605us 0.09%
PyRunner 1 136us 0.00%
"plotDataCollector" 1 291us 0.00%
TOTAL 10733564us 100.00%

2.11 yade.utils module

Heap of functions that don’t (yet) fit anywhere else.
Devs: please DO NOT ADD more functions here, it is getting too crowded!
yade.utils.NormalRestitution2DampingRate(en)

Compute the normal damping rate as a function of the normal coefficient of restitution en. For
en ∈ ⟨0, 1⟩ damping rate equals

−
log en√
e2n + π2

yade.utils.SpherePWaveTimeStep(radius, density, young)
Compute P-wave critical timestep for a single (presumably representative) sphere, using formula
for P-Wave propagation speed ∆tc = r√

E/ρ
. If you want to compute minimum critical timestep

for all spheres in the simulation, use utils.PWaveTimeStep instead.

>>> SpherePWaveTimeStep(1e-3,2400,30e9)
2.8284271247461903e-07

class yade.utils.TableParamReader
Class for reading simulation parameters from text file.
Each parameter is represented by one column, each parameter set by one line. Colums are separated
by blanks (no quoting).
First non-empty line contains column titles (without quotes). You may use special column named
‘description’ to describe this parameter set; if such colum is absent, description will be built by
concatenating column names and corresponding values (param1=34,param2=12.22,param4=foo)

•from columns ending in ! (the ! is not included in the column name)
•from all columns, if no columns end in !.

Empty lines within the file are ignored (although counted); # starts comment till the end of line.
Number of blank-separated columns must be the same for all non-empty lines.
A special value = can be used instead of parameter value; value from the previous non-empty line
will be used instead (works recursively).
This class is used by utils.readParamsFromTable.
__init__()

Setup the reader class, read data into memory.

2.11. yade.utils module 313



Reference Manual, Release Yade documentation 2nd ed.

paramDict()
Return dictionary containing data from file given to constructor. Keys are line numbers (which
might be non-contiguous and refer to real line numbers that one can see in text editors), values
are dictionaries mapping parameter names to their values given in the file. The special value
‘=’ has already been interpreted, ! (bangs) (if any) were already removed from column titles,
description column has already been added (if absent).

class yade.utils.UnstructuredGrid
EXPERIMENTAL. Class representing triangulated FEM-like unstructured grid. It is used for
transfereing data from ad to YADE and external FEM program. The main purpose of this class is
to store information about individual grid vertices/nodes coords (since facets stores only coordinates
of vertices in local coords) and to avaluate and/or apply nodal forces from contact forces (from
actual contact force and contact point the force is distributed to nodes using linear approximation).
TODO rewrite to C++ TODO better docs

Parameters
• vertices (dict) – dict of {internal vertex label:vertex}, e.g.

{5:(0,0,0),22:(0,1,0),23:(1,0,0)}
• connectivityTable (dict) – dict of {internal element label:[indices of vertices]},

e.g. {88:[5,22,23]}
build()

getForcesOfNodes()
Computes forces for each vertex/node. The nodal force is computed from contact force and
contact point using linear approximation

resetForces()

setPositionsOfNodes()
Sets new position of nodes and also updates all elements in the simulation
:param [Vector3] newPoss: list of new positions

setup()
Sets new information to receiver
:param dict vertices: see constructor for explanation :param dict connectivityTable: see con-
structor for explanation :param bool toSimulation: if new information should be inserted to
Yade simulation (create new bodies or not) :param [[int]]|None bodies: list of list of bodies
indices to be appended as clumps (thus no contact detection is done within one body)

toSimulation()
Insert all elements to Yade simulation

updateElements()
Updates positions of all elements in the simulation

yade.utils.aabbDim(cutoff=0.0, centers=False)
Return dimensions of the axis-aligned bounding box, optionally with relative part cutoff cut away.

yade.utils.aabbExtrema2d(pts)
Return 2d bounding box for a sequence of 2-tuples.

yade.utils.aabbWalls(extrema=None, thickness=0, oversizeFactor=1.5, **kw)
Return 6 boxes that will wrap existing packing as walls from all sides; extrema are extremal points of
the Aabb of the packing (will be calculated if not specified) thickness is wall thickness (will be 1/10
of the X-dimension if not specified) Walls will be enlarged in their plane by oversizeFactor. returns
list of 6 wall Bodies enclosing the packing, in the order minX,maxX,minY,maxY,minZ,maxZ.

yade.utils.avgNumInteractions(cutoff=0.0, skipFree=False, considerClumps=False)
Return average numer of interactions per particle, also known as coordination number Z. This
number is defined as

Z = 2C/N

314 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

where C is number of contacts and N is number of particles. When clumps are present, number of
particles is the sum of standalone spheres plus the sum of clumps. Clumps are considered in the
calculation if cutoff != 0 or skipFree = True. If cutoff=0 (default) and skipFree=False (default)
one needs to set considerClumps=True to consider clumps in the calculation.
With skipFree, particles not contributing to stable state of the packing are skipped, following
equation (8) given in [Thornton2000]:

Zm =
2C−N1

N−N0 −N1

Parameters
• cutoff – cut some relative part of the sample’s bounding box away.
• skipFree – see above.
• considerClumps – also consider clumps if cutoff=0 and skipFree=False; for

further explanation see above.
yade.utils.box(center, extents, orientation=Quaternion((1, 0, 0), 0), dynamic=None,

fixed=False, wire=False, color=None, highlight=False, material=-1, mask=1)
Create box (cuboid) with given parameters.

Parameters extents (Vector3) – half-sizes along x,y,z axes
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.chainedCylinder(begin=Vector3(0, 0, 0), end=Vector3(1, 0, 0), radius=0.2,
dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1, mask=1)

Create and connect a chainedCylinder with given parameters. The shape generated by repeted
calls of this function is the Minkowski sum of polyline and sphere.

Parameters
• radius (Real) – radius of sphere in the Minkowski sum.
• begin (Vector3) – first point positioning the line in the Minkowski sum
• last (Vector3) – last point positioning the line in the Minkowski sum

In order to build a correct chain, last point of element of rank N must correspond to first point of
element of rank N+1 in the same chain (with some tolerance, since bounding boxes will be used to
create connections.

Returns Body object with the ChainedCylinder shape.
class yade.utils.clumpTemplate

Create a clump template by a list of relative radii and a list of relative positions. Both lists must
have the same length.

Parameters
• relRadii ([float,float,...]) – list of relative radii (minimum length = 2)
• relPositions ([Vector3,Vector3,...]) – list of relative positions (minimum length

= 2)
yade.utils.defaultMaterial()

Return default material, when creating bodies with utils.sphere and friends, material is unspecified
and there is no shared material defined yet. By default, this function returns:

.. code-block:: python

FrictMat(density=1e3,young=1e7,poisson=.3,frictionAngle=.5,label=’defaultMat’)

yade.utils.facet(vertices, dynamic=None, fixed=True, wire=True, color=None, high-
light=False, noBound=False, material=-1, mask=1, chain=-1)

Create facet with given parameters.

2.11. yade.utils module 315



Reference Manual, Release Yade documentation 2nd ed.

Parameters
• vertices ([Vector3,Vector3,Vector3]) – coordinates of vertices in the global co-

ordinate system.
• wire (bool) – if True, facets are shown as skeleton; otherwise facets are filled
• noBound (bool) – set Body.bounded
• color (Vector3-or-None) – color of the facet; random color will be assigned if

None.
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.fractionalBox(fraction=1.0, minMax=None)
retrurn (min,max) that is the original minMax box (or aabb of the whole simulation if not specified)
linearly scaled around its center to the fraction factor

yade.utils.gridConnection(id1, id2, radius, wire=False, color=None, highlight=False,
material=-1, mask=1, cellDist=None)

yade.utils.gridNode(center, radius, dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1)

yade.utils.loadVars(mark=None)
Load variables from utils.saveVars, which are saved inside the simulation. If mark==None, all save
variables are loaded. Otherwise only those with the mark passed.

yade.utils.makeVideo(frameSpec, out, renameNotOverwrite=True, fps=24, kbps=6000,
bps=None)

Create a video from external image files using mencoder. Two-pass encoding using the default
mencoder codec (mpeg4) is performed, running multi-threaded with number of threads equal to
number of OpenMP threads allocated for Yade.

Parameters
• frameSpec – wildcard | sequence of filenames. If list or tuple, filenames to be

encoded in given order; otherwise wildcard understood by mencoder’s mf:// URI
option (shell wildcards such as /tmp/snap-*.png or and printf-style pattern like
/tmp/snap-%05d.png)

• out (str) – file to save video into
• renameNotOverwrite (bool) – if True, existing same-named video file will have

-number appended; will be overwritten otherwise.
• fps (int) – Frames per second (-mf fps=…)
• kbps (int) – Bitrate (-lavcopts vbitrate=…) in kb/s

yade.utils.perpendicularArea(axis)
Return area perpendicular to given axis (0=x,1=y,2=z) generated by bodies for which the function
consider returns True (defaults to returning True always) and which is of the type Sphere.

yade.utils.plotDirections(aabb=(), mask=0, bins=20, numHist=True, noShow=False, sph-
Sph=False)

Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and (optional but
default) histogram of number of interactions per body. If sphSph only sphere-sphere interactions
are considered for the 3 directions histograms.

Returns If noShow is False, displays the figure and returns nothing. If noShow, the
figure object is returned without being displayed (works the same way as plot.plot).

yade.utils.plotNumInteractionsHistogram(cutoff=0.0)
Plot histogram with number of interactions per body, optionally cutting away cutoff relative axis-
aligned box from specimen margin.

yade.utils.polyhedron(vertices, dynamic=True, fixed=False, wire=True, color=None, high-
light=False, noBound=False, material=-1, mask=1, chain=-1)

Create polyhedron with given parameters.

316 Chapter 2. Yade modules

http://www.mplayerhq.hu


Reference Manual, Release Yade documentation 2nd ed.

Parameters vertices ([[Vector3]]) – coordinates of vertices in the global coordinate
system.

See utils.sphere‘s documentation for meaning of other parameters.
yade.utils.psd(bins=5, mass=True, mask=-1)

Calculates particle size distribution.
Parameters

• bins (int) – number of bins
• mass (bool) – if true, the mass-PSD will be calculated
• mask (int) – Body.mask for the body

Returns
• binsSizes: list of bin’s sizes
• binsProc: how much material (in percents) are in the bin, cumulative
• binsSumCum: how much material (in units) are in the bin, cumulative
binsSizes, binsProc, binsSumCum

yade.utils.randomColor()
Return random Vector3 with each component in interval 0…1 (uniform distribution)

yade.utils.randomizeColors(onlyDynamic=False)
Assign random colors to Shape::color.
If onlyDynamic is true, only dynamic bodies will have the color changed.

yade.utils.readParamsFromTable(tableFileLine=None, noTableOk=True, unknownOk=False,
**kw)

Read parameters from a file and assign them to __builtin__ variables.
The format of the file is as follows (commens starting with # and empty lines allowed):

# commented lines allowed anywhere
name1 name2 … # first non-blank line are column headings

# empty line is OK, with or without comment
val1 val2 … # 1st parameter set
val2 val2 … # 2nd
…

Assigned tags (the description column is synthesized if absent,see utils.TableParamReader);
O.tags[’description’]=… # assigns the description column; might be synthe-
sized O.tags[’params’]=”name1=val1,name2=val2,…” # all explicitly assigned pa-
rameters O.tags[’defaultParams’]=”unassignedName1=defaultValue1,…” # parameters
that were left at their defaults O.tags[’d.id’]=O.tags[’id’]+’.’+O.tags[’description’]
O.tags[’id.d’]=O.tags[’description’]+’.’+O.tags[’id’]

All parameters (default as well as settable) are saved using utils.saveVars('table').
Parameters

• tableFile – text file (with one value per blank-separated columns)
• tableLine (int) – number of line where to get the values from
• noTableOk (bool) – if False, raise exception if the file cannot be open; use

default values otherwise
• unknownOk (bool) – do not raise exception if unknown column name is found

in the file, and assign it as well
Returns number of assigned parameters

yade.utils.replaceCollider(colliderEngine)
Replaces collider (Collider) engine with the engine supplied. Raises error if no collider is in engines.

2.11. yade.utils module 317



Reference Manual, Release Yade documentation 2nd ed.

yade.utils.runningInBatch()
Tell whether we are running inside the batch or separately.

yade.utils.saveVars(mark=’‘, loadNow=True, **kw)
Save passed variables into the simulation so that it can be recovered when the simulation is loaded
again.
For example, variables a, b and c are defined. To save them, use:

>>> saveVars('something',a=1,b=2,c=3)
>>> from yade.params.something import *
>>> a,b,c
(1, 2, 3)

those variables will be save in the .xml file, when the simulation itself is saved. To recover those
variables once the .xml is loaded again, use ‘‘loadVars(‘something’)‘‘and they will be defined in the
yade.params.mark module. The loadNow parameter calls utils.loadVars after saving automatically.
If ‘something’ already exists, given variables will be inserted.

yade.utils.sphere(center, radius, dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1, mask=1)

Create sphere with given parameters; mass and inertia computed automatically.
Last assigned material is used by default (material = -1), and utils.defaultMaterial() will be used
if no material is defined at all.

Parameters
• center (Vector3) – center
• radius (float) – radius
• dynamic (float) – deprecated, see “fixed”
• fixed (float) – generate the body with all DOFs blocked?
• material –

specify Body.material; different types are accepted:
– int: O.materials[material] will be used; as a special case, if material==-

1 and there is no shared materials defined, utils.defaultMaterial() will be
assigned to O.materials[0]

– string: label of an existing material that will be used
– Material instance: this instance will be used
– callable: will be called without arguments; returned Material value will be

used (Material factory object, if you like)
• mask (int) – Body.mask for the body
• wire – display as wire sphere?
• highlight – highlight this body in the viewer?
• Vector3-or-None – body’s color, as normalized RGB; random color will be

assigned if None.
Returns A Body instance with desired characteristics.

Creating default shared material if none exists neither is given:

>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1

318 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

Instance of material can be given:

>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0

Material can be given by label:

>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11

Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don’t call this function directly (for instance, through yade.pack.randomDensePack),
passing only 1 material parameter, but you don’t want material to be shared.
For instance, randomized material properties can be created like this:

>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)

yade.utils.tetra(vertices, strictCheck=True, dynamic=True, fixed=False, wire=True,
color=None, highlight=False, noBound=False, material=-1, mask=1,
chain=-1)

Create tetrahedron with given parameters.
Parameters

• vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in the
global coordinate system.

• strictCheck (bool) – checks vertices order, raise RuntimeError for negative vol-
ume

See utils.sphere‘s documentation for meaning of other parameters.
yade.utils.tetraPoly(vertices, dynamic=True, fixed=False, wire=True, color=None, high-

light=False, noBound=False, material=-1, mask=1, chain=-1)
Create tetrahedron (actually simple Polyhedra) with given parameters.

Parameters vertices ([Vector3,Vector3,Vector3,Vector3]) – coordinates of vertices in
the global coordinate system.

See utils.sphere‘s documentation for meaning of other parameters.
yade.utils.trackPerfomance(updateTime=5)

Track perfomance of a simulation. (Experimental) Will create new thread to produce some plots.
Useful for track perfomance of long run simulations (in bath mode for example).

yade.utils.typedEngine(name)
Return first engine from current O.engines, identified by its type (as string). For example:

>>> from yade import utils
>>> O.engines=[InsertionSortCollider(),NewtonIntegrator(),GravityEngine()]
>>> utils.typedEngine("NewtonIntegrator") == O.engines[1]
True

2.11. yade.utils module 319



Reference Manual, Release Yade documentation 2nd ed.

yade.utils.uniaxialTestFeatures(filename=None, areaSections=10, axis=-1, distFactor=2.2,
**kw)

Get some data about the current packing useful for uniaxial test:
1.Find the dimensions that is the longest (uniaxial loading axis)
2.Find the minimum cross-section area of the specimen by examining several (areaSections)
sections perpendicular to axis, computing area of the convex hull for each one. This will work
also for non-prismatic specimen.

3.Find the bodies that are on the negative/positive boundary, to which the straining condition
should be applied.

Parameters
• filename – if given, spheres will be loaded from this file (ASCII format); if not,

current simulation will be used.
• areaSection (float) – number of section that will be used to estimate cross-

section
• axis (�{0,1,2}) – if given, force strained axis, rather than computing it from

predominant length
Returns dictionary with keys negIds, posIds, axis, area.

Warning: The function utils.approxSectionArea uses convex hull algorithm to find the area,
but the implementation is reported to be buggy (bot works in some cases). Always check this
number, or fix the convex hull algorithm (it is documented in the source, see py/_utils.cpp).

yade.utils.vmData()
Return memory usage data from Linux’s /proc/[pid]/status, line VmData.

yade.utils.voxelPorosityTriaxial(triax, resolution=200, offset=0)
Calculate the porosity of a sample, given the TriaxialCompressionEngine.
A function utils.voxelPorosity is invoked, with the volume of a box enclosed by TriaxialCompres-
sionEngine walls. The additional parameter offset allows using a smaller volume inside the box,
where each side of the volume is at offset distance from the walls. By this way it is possible to find
a more precise porosity of the sample, since at walls’ contact the porosity is usually reduced.
A recommended value of offset is bigger or equal to the average radius of spheres inside.
The value of resolution depends on size of spheres used. It can be calibrated by invoking voxel-
PorosityTriaxial with offset=0 and comparing the result with TriaxialCompressionEngine.porosity.
After calibration, the offset can be set to radius, or a bigger value, to get the result.

Parameters
• triax – the TriaxialCompressionEngine handle
• resolution – voxel grid resolution
• offset – offset distance

Returns the porosity of the sample inside given volume
Example invocation:

from yade import utils
rAvg=0.03
TriaxialTest(numberOfGrains=200,radiusMean=rAvg).load()
O.dt=-1
O.run(1000)
O.engines[4].porosity
0.44007807740143889
utils.voxelPorosityTriaxial(O.engines[4],200,0)
0.44055412500000002

320 Chapter 2. Yade modules

https://github.com/yade/trunk/blob/master/py/_utils.cpp


Reference Manual, Release Yade documentation 2nd ed.

utils.voxelPorosityTriaxial(O.engines[4],200,rAvg)
0.36798199999999998

yade.utils.waitIfBatch()
Block the simulation if running inside a batch. Typically used at the end of script so that it does
not finish prematurely in batch mode (the execution would be ended in such a case).

yade.utils.wall(position, axis, sense=0, color=None, material=-1, mask=1)
Return ready-made wall body.

Parameters
• position (float-or-Vector3) – center of the wall. If float, it is the position along

given axis, the other 2 components being zero
• axis (�{0,1,2}) – orientation of the wall normal (0,1,2) for x,y,z (sc. planes yz,

xz, xy)
• sense (�{-1,0,1}) – sense in which to interact (0: both, -1: negative, +1: positive;

see Wall)
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.xMirror(half)
Mirror a sequence of 2d points around the x axis (changing sign on the y coord). The sequence
should start up and then it will wrap from y downwards (or vice versa). If the last point’s x coord
is zero, it will not be duplicated.

yade._utils.PWaveTimeStep() → float
Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade._utils.RayleighWaveTimeStep() → float
Determination of time step according to Rayleigh wave speed of force propagation.

yade._utils.TetrahedronCentralInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronInertiaTensor((object)arg1) → Matrix3
TODO

yade._utils.TetrahedronSignedVolume((object)arg1) → float
TODO

yade._utils.TetrahedronVolume((object)arg1) → float
TODO

yade._utils.TetrahedronWithLocalAxesPrincipal((Body)arg1) → Quaternion
TODO

yade._utils.aabbExtrema([(float)cutoff=0.0[, (bool)centers=False ] ]) → tuple
Return coordinates of box enclosing all bodies

Parameters
• centers (bool) – do not take sphere radii in account, only their centroids
• cutoff (float�〈0…1〉) – relative dimension by which the box will be cut away at

its boundaries.
Returns (lower corner, upper corner) as (Vector3,Vector3)

yade._utils.angularMomentum([(Vector3)origin=Vector3(0, 0, 0) ]) → Vector3
TODO

yade._utils.approxSectionArea((float)arg1, (int)arg2) → float
Compute area of convex hull when when taking (swept) spheres crossing the plane at coord, per-
pendicular to axis.

yade._utils.bodyNumInteractionsHistogram((tuple)aabb) → tuple

2.11. yade.utils module 321



Reference Manual, Release Yade documentation 2nd ed.

yade._utils.bodyStressTensors() → list
Compute and return a table with per-particle stress tensors. Each tensor represents the average
stress in one particle, obtained from the contour integral of applied load as detailed below. This
definition is considering each sphere as a continuum. It can be considered exact in the context of
spheres at static equilibrium, interacting at contact points with negligible volume changes of the
solid phase (this last assumption is not restricting possible deformations and volume changes at
the packing scale).
Proof:
First, we remark the identity: σij = δikσkj = xi,kσkj = (xiσkj),k − xiσkj,k.
At equilibrium, the divergence of stress is null: σkj,k = 0. Consequently, after divergence theorem:
1
V

∫
V
σijdV = 1

V

∫
V
(xiσkj),kdV = 1

V

∫
∂V

xiσkjnkdS = 1
V

∑
b xbi f

b
j .

The last equality is implicitely based on the representation of external loads as Dirac distributions
whose zeros are the so-called contact points: 0-sized surfaces on which the contact forces are applied,
located at xi in the deformed configuration.
A weighted average of per-body stresses will give the average stress inside the solid phase. There is
a simple relation between the stress inside the solid phase and the stress in an equivalent continuum
in the absence of fluid pressure. For porosity n, the relation reads: σequ.

ij = (1− n)σsolid
ij .

This last relation may not be very useful if porosity is not homogeneous. If it happens, one can
define the equivalent bulk stress a the particles scale by assigning a volume to each particle. This
volume can be obtained from TesselationWrapper (see e.g. [Catalano2014a])

yade._utils.calm([(int)mask=-1 ]) → None
Set translational and rotational velocities of bodies to zero. Applied to all bodies by default. To
calm only some bodies, use mask parameter, it will calm only bodies with groupMask compatible
to given value

yade._utils.coordsAndDisplacements((int)axis[, (tuple)Aabb=() ]) → tuple
Return tuple of 2 same-length lists for coordinates and displacements (coordinate minus reference
coordinate) along given axis (1st arg); if the Aabb=((x_min,y_min,z_min),(x_max,y_max,z_-
max)) box is given, only bodies within this box will be considered.

yade._utils.createInteraction((int)id1, (int)id2) → Interaction
Create interaction between given bodies by hand.
Current engines are searched for IGeomDispatcher and IPhysDispatcher (might be both hidden
in InteractionLoop). Geometry is created using force parameter of the geometry dispatcher,
wherefore the interaction will exist even if bodies do not spatially overlap and the functor would
return false under normal circumstances.

Warning: This function will very likely behave incorrectly for periodic simulations (though
it could be extended it to handle it farily easily).

yade._utils.fabricTensor([(bool)splitTensor=False[, (bool)revertSign=False[,
(float)thresholdForce=nan ] ] ]) → tuple

Compute the fabric tensor of the periodic cell. The original paper can be found in [Satake1982].
Parameters

• splitTensor (bool) – split the fabric tensor into two parts related to the strong
and weak contact forces respectively.

• revertSign (bool) – it must be set to true if the contact law’s convention takes
compressive forces as positive.

• thresholdForce (Real) – if the fabric tensor is split into two parts, a threshold
value can be specified otherwise the mean contact force is considered by default.
It is worth to note that this value has a sign and the user needs to set it according
to the convention adopted for the contact law. To note that this value could be
set to zero if one wanted to make distinction between compressive and tensile
forces.

322 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

yade._utils.flipCell([(Matrix3)flip=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0) ]) → Matrix3
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible.
This function relies on the fact that periodic cell defines by repetition or its corners regular grid of
points in R3; however, all cells generating identical grid are equivalent and can be flipped one over
another. This necessiatates adjustment of Interaction.cellDist for interactions that cross boundary
and didn’t before (or vice versa), and re-initialization of collider. The flip argument can be used
to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the
angles) is computed automatically.
In c++, this function is accessible as Shop::flipCell.

Warning: This function is currently broken and should not be used.

yade._utils.forcesOnCoordPlane((float)arg1, (int)arg2) → Vector3
yade._utils.forcesOnPlane((Vector3)planePt, (Vector3)normal) → Vector3

Find all interactions deriving from NormShearPhys that cross given plane and sum forces (both
normal and shear) on them.

Parameters
• planePt (Vector3) – a point on the plane
• normal (Vector3) – plane normal (will be normalized).

yade._utils.getBodyIdsContacts([(int)bodyID=0 ]) → list
Get a list of body-ids, which contacts the given body.

yade._utils.getCapillaryStress([(float)volume=0[, (bool)mindlin=False ] ]) → Matrix3
Compute and return Love-Weber capillary stress tensor:

σ
cap
ij = 1

V

∑
b lbi f

cap,b
j , where the sum is over all interactions, with l the branch vector

(joining centers of the bodies) and fcap is the capillary force. V can be passed to
the function. If it is not, it will be equal to one in non-periodic cases, or equal to the
volume of the cell in periodic cases. Only the CapillaryPhys interaction type is supported
presently. Using this function with physics MindlinCapillaryPhys needs to pass True as
second argument.

yade._utils.getDepthProfiles((float)volume, (int)nCell, (float)dz, (float)zRef) → tuple
Compute and return the particle velocity and solid volume fraction (porosity) depth profile. For
each defined cell z, the k component of the average particle velocity reads:

< vk >z=
∑

p Vpv
p
k/

∑
p Vp,

where the sum is made over the particles contained in the cell, vpk is the k component of
the velocity associated to particle p, and Vp is the part of the volume of the particle p
contained inside the cell. This definition allows to smooth the averaging, and is equivalent
to taking into account the center of the particles only when there is a lot of particles
in each cell. As for the solid volume fraction, it is evaluated in the same way: for each
defined cell z, it reads:
< φ >z= 1

Vcell

∑
p Vp, where Vcell is the volume of the cell considered, and Vp is the

volume of particle p contained in cell z. This function gives depth profiles of average
velocity and solid volume fraction, returning the average quantities in each cell of height
dz, from the reference horizontal plane at elevation zRef (input parameter) until the
plane of elevation zRef+nCell*dz (input parameters).

yade._utils.getSpheresMass([(int)mask=-1 ]) → float
Compute the total mass of spheres in the simulation (might crash for now if dynamic bodies are
not spheres), mask parameter is considered

yade._utils.getSpheresVolume([(int)mask=-1 ]) → float
Compute the total volume of spheres in the simulation (might crash for now if dynamic bodies are
not spheres), mask parameter is considered

2.11. yade.utils module 323



Reference Manual, Release Yade documentation 2nd ed.

yade._utils.getSpheresVolume2D([(int)mask=-1 ]) → float
Compute the total volume of discs in the simulation (might crash for now if dynamic bodies are
not discs), mask parameter is considered

yade._utils.getStress([(float)volume=0 ]) → Matrix3
Compute and return Love-Weber stress tensor:

σij =
1
V

∑
b fbi l

b
j , where the sum is over all interactions, with f the contact force and l

the branch vector (joining centers of the bodies). Stress is negativ for repulsive contact
forces, i.e. compression. V can be passed to the function. If it is not, it will be equal to
the volume of the cell in periodic cases, or to the one deduced from utils.aabbDim() in
non-periodic cases.

yade._utils.getStressAndTangent([(float)volume=0[, (bool)symmetry=True ] ]) → tuple
Compute overall stress of periodic cell using the same equation as function getStress. In addition,
the tangent operator is calculated using the equation published in [Kruyt and Rothenburg1998]_:

Sijkl =
1

V

∑
c

(knniljnkll + kttiljtkll)

Parameters
• volume (float) – same as in function getStress
• symmetry (bool) – make the tensors symmetric.

Returns macroscopic stress tensor and tangent operator as py::tuple
yade._utils.getStressProfile((float)volume, (int)nCell, (float)dz, (float)zRef, (ob-

ject)vPartAverageX, (object)vPartAverageY, (ob-
ject)vPartAverageZ) → tuple

Compute and return the stress tensor depth profile, including the contribution from Love-Weber
stress tensor and the dynamic stress tensor taking into account the effect of particles inertia. For
each defined cell z, the stress tensor reads:

σz
ij =

1
V

∑
c f

c
i l

c,z
j − 1

V

∑
p mpu

′p
i u

′p
j ,

where the first sum is made over the contacts which are contained or cross the cell z, f^c
is the contact force from particle 1 to particle 2, and l^{c,z} is the part of the branch
vector from particle 2 to particle 1, contained in the cell. The second sum is made
over the particles, and u’^p is the velocity fluctuations of the particle p with respect
to the spatial averaged particle velocity at this point (given as input parameters). The
expression of the stress tensor is the same as the one given in getStress plus the inertial
contribution. Apart from that, the main difference with getStress stands in the fact that
it gives a depth profile of stress tensor, i.e. from the reference horizontal plane at elevation
zRef (input parameter) until the plane of elevation zRef+nCell*dz (input parameters),
it is computing the stress tensor for each cell of height dz. For the love-Weber stress
contribution, the branch vector taken into account in the calculations is only the part
of the branch vector contained in the cell considered. To validate the formulation, it
has been checked that activating only the Love-Weber stress tensor, and suming all the
contributions at the different altitude, we recover the same stress tensor as when using
getStress. For my own use, I have troubles with strong overlap between fixed object,
so that I made a condition to exclude the contribution to the stress tensor of the fixed
objects, this can be desactivated easily if needed (and should be desactivated for the
comparison with getStress).

yade._utils.getViscoelasticFromSpheresInteraction((float)tc, (float)en, (float)es) → dict
Attention! The function is deprecated! Compute viscoelastic interaction parameters from analytical

324 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

solution of a pair spheres collision problem:

kn =
m

t2c

(
π2 + (ln en)2

)
cn = −

2m

tc
ln en

kt =
2

7

m

t2c

(
π2 + (ln et)2

)
ct = −

2

7

m

tc
ln et

where kn, cn are normal elastic and viscous coefficients and kt, ct shear elastic and viscous coeffi-
cients. For details see [Pournin2001].

Parameters
• m (float) – sphere mass m
• tc (float) – collision time tc

• en (float) – normal restitution coefficient en
• es (float) – tangential restitution coefficient es

Returns dictionary with keys kn (the value of kn), cn (cn), kt (kt), ct (ct).

yade._utils.growParticle((int)bodyID, (float)multiplier[, (bool)updateMass=True ]) → None
Change the size of a single sphere (to be implemented: single clump). If updateMass=True, then
the mass is updated.

yade._utils.growParticles((float)multiplier[, (bool)updateMass=True[,
(bool)dynamicOnly=True ] ]) → None

Change the size of spheres and sphere clumps by the multiplier. If updateMass=True, then the
mass and inertia are updated. dynamicOnly=True will select dynamic bodies.

yade._utils.highlightNone() → None
Reset highlight on all bodies.

yade._utils.inscribedCircleCenter((Vector3)v1, (Vector3)v2, (Vector3)v3) → Vector3
Return center of inscribed circle for triangle given by its vertices v1, v2, v3.

yade._utils.interactionAnglesHistogram((int)axis, (int)mask, (int)bins, (tuple)aabb,
(bool)sphSph, (float)minProjLen) → tuple

yade._utils.intrsOfEachBody() → list
returns list of lists of interactions of each body

yade._utils.kineticEnergy([(bool)findMaxId=False ]) → object
Compute overall kinetic energy of the simulation as∑ 1

2

(
miv

2
i +ω(IωT )

)
.

For aspherical bodies, the inertia tensor I is transformed to global frame, before multiplied by ω,
therefore the value should be accurate.

yade._utils.maxOverlapRatio() → float
Return maximum overlap ration in interactions (with ScGeom) of two spheres. The ratio is com-
puted as uN

2(r1r2)/r1+r2
, where uN is the current overlap distance and r1, r2 are radii of the two

spheres in contact.
yade._utils.momentum() → Vector3

TODO
yade._utils.negPosExtremeIds((int)axis, (float)distFactor) → tuple

Return list of ids for spheres (only) that are on extremal ends of the specimen along given axis;
distFactor multiplies their radius so that sphere that do not touch the boundary coordinate can
also be returned.

2.11. yade.utils module 325



Reference Manual, Release Yade documentation 2nd ed.

yade._utils.normalShearStressTensors([(bool)compressionPositive=False[,
(bool)splitNormalTensor=False[,
(float)thresholdForce=nan ] ] ]) → tuple

Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal
forces, the other by shear forces. The formulation can be found in [Thornton2000], eq. (3):

σij =
2

V

∑
RNninj +

2

V

∑
RTnitj

where V is the cell volume, R is “contact radius” (in our implementation, current distance between
particle centroids), n is the normal vector, t is a vector perpendicular to n, N and T are norms of
normal and shear forces.

Parameters
• splitNormalTensor (bool) – if true the function returns normal stress tensor

split into two parts according to the two subnetworks of strong an weak forces.
• thresholdForce (Real) – threshold value according to which the normal stress

tensor can be split (e.g. a zero value would make distinction between tensile and
compressive forces).

yade._utils.numIntrsOfEachBody() → list
returns list of number of interactions of each body

yade._utils.pointInsidePolygon((tuple)arg1, (object)arg2) → bool

yade._utils.porosity([(float)volume=-1 ]) → float
Compute packing porosity V−Vs

V
where V is overall volume and Vs is volume of spheres.

Parameters volume (float) – overall volume V . For periodic simulations, current
volume of the Cell is used. For aperiodic simulations, the value deduced from
utils.aabbDim() is used. For compatibility reasons, positive values passed by the
user are also accepted in this case.

yade._utils.ptInAABB((Vector3)arg1, (Vector3)arg2, (Vector3)arg3) → bool
Return True/False whether the point p is within box given by its min and max corners

yade._utils.scalarOnColorScale((float)arg1, (float)arg2, (float)arg3) → Vector3
yade._utils.setContactFriction((float)angleRad) → None

Modify the friction angle (in radians) inside the material classes and existing contacts. The friction
for non-dynamic bodies is not modified.

yade._utils.setNewVerticesOfFacet((Body)b, (Vector3)v1, (Vector3)v2, (Vector3)v3) → None
Sets new vertices (in global coordinates) to given facet.

yade._utils.setRefSe3() → None
Set reference positions and orientations of all bodies equal to their current positions and orienta-
tions.

yade._utils.shiftBodies((list)ids, (Vector3)shift) → float
Shifts bodies listed in ids without updating their velocities.

yade._utils.spiralProject((Vector3)pt, (float)dH_dTheta[, (int)axis=2[,
(float)periodStart=nan[, (float)theta0=0 ] ] ]) → tuple

yade._utils.sumFacetNormalForces((object)ids[, (int)axis=-1 ]) → float
Sum force magnitudes on given bodies (must have shape of the Facet type), considering only part
of forces perpendicular to each facet’s face; if axis has positive value, then the specified axis (0=x,
1=y, 2=z) will be used instead of facet’s normals.

yade._utils.sumForces((list)ids, (Vector3)direction) → float
Return summary force on bodies with given ids, projected on the direction vector.

yade._utils.sumTorques((list)ids, (Vector3)axis, (Vector3)axisPt) → float
Sum forces and torques on bodies given in ids with respect to axis specified by a point axisPt and
its direction axis.

326 Chapter 2. Yade modules



Reference Manual, Release Yade documentation 2nd ed.

yade._utils.totalForceInVolume() → tuple
Return summed forces on all interactions and average isotropic stiffness, as tuple (Vector3,float)

yade._utils.unbalancedForce([(bool)useMaxForce=False ]) → float
Compute the ratio of mean (or maximum, if useMaxForce) summary force on bodies and mean force
magnitude on interactions. For perfectly static equilibrium, summary force on all bodies is zero
(since forces from interactions cancel out and induce no acceleration of particles); this ratio will tend
to zero as simulation stabilizes, though zero is never reached because of finite precision computation.
Sufficiently small value can be e.g. 1e-2 or smaller, depending on how much equilibrium it should
be.

yade._utils.voidratio2D([(float)zlen=1 ]) → float
Compute 2D packing void ratio V−Vs

Vs
where V is overall volume and Vs is volume of disks.

Parameters zlen (float) – length in the third direction.

yade._utils.voxelPorosity([(int)resolution=200[, (Vector3)start=Vector3(0, 0, 0)[, (Vec-
tor3)end=Vector3(0, 0, 0) ] ] ]) → float

Compute packing porosity V−Vv

V
where V is a specified volume (from start to end) and Vv is volume

of voxels that fall inside any sphere. The calculation method is to divide whole volume into a dense
grid of voxels (at given resolution), and count the voxels that fall inside any of the spheres. This
method allows one to calculate porosity in any given sub-volume of a whole sample. It is properly
excluding part of a sphere that does not fall inside a specified volume.

Parameters
• resolution (int) – voxel grid resolution, values bigger than resolution=1600

require a 64 bit operating system, because more than 4GB of RAM is used, a
resolution=800 will use 500MB of RAM.

• start (Vector3) – start corner of the volume.
• end (Vector3) – end corner of the volume.

yade._utils.wireAll() → None
Set Shape::wire on all bodies to True, rendering them with wireframe only.

yade._utils.wireNoSpheres() → None
Set Shape::wire to True on non-spherical bodies (Facets, Walls).

yade._utils.wireNone() → None
Set Shape::wire on all bodies to False, rendering them as solids.

2.12 yade.ymport module

Import geometry from various formats (‘import’ is python keyword, hence the name ‘ymport’).
yade.ymport.ele(nodeFileName, eleFileName, shift=(0, 0, 0), scale=1.0, **kw)

Import tetrahedral mesh from .ele file, return list of created tetrahedrons.
Parameters

• nodeFileName (string) – name of .node file
• eleFileName (string) – name of .ele file
• shift ((float,float,float)|Vector3) – (X,Y,Z) parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.polyhedron

yade.ymport.gengeo(mntable, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Imports geometry from LSMGenGeo library and creates spheres. Since 2012 the package is avail-
able in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/python-
demgengeo.html

2.12. yade.ymport module 327

http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html


Reference Manual, Release Yade documentation 2nd ed.

Parameters
mntable: mntable object, which creates by LSMGenGeo library, see example
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.sphere

LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.
Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gengeoFile(fileName=’file.geo’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from LSMGenGeo .geo file and creates spheres. Since 2012 the package is avail-
able in Debian/Ubuntu and known as python-demgengeo http://packages.qa.debian.org/p/python-
demgengeo.html

Parameters
filename: string file which has 4 colums [x, y, z, radius].
shift: Vector3 Vector3(X,Y,Z) parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported geometry
**kw: (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
LSMGenGeo library allows one to create pack of spheres with given [Rmin:Rmax] with null stress
inside the specimen. Can be useful for Mining Rock simulation.
Example: examples/packs/packs.py, usage of LSMGenGeo library in exam-
ples/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gmsh(meshfile=’file.mesh’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from mesh file and creates facets.

Parameters
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported mesh
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets forming the specimen.
mesh files can be easily created with GMSH. Example added to examples/regular-sphere-
pack/regular-sphere-pack.py

328 Chapter 2. Yade modules

https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://packages.qa.debian.org/p/python-demgengeo.html
http://packages.qa.debian.org/p/python-demgengeo.html
https://github.com/yade/trunk/blob/master/examples/packs/packs.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://github.com/yade/trunk/blob/master/examples/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://www.geuz.org/gmsh/
https://github.com/yade/trunk/blob/master/examples/regular-sphere-pack/regular-sphere-pack.py
https://github.com/yade/trunk/blob/master/examples/regular-sphere-pack/regular-sphere-pack.py


Reference Manual, Release Yade documentation 2nd ed.

Additional examples of mesh-files can be downloaded from http://www-
roc.inria.fr/gamma/download/download.php

yade.ymport.gts(meshfile, shift=(0, 0, 0), scale=1.0, **kw)
Read given meshfile in gts format.

Parameters
meshfile: string name of the input file.
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets.
yade.ymport.iges(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)

Import triangular mesh from .igs file, return list of created facets.
Parameters

• fileName (string) – name of iges file
• shift ((float,float,float)|Vector3) – (X,Y,Z) parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.facet
• returnConnectivityTable (bool) – if True, apart from facets returns also nodes

(list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3) element nodes
ids). If False (default), returns only facets

yade.ymport.stl(file, dynamic=None, fixed=True, wire=True, color=None, highlight=False,
noBound=False, material=-1)

Import geometry from stl file, return list of created facets.
yade.ymport.text(fileName, shift=Vector3(0, 0, 0), scale=1.0, **kw)

Load sphere coordinates from file, returns a list of corresponding bodies; that may be inserted to
the simulation with O.bodies.append().

Parameters
• filename (string) – file which has 4 colums [x, y, z, radius].
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.textClumps(fileName, shift=Vector3(0, 0, 0), discretization=0, orienta-
tion=Quaternion((1, 0, 0), 0), scale=1.0, **kw)

Load clumps-members from file, insert them to the simulation.
Parameters

• filename (str) – file name
• format (str) – the name of output format. Supported x_y_z_r‘(default), ‘x_-

y_z_r_clumpId
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

2.12. yade.ymport module 329

http://www-roc.inria.fr/gamma/download/download.php
http://www-roc.inria.fr/gamma/download/download.php


Reference Manual, Release Yade documentation 2nd ed.

yade.ymport.textExt(fileName, format=’x_y_z_r’, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load sphere coordinates from file in specific format, returns a list of corresponding bodies; that
may be inserted to the simulation with O.bodies.append().

Parameters
• filename (str) – file name
• format (str) – the name of output format. Supported x_y_z_r‘(default), ‘x_-

y_z_r_matId
• shift ([float,float,float]) – [X,Y,Z] parameter moves the specimen.
• scale (float) – factor scales the given data.
• **kw – (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.unv(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw)
Import geometry from unv file, return list of created facets.

param string fileName name of unv file
param (float,float,float)|Vector3 shift (X,Y,Z) parameter moves the spec-

imen.
param float scale factor scales the given data.
param **kw (unused keyword arguments) is passed to utils.facet
param bool returnConnectivityTable if True, apart from facets returns

also nodes (list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3)
element nodes ids). If False (default), returns only facets

unv files are mainly used for FEM analyses (are used by OOFEM and Abaqus), but triangular
elements can be imported as facets. These files cen be created e.g. with open-source free software
Salome.
Example: examples/test/unv-read/unvRead.py.

330 Chapter 2. Yade modules

http://www.oofem.org/
http://www.simulia.com/products/abaqus_fea.html
http://salome-platform.org
https://github.com/yade/trunk/blob/master/examples/test/unv-read/unvRead.py


Bibliography

[yade:background] V. Šmilauer, B. Chareyre (2010), (Yade dem formulation). In Yade Documentation (
V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext) (http://yade-dem.org/doc/formulation.html)

[yade:doc] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), (Yade Documentation). The Yade
Project. (http://yade-dem.org/doc/)

[yade:manual] V. Šmilauer, A. Gladky, J. Kozicki, C. Modenese, J. Stránský (2010), (Yade, using and
programming). In Yade Documentation ( V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext)
(http://yade-dem.org/doc/)

[yade:reference] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki,
C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), (Yade Reference Documentation).
In Yade Documentation ( V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext) (http://yade-
dem.org/doc/)

[Bance2014] Bance, S., Fischbacher, J., Schrefl, T., Zins, I., Rieger, G., Cassignol, C. (2014), (Micromag-
netics of shape anisotropy based permanent magnets). Journal of Magnetism and Magnetic Materials
(363), pages 121–124.

[Bonilla2015] Bonilla-Sierra, V., Scholtès, L., Donzé, F.V., Elmouttie, M.K. (2015), (Rock slope stability
analysis using photogrammetric data and dfn–dem modelling). Acta Geotechnica, pages 1-15. DOI
10.1007/s11440-015-0374-z (fulltext)

[Boon2012a] Boon,C.W., Houlsby, G.T., Utili, S. (2012), (A new algorithm for contact detection be-
tween convex polygonal and polyhedral particles in the discrete element method). Computers and
Geotechnics (44), pages 73 - 82. DOI 10.1016/j.compgeo.2012.03.012 (fulltext)

[Boon2012b] Boon,C.W., Houlsby, G.T., Utili, S. (2013), (A new contact detection algorithm for three-
dimensional non-spherical particles). Powder Technology. DOI 10.1016/j.powtec.2012.12.040 (full-
text)

[Boon2014] Boon, C.W., Houlsby, G.T., Utili, S. (2014), (New insights into the 1963 vajont slide using
2d and 3d distinct-element method analyses). Géotechnique (64), pages 800–816.

[Boon2015] Boon, C.W., Houlsby, G.T., Utili, S. (2015), (A new rock slicing method based on linear
programming). Computers and Geotechnics (65), pages 12–29.

[Bourrier2013] Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T. (2013), (Discrete modeling of gran-
ular soils reinforcement by plant roots). Ecological Engineering. DOI 10.1016/j.ecoleng.2013.05.002
(fulltext)

[Bourrier2015] Bourrier, F., Lambert, S., Baroth, J. (2015), (A reliability-based approach for the design
of rockfall protection fences). Rock Mechanics and Rock Engineering (48), pages 247–259.

[Catalano2014a] Catalano, E., Chareyre, B., Barthélémy, E. (2014), (Pore-scale modeling of fluid-
particles interaction and emerging poromechanical effects). International Journal for Numeri-
cal and Analytical Methods in Geomechanics (38), pages 51–71. DOI 10.1002/nag.2198 (fulltext)
(http://arxiv.org/pdf/1304.4895.pdf)

[Chareyre2012a] Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E. (2012), (Pore-scale modeling of
viscous flow and induced forces in dense sphere packings). Transport in Porous Media (92), pages
473-493. DOI 10.1007/s11242-011-9915-6 (fulltext)

331

https://yade-dem.org/w/images/e/e0/YadeFormulation.pdf
http://yade-dem.org/doc/formulation.html
http://yade-dem.org/doc/
https://yade-dem.org/w/images/0/09/YadeManuals.pdf
http://yade-dem.org/doc/
https://yade-dem.org/w/images/9/98/YadeRefDoc.pdf
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://dx.doi.org/10.1007/s11440-015-0374-z
http://dx.doi.org/10.1007/s11440-015-0374-z
http://dx.doi.org/10.1016/j.compgeo.2012.03.012
http://www.sciencedirect.com/science/article/pii/S0266352X12000535
http://dx.doi.org/10.1016/j.powtec.2012.12.040
http://www.sciencedirect.com/science/article/pii/S003259101200839X
http://www.sciencedirect.com/science/article/pii/S003259101200839X
http://dx.doi.org/10.1016/j.ecoleng.2013.05.002
http://dx.doi.org/10.1016/j.ecoleng.2013.05.002
http://dx.doi.org/10.1002/nag.2198
http://dx.doi.org/10.1002/nag.2198
http://arxiv.org/pdf/1304.4895.pdf
http://dx.doi.org/10.1007/s11242-011-9915-6
http://dx.doi.org/10.1007/s11242-011-9915-6


Reference Manual, Release Yade documentation 2nd ed.

[Chen2007] Chen, F., Drumm, E. C., Guiochon, G. (2007), (Prediction/verification of particle motion
in one dimension with the discrete-element method). International Journal of Geomechanics, ASCE
(7), pages 344–352. DOI 10.1061/(ASCE)1532-3641(2007)7:5(344)

[Chen2011a] Chen, F., Drumm, E., Guiochon G. (2011), (Coupled discrete element and finite
volume solution of two classical soil mechanics problems). Computers and Geotechnics. DOI
10.1016/j.compgeo.2011.03.009 (fulltext)

[Chen2012] Chen, Jingsong, Huang, Baoshan, Chen, Feng, Shu, Xiang (2012), (Application of discrete
element method to superpave gyratory compaction). Road Materials and Pavement Design (13),
pages 480-500. DOI 10.1080/14680629.2012.694160 (fulltext)

[Chen2014] Chen, J., Huang, B., Shu, X., Hu, C. (2014), (Dem simulation of laboratory compaction of
asphalt mixtures using an open source code). Journal of Materials in Civil Engineering.

[Dang2010a] Dang, H. K., Meguid, M. A. (2010), (Algorithm to generate a discrete element speci-
men with predefined properties). International Journal of Geomechanics (10), pages 85-91. DOI
10.1061/(ASCE)GM.1943-5622.0000028

[Dang2010b] Dang, H. K., Meguid, M. A. (2010), (Evaluating the performance of an explicit dynamic
relaxation technique in analyzing non-linear geotechnical engineering problems). Computers and
Geotechnics (37), pages 125 - 131. DOI 10.1016/j.compgeo.2009.08.004

[Donze2008] Donzé, F.V. (2008), (Impacts on cohesive frictional geomaterials). European Journal of
Environmental and Civil Engineering (12), pages 967–985.

[Duriez2011] Duriez,J., Darve, F., Donzé, F.V. (2011), (A discrete modeling-based constitutive relation
for infilled rock joints). International Journal of Rock Mechanics & Mining Sciences (48), pages
458–468. DOI 10.1016/j.ijrmms.2010.09.008

[Duriez2013] Duriez, J., Darve, F., Donzé, F.V. (2013), (Incrementally non-linear plasticity applied to
rock joint modelling). International Journal for Numerical and Analytical Methods in Geomechanics
(37), pages 453–477. DOI 10.1002/nag.1105 (fulltext)

[Dyck2015] Dyck, N. J, Straatman, A.G. (2015), (A new approach to digital generation of spherical void
phase porous media microstructures). International Journal of Heat and Mass Transfer (81), pages
470–477.

[Elias2014] Jan Elias (2014), (Simulation of railway ballast using crushable polyhedral particles). Powder
Technology (264), pages 458–465. DOI 10.1016/j.powtec.2014.05.052

[Epifancev2013] Epifancev, K., Nikulin, A., Kovshov, S., Mozer, S., Brigadnov, I. (2013), (Modeling of
peat mass process formation based on 3d analysis of the screw machine by the code yade). American
Journal of Mechanical Engineering (1), pages 73–75. DOI 10.12691/ajme-1-3-3 (fulltext)

[Epifantsev2012] Epifantsev, K., Mikhailov, A., Gladky, A. (2012), (Proizvodstvo kuskovogo torfa, ek-
strudirovanie, forma zakhodnoi i kalibriruyushchei chasti fil’ery matritsy, metod diskretnykh ele-
mentov [rus]). Mining informational and analytical bulletin (scientific and technical journal), pages
212-219.

[Favier2009a] Favier, L., Daudon, D., Donzé, F.V., Mazars, J. (2009), (Predicting the drag coefficient
of a granular flow using the discrete element method). Journal of Statistical Mechanics: Theory and
Experiment (2009), pages P06012.

[Favier2012] Favier, L., Daudon, D., Donzé, F.V. (2012), (Rigid obstacle impacted by a supercritical
cohesive granular flow using a 3d discrete element model). Cold Regions Science and Technology
(85), pages 232–241. (fulltext)

[Gladky2014] Gladkyy, Anton, Schwarze, Rüdiger (2014), (Comparison of different capillary bridge mod-
els for application in the discrete element method). Granular Matter, pages 1-10. DOI 10.1007/s10035-
014-0527-z (fulltext)

[Grujicic2013] Grujicic, M, Snipes, JS, Ramaswami, S, Yavari, R (2013), (Discrete element modeling and
analysis of structural collapse/survivability of a building subjected to improvised explosive device
(ied) attack). Advances in Materials Science and Applications (2), pages 9–24.

332 Bibliography

http://dx.doi.org/10.1061/(ASCE)1532-3641(2007)7:5(344)
http://dx.doi.org/10.1016/j.compgeo.2011.03.009
http://www.sciencedirect.com/science/article/pii/S0266352X11000504
http://dx.doi.org/10.1080/14680629.2012.694160
http://www.tandfonline.com/doi/abs/10.1080/14680629.2012.694160
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000028
http://dx.doi.org/10.1016/j.compgeo.2009.08.004
http://dx.doi.org/10.1016/j.ijrmms.2010.09.008
http://dx.doi.org/10.1002/nag.1105
http://dx.doi.org/10.1002/nag.1105
http://dx.doi.org/10.1016/j.powtec.2014.05.052
http://dx.doi.org/10.12691/ajme-1-3-3
http://pubs.sciepub.com/ajme/1/3/3
http://dx.doi.org/10.1016/j.coldregions.2012.09.010
http://dx.doi.org/10.1007/s10035-014-0527-z
http://dx.doi.org/10.1007/s10035-014-0527-z
http://dx.doi.org/10.1007/s10035-014-0527-z


Reference Manual, Release Yade documentation 2nd ed.

[Guo2014] Guo, Ning, Zhao, Jidong (2014), (A coupled fem/dem approach for hierarchical multiscale
modelling of granular media). International Journal for Numerical Methods in Engineering (99),
pages 789–818. DOI 10.1002/nme.4702 (fulltext)

[Guo2015] N. Guo, J. Zhao (2015), (Multiscale insights into classical geomechanics problems). Interna-
tional Journal for Numerical and Analytical Methods in Geomechanics. (under review)

[Gusenbauer2012] Gusenbauer, M., Kovacs, A., Reichel, F., Exl, L., Bance, S., Özelt, H., Schrefl, T.
(2012), (Self-organizing magnetic beads for biomedical applications). Journal of Magnetism and Mag-
netic Materials (324), pages 977–982.

[Gusenbauer2014] Gusenbauer, M., Nguyen, H., Reichel, F., Exl, L., Bance, S., Fischbacher, J., Özelt,
H., Kovacs, A., Brandl, M., Schrefl, T. (2014), (Guided self-assembly of magnetic beads for biomedical
applications). Physica B: Condensed Matter (435), pages 21–24.

[Hadda2013] Hadda, Nejib, Nicot, François, Bourrier, Franck, Sibille, Luc, Radjai, Farhang, Darve, Félix
(2013), (Micromechanical analysis of second order work in granular media). Granular Matter (15),
pages 221–235. DOI 10.1007/s10035-013-0402-3 (fulltext)

[Hadda2015] Hadda, N., Nicot, F., Wan, R., Darve, F. (2015), (Microstructural self-organization in
granular materials during failure). Comptes Rendus Mécanique.

[Harthong2009] Harthong, B., Jerier, J.F., Doremus, P., Imbault, D., Donzé, F.V. (2009), (Modeling of
high-density compaction of granular materials by the discrete element method). International Journal
of Solids and Structures (46), pages 3357–3364. DOI 10.1016/j.ijsolstr.2009.05.008

[Harthong2012b] Harthong, B., Jerier, J.-F., Richefeu, V., Chareyre, B., Doremus, P., Imbault, D.,
Donzé, F.V. (2012), (Contact impingement in packings of elastic–plastic spheres, application to
powder compaction). International Journal of Mechanical Sciences (61), pages 32–43.

[Hartong2012a] Harthong, B., Scholtès, L., Donzé, F.-V. (2012), (Strength characterization of rock
masses, using a coupled dem–dfn model). Geophysical Journal International (191), pages 467–480.
DOI 10.1111/j.1365-246X.2012.05642.x (fulltext)

[Hassan2010] Hassan, A., Chareyre, B., Darve, F., Meyssonier, J., Flin, F. (2010 (submitted)),
(Microtomography-based discrete element modelling of creep in snow). Granular Matter.

[Hilton2013] Hilton, J. E., Tordesillas, A. (2013), (Drag force on a spherical intruder in a granular bed at
low froude number). Phys. Rev. E (88), pages 062203. DOI 10.1103/PhysRevE.88.062203 (fulltext)

[Jerier2009] Jerier, J.-F., Imbault, D.and Donzé, F.V., Doremus, P. (2009), (A geometric algorithm
based on tetrahedral meshes to generate a dense polydisperse sphere packing). Granular Matter (11).
DOI 10.1007/s10035-008-0116-0

[Jerier2010a] Jerier, J.-F., Richefeu, V., Imbault, D., Donzé, F.V. (2010), (Packing spherical discrete
elements for large scale simulations). Computer Methods in Applied Mechanics and Engineering. DOI
10.1016/j.cma.2010.01.016

[Jerier2010b] Jerier, J.-F., Hathong, B., Richefeu, V., Chareyre, B., Imbault, D., Donzé, F.-V., Dore-
mus, P. (2010), (Study of cold powder compaction by using the discrete element method). Powder
Technology (In Press). DOI 10.1016/j.powtec.2010.08.056

[Kozicki2006a] Kozicki, J., Tejchman, J. (2006), (2D lattice model for fracture in brittle materials).
Archives of Hydro-Engineering and Environmental Mechanics (53), pages 71–88. (fulltext)

[Kozicki2007a] Kozicki, J., Tejchman, J. (2007), (Effect of aggregate structure on fracture process in
concrete using 2d lattice model”). Archives of Mechanics (59), pages 365–384. (fulltext)

[Kozicki2008] Kozicki, J., Donzé, F.V. (2008), (A new open-source software developed for numerical sim-
ulations using discrete modeling methods). Computer Methods in Applied Mechanics and Engineering
(197), pages 4429–4443. DOI 10.1016/j.cma.2008.05.023 (fulltext)

[Kozicki2009] Kozicki, J., Donzé, F.V. (2009), (Yade-open dem: an open-source software using a discrete
element method to simulate granular material). Engineering Computations (26), pages 786–805. DOI
10.1108/02644400910985170 (fulltext)

[Lomine2013] Lominé, F., Scholtès, L., Sibille, L., Poullain, P. (2013), (Modelling of fluid-solid in-
teraction in granular media with coupled lb/de methods: application to piping erosion). Interna-

Bibliography 333

http://dx.doi.org/10.1002/nme.4702
http://dx.doi.org/10.1002/nme.4702
http://dx.doi.org/10.1007/s10035-013-0402-3
http://dx.doi.org/10.1007/s10035-013-0402-3
http://dx.doi.org/10.1016/j.ijsolstr.2009.05.008
http://dx.doi.org/10.1111/j.1365-246X.2012.05642.x
http://dx.doi.org/10.1111/j.1365-246X.2012.05642.x
http://dx.doi.org/10.1103/PhysRevE.88.062203
http://link.aps.org/doi/10.1103/PhysRevE.88.062203
http://dx.doi.org/10.1007/s10035-008-0116-0
http://dx.doi.org/10.1016/j.cma.2010.01.016
http://dx.doi.org/10.1016/j.powtec.2010.08.056
https://yade-dem.org/w/images/5/54/Ahem_2006_kozicki.pdf
https://yade-dem.org/w/images/0/09/Ams_2007_kozicki_tejchman.pdf
http://dx.doi.org/10.1016/j.cma.2008.05.023
https://yade-dem.org/w/images/3/30/CMAME_YADE_2008.pdf
http://dx.doi.org/10.1108/02644400910985170
https://yade-dem.org/w/images/8/80/EC_YADE_2008.pdf


Reference Manual, Release Yade documentation 2nd ed.

tional Journal for Numerical and Analytical Methods in Geomechanics (37), pages 577-596. DOI
10.1002/nag.1109

[Nicot2011] Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F. (2011), (Failure mechanisms in gran-
ular media: a discrete element analysis). Granular Matter (13), pages 255-260. DOI 10.1007/s10035-
010-0242-3

[Nicot2012] Nicot, F., Sibille, L., Darve, F. (2012), (Failure in rate-independent granular materials as a
bifurcation toward a dynamic regime). International Journal of Plasticity (29), pages 136-154. DOI
10.1016/j.ijplas.2011.08.002

[Nicot2013a] Nicot, F., Hadda, N., Darve, F. (2013), (Second-order work analysis for granular mate-
rials using a multiscale approach). International Journal for Numerical and Analytical Methods in
Geomechanics. DOI 10.1002/nag.2175

[Nicot2013b] Nicot, F., Hadda, N., Guessasma, M., Fortin, J., Millet, O. (2013), (On the defini-
tion of the stress tensor in granular media). International Journal of Solids and Structures. DOI
10.1016/j.ijsolstr.2013.04.001 (fulltext)

[Nitka2015] Nitka, M., Tejchman, J. (2015), (Modelling of concrete behaviour in uniaxial compression
and tension with dem). Granular Matter, pages 1–20.

[Puckett2011] Puckett, J.G., Lechenault, F., Daniels, K.E. (2011), (Local origins of volume fraction
fluctuations in dense granular materials). Physical Review E (83), pages 041301. DOI 10.1103/Phys-
RevE.83.041301 (fulltext)

[Sayeed2011] Sayeed, M.A., Suzuki, K., Rahman, M.M., Mohamad, W.H.W., Razlan, M.A., Ahmad, Z.,
Thumrongvut, J., Seangatith, S., Sobhan, MA, Mofiz, SA, others (2011), (Strength and deforma-
tion characteristics of granular materials under extremely low to high confining pressures in triaxial
compression). International Journal of Civil & Environmental Engineering IJCEE-IJENS (11).

[Scholtes2009a] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), (Micromechanics of granular
materials with capillary effects). International Journal of Engineering Science (47), pages 64–75.
DOI 10.1016/j.ijengsci.2008.07.002 (fulltext)

[Scholtes2009b] Scholtès, L., Hicher, P.-Y., Chareyre, B., Nicot, F., Darve, F. (2009), (On the capillary
stress tensor in wet granular materials). International Journal for Numerical and Analytical Methods
in Geomechanics (33), pages 1289–1313. DOI 10.1002/nag.767 (fulltext)

[Scholtes2009c] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), (Discrete modelling of capillary
mechanisms in multi-phase granular media). Computer Modeling in Engineering and Sciences (52),
pages 297–318. (fulltext)

[Scholtes2010] Scholtès, L., Hicher, P.-Y., Sibille, L. (2010), (Multiscale approaches to describe mechan-
ical responses induced by particle removal in granular materials). Comptes Rendus Mécanique (338),
pages 627–638. DOI 10.1016/j.crme.2010.10.003 (fulltext)

[Scholtes2011] Scholtès, L., Donzé, F.V., Khanal, M. (2011), (Scale effects on strength of geomaterials,
case study: coal). Journal of the Mechanics and Physics of Solids (59), pages 1131–1146. DOI
10.1016/j.jmps.2011.01.009 (fulltext)

[Scholtes2012] Scholtès, L., Donzé, F.V. (2012), (Modelling progressive failure in fractured rock masses
using a 3d discrete element method). International Journal of Rock Mechanics and Mining Sciences
(52), pages 18–30. DOI 10.1016/j.ijrmms.2012.02.009 (fulltext)

[Scholtes2013] Scholtès, L., Donzé, F.V. (2013), (A DEM model for soft and hard rocks: role of grain
interlocking on strength). Journal of the Mechanics and Physics of Solids (61), pages 352–369. DOI
10.1016/j.jmps.2012.10.005 (fulltext)

[Scholtes2015a] Scholtès, L., Chareyre, B., Michallet, H., Catalano, E., Marzougui, D. (2015), (Modeling
wave-induced pore pressure and effective stress in a granular seabed). Continuum Mechanics and
Thermodynamics (27), pages 305–323. DOI http://dx.doi.org/10.1007/s00161-014-0377-2

[Scholtes2015b] Scholtès, L., Donzé, F., V. (2015), (A dem analysis of step-path fail-
ure in jointed rock slopes). Comptes rendus - Mécanique (343), pages 155–165. DOI
http://dx.doi.org/10.1016/j.crme.2014.11.002

334 Bibliography

http://dx.doi.org/10.1002/nag.1109
http://dx.doi.org/10.1007/s10035-010-0242-3
http://dx.doi.org/10.1007/s10035-010-0242-3
http://dx.doi.org/10.1016/j.ijplas.2011.08.002
http://dx.doi.org/10.1002/nag.2175
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.001
http://www.sciencedirect.com/science/article/pii/S0020768313001492
http://dx.doi.org/10.1103/PhysRevE.83.041301
http://dx.doi.org/10.1103/PhysRevE.83.041301
http://link.aps.org/doi/10.1103/PhysRevE.83.041301
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/10.1002/nag.767
http://arxiv.org/abs/1105.1013
http://arxiv.org/abs/1203.1234
http://dx.doi.org/10.1016/j.crme.2010.10.003
http://dx.doi.org/10.1016/j.crme.2010.10.003
http://dx.doi.org/10.1016/j.jmps.2011.01.009
http://dx.doi.org/10.1016/j.jmps.2011.01.009
http://dx.doi.org/10.1016/j.ijrmms.2012.02.009
http://dx.doi.org/10.1016/j.ijrmms.2012.02.009
http://dx.doi.org/10.1016/j.jmps.2012.10.005
http://dx.doi.org/10.1016/j.jmps.2012.10.005
http://dx.doi.org/http://dx.doi.org/10.1007/s00161-014-0377-2
http://dx.doi.org/http://dx.doi.org/10.1016/j.crme.2014.11.002


Reference Manual, Release Yade documentation 2nd ed.

[Shiu2008] Shiu, W., Donzé, F.V., Daudeville, L. (2008), (Compaction process in concrete during missile
impact: a dem analysis). Computers and Concrete (5), pages 329–342.

[Shiu2009] Shiu, W., Donzé, F.V., Daudeville, L. (2009), (Discrete element modelling of missile impacts
on a reinforced concrete target). International Journal of Computer Applications in Technology (34),
pages 33–41.

[Sibille2014] Sibille, L., Lominé, F., Poullain, P., Sail, Y., Marot, D. (2014), (Internal erosion in gran-
ular media: direct numerical simulations and energy interpretation). Hydrological Processes. DOI
10.1002/hyp.10351 (fulltext) (First published online Oct. 2014)

[Sibille2015] Sibille, L., Hadda, N., Nicot, F., Tordesillas, A., Darve, F. (2015), (Granular plasticity, a
contribution from discrete mechanics). Journal of the Mechanics and Physics of Solids (75), pages
119–139. DOI 10.1016/j.jmps.2014.09.010 (fulltext)

[Smilauer2006] Václav Šmilauer (2006), (The splendors and miseries of yade design). Annual Report of
Discrete Element Group for Hazard Mitigation. (fulltext)

[Thoeni2013] K. Thoeni, C. Lambert, A. Giacomini, S.W. Sloan (2013), (Discrete modelling of hexagonal
wire meshes with a stochastically distorted contact model). Computers and Geotechnics (49), pages
158–169. DOI 10.1016/j.compgeo.2012.10.014 (fulltext)

[Thoeni2014] K. Thoeni, A. Giacomini, C. Lambert, S.W. Sloan, J.P. Carter (2014), (A 3D discrete
element modelling approach for rockfall analysis with drapery systems). International Journal of Rock
Mechanics and Mining Sciences (68), pages 107–119. DOI 10.1016/j.ijrmms.2014.02.008 (fulltext)

[Tong2012] Tong, A.-T., Catalano, E., Chareyre, B. (2012), (Pore-scale flow simulations: model pre-
dictions compared with experiments on bi-dispersed granular assemblies). Oil & Gas Science and
Technology - Rev. IFP Energies nouvelles. DOI 10.2516/ogst/2012032 (fulltext)

[Tran2011] Tran, V.T., Donzé, F.V., Marin, P. (2011), (A discrete element model of concrete under high
triaxial loading). Cement and Concrete Composites.

[Tran2012] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), (An algorithm for the propagation
of uncertainty in soils using the discrete element method). The Electronic Journal of Geotechnical
Engineering. (fulltext)

[Tran2012c] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2012), (Discrete element and experimen-
tal investigations of the earth pressure distribution on cylindrical shafts). International Journal of
Geomechanics. DOI 10.1061/(ASCE)GM.1943-5622.0000277

[Tran2013] Tran, V.D.H., Meguid, M.A., Chouinard, L.E. (2013), (A finite–discrete element framework
for the 3d modeling of geogrid–soil interaction under pullout loading conditions). Geotextiles and
Geomembranes (37), pages 1-9. DOI 10.1016/j.geotexmem.2013.01.003

[Tran2014] Tran, VDH, Meguid, MA, Chouinard, LE (2014), (Three-dimensional analysis of geogrid-
reinforced soil using a finite-discrete element framework). International Journal of Geomechanics.

[Wan2014] Wan, R, Khosravani, S, Pouragha, M (2014), (Micromechanical analysis of force transport in
wet granular soils). Vadose Zone Journal (13).

[Wang2014] Wang, XiaoLiang, Li, JiaChun (2014), (Simulation of triaxial response of granular materials
by modified dem). Science China Physics, Mechanics & Astronomy (57), pages 2297–2308.

[Zhao2015] J. Zhao, N. Guo (2015), (The interplay between anisotropy and strain localisation in granular
soils: a multiscale insight). Géotechnique. (under review)

[kozicki2014] Kozicki, Jan, Tejchman, Jacek, Mühlhaus, Hans-Bernd (2014), (Discrete simulations of
a triaxial compression test for sand by dem). International Journal for Numerical and Analytical
Methods in Geomechanics (38), pages 1923–1952.

[Catalano2008a] E. Catalano (2008), (Infiltration effects on a partially saturated slope - an application
of the discrete element method and its implementation in the open-source software yade). Master
thesis at UJF-Grenoble. (fulltext)

[Catalano2012] Emanuele Catalano (2012), (A pore-scale coupled hydromechanical model for biphasic
granular media). PhD thesis at Université de Grenoble. (fulltext)

Bibliography 335

http://dx.doi.org/10.1002/hyp.10351
http://dx.doi.org/10.1002/hyp.10351
http://dx.doi.org/10.1016/j.jmps.2014.09.010
http://dx.doi.org/10.1016/j.jmps.2014.09.010
https://yade-dem.org/w/images/a/a6/Smilauer-the_splendors_and_miseries_of_yade_design-2007.pdf
http://dx.doi.org/10.1016/j.compgeo.2012.10.014
http://www.sciencedirect.com/science/article/pii/S0266352X12002121
http://dx.doi.org/10.1016/j.ijrmms.2014.02.008
http://www.sciencedirect.com/science/article/pii/S1365160914000513
http://dx.doi.org/10.2516/ogst/2012032
http://dx.doi.org/10.2516/ogst/2012032
http://www.ejge.com/2012/Ppr12.283alr.pdf
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000277
http://dx.doi.org/10.1016/j.geotexmem.2013.01.003
https://yade-dem.org/w/images/a/af/SlopeStability.pdf
https://yade-dem.org/publi/Catalano_Thesis.pdf


Reference Manual, Release Yade documentation 2nd ed.

[Charlas2013] Benoit Charlas (2013), (Etude du comportement mécanique d’un hydrure intermétallique
utilisé pour le stockage d’hydrogène). PhD thesis at Université de Grenoble. (fulltext)

[Chen2009a] Chen, F. (2009), (Coupled flow discrete element method application in granular porous
media using open source codes). PhD thesis at University of Tennessee, Knoxville. (fulltext)

[Chen2011b] Chen, J. (2011), (Discrete element method (dem) analyses for hot-mix asphalt (hma) mix-
ture compaction). PhD thesis at University of Tennessee, Knoxville. (fulltext)

[Duriez2009a] J. Duriez (2009), (Stabilité des massifs rocheux : une approche mécanique). PhD thesis
at Institut polytechnique de Grenoble. (fulltext)

[Favier2009c] Favier, L. (2009), (Approche numérique par éléments discrets 3d de la sollicitation d’un
écoulement granulaire sur un obstacle). PhD thesis at Université Grenoble I – Joseph Fourier.

[Guo2014c] N. Guo (2014), (Multiscale characterization of the shear behavior of granular media). PhD
thesis at The Hong Kong University of Science and Technology.

[Jerier2009b] Jerier, J.F. (2009), (Modélisation de la compression haute densité des poudres métalliques
ductiles par la méthode des éléments discrets (in french)). PhD thesis at Université Grenoble I –
Joseph Fourier. (fulltext)

[Kozicki2007b] J. Kozicki (2007), (Application of discrete models to describe the fracture process in
brittle materials). PhD thesis at Gdansk University of Technology. (fulltext)

[Marzougui2011] Marzougui, D. (2011), (Hydromechanical modeling of the transport and deformation
in bed load sediment with discrete elements and finite volume). Master thesis at Ecole Nationale
d’Ingénieur de Tunis. (fulltext)

[Scholtes2009d] Luc Scholtès (2009), (modélisation micromécanique des milieux granulaires partiellement
saturés). PhD thesis at Institut National Polytechnique de Grenoble. (fulltext)

[Smilauer2010b] Václav Šmilauer (2010), (Cohesive particle model using the discrete element method on
the yade platform). PhD thesis at Czech Technical University in Prague, Faculty of Civil Engineering
& Université Grenoble I – Joseph Fourier, École doctorale I-MEP2. (fulltext) (LaTeX sources)

[Smilauer2010c] Václav Šmilauer (2010), (Doctoral thesis statement). (PhD thesis summary). (fulltext)
(LaTeX sources)

[Tran2011b] Van Tieng TRAN (2011), (Structures en béton soumises à des chargements mécaniques
extrêmes: modélisation de la réponse locale par la méthode des éléments discrets (in french)). PhD
thesis at Université Grenoble I – Joseph Fourier. (fulltext)

[Addetta2001] G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann (2001), (From solids to granulates -
Discrete element simulations of fracture and fragmentation processes in geomaterials.). In Continuous
and Discontinuous Modelling of Cohesive-Frictional Materials. (fulltext)

[Allen1989] M. P. Allen, D. J. Tildesley (1989), (Computer simulation of liquids). Clarendon Press.
[Alonso2004] F. Alonso-Marroquin, R. Garcia-Rojo, H.J. Herrmann (2004), (Micro-mechanical investiga-

tion of the granular ratcheting). In Cyclic Behaviour of Soils and Liquefaction Phenomena. (fulltext)
[Antypov2011] D. Antypov, J. A. Elliott (2011), (On an analytical solution for the damped hertzian

spring). EPL (Europhysics Letters) (94), pages 50004. (fulltext)
[Bagi2006] Katalin Bagi (2006), (Analysis of microstructural strain tensors for granular as-

semblies). International Journal of Solids and Structures (43), pages 3166 - 3184. DOI
10.1016/j.ijsolstr.2005.07.016

[Bertrand2005] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2005), (Modelling a geo-composite cell
using discrete analysis). Computers and Geotechnics (32), pages 564–577.

[Bertrand2008] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2008), (Discrete element method (dem)
numerical modeling of double-twisted hexagonal mesh). Canadian Geotechnical Journal (45), pages
1104–1117.

[Calvetti1997] Calvetti, F., Combe, G., Lanier, J. (1997), (Experimental micromechanical analysis of a
2d granular material: relation between structure evolution and loading path). Mechanics of Cohesive-
frictional Materials (2), pages 121–163.

336 Bibliography

https://www.yade-dem.org/w/images/8/89/These_BenoitCharlas.pdf
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1051&context=utk_graddiss
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=2102&context=utk_graddiss
http://tel.archives-ouvertes.fr/tel-00462072/fr/
http://tel.archives-ouvertes.fr/tel-00443670/fr/
http://janek.kozicki.pl/phdthesis/kozicki_2007_PhD.pdf
http://yade-dem.org/publi/MasterMarzougui_meta.pdf
http://tel.archives-ouvertes.fr/tel-00363961/en/
http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis-statement.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
https://yade-dem.org/w/images/2/27/VanTranTiengThesis.pdf
http://www.comphys.ethz.ch/hans/p/267.pdf
http://www.comphys.ethz.ch/hans/p/334.pdf
http://stacks.iop.org/0295-5075/94/i=5/a=50004
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.016


Reference Manual, Release Yade documentation 2nd ed.

[Camborde2000a] F. Camborde, C. Mariotti, F.V. Donzé (2000), (Numerical study of rock and concrete
behaviour by discrete element modelling). Computers and Geotechnics (27), pages 225–247.

[Chan2011] D. Chan, E. Klaseboer, R. Manica (2011), (Film drainage and coalescence between de-
formable drops and bubbles.). Soft Matter (7), pages 2235-2264.

[Chareyre2002a] B. Chareyre, L. Briancon, P. Villard (2002), (Theoretical versus experimental modeling
of the anchorage capacity of geotextiles in trenches.). Geosynthet. Int. (9), pages 97–123.

[Chareyre2002b] B. Chareyre, P. Villard (2002), (Discrete element modeling of curved geosynthetic
anchorages with known macro-properties.). In Proc., First Int. PFC Symposium, Gelsenkirchen,
Germany.

[Chareyre2003] Bruno Chareyre (2003), (Modélisation du comportement d’ouvrages composites sol-
géosynthétique par éléments discrets - application aux tranchées d’ancrage en tête de talus.). PhD
thesis at Grenoble University. (fulltext)

[Chareyre2005] Bruno Chareyre, Pascal Villard (2005), (Dynamic spar elements and discrete element
methods in two dimensions for the modeling of soil-inclusion problems). Journal of Engineering
Mechanics (131), pages 689–698. DOI 10.1061/(ASCE)0733-9399(2005)131:7(689) (fulltext)

[CundallStrack1979] P.A. Cundall, O.D.L. Strack (1979), (A discrete numerical model for granular as-
semblies). Geotechnique (), pages 47–65. DOI 10.1680/geot.1979.29.1.47

[Dallavalle1948] J. M. DallaValle (1948), (Micrometrics : the technology of fine particles). Pitman Pub.
Corp.

[DeghmReport2006] F. V. Donzé (ed.), (Annual report 2006) (2006). Discrete Element Group for Hazard
Mitigation. Université Joseph Fourier, Grenoble (fulltext)

[Donze1994a] F.V. Donzé, P. Mora, S.A. Magnier (1994), (Numerical simulation of faults and shear
zones). Geophys. J. Int. (116), pages 46–52.

[Donze1995a] F.V. Donzé, S.A. Magnier (1995), (Formulation of a three-dimensional numerical model
of brittle behavior). Geophys. J. Int. (122), pages 790–802.

[Donze1999a] F.V. Donzé, S.A. Magnier, L. Daudeville, C. Mariotti, L. Davenne (1999), (Study of the
behavior of concrete at high strain rate compressions by a discrete element method). ASCE J. of
Eng. Mech (125), pages 1154–1163. DOI 10.1016/S0266-352X(00)00013-6

[Donze2004a] F.V. Donzé, P. Bernasconi (2004), (Simulation of the blasting patterns in shaft sinking
using a discrete element method). Electronic Journal of Geotechnical Engineering (9), pages 1–44.

[GarciaRojo2004] R. García-Rojo, S. McNamara, H. J. Herrmann (2004), (Discrete element methods for
the micro-mechanical investigation of granular ratcheting). In Proceedings ECCOMAS 2004. (fulltext)

[Hentz2003] Séebastien Hentz (2003), (Modélisation d’une structure en béton armé soumise à un choc
par la méthode des eléments discrets). PhD thesis at Université Grenoble 1 – Joseph Fourier.

[Hentz2004a] S. Hentz, F.V. Donzé, L.Daudeville (2004), (Discrete element modelling of concrete sub-
mitted to dynamic loading at high strain rates). Computers and Structures (82), pages 2509–2524.
DOI 10.1016/j.compstruc.2004.05.016

[Hentz2004b] S. Hentz, L. Daudeville, F.V. Donzé (2004), (Identification and validation of a discrete
element model for concrete). ASCE Journal of Engineering Mechanics (130), pages 709–719. DOI
10.1061/(ASCE)0733-9399(2004)130:6(709)

[Hentz2005a] S. Hentz, F.V. Donzé, L.Daudeville (2005), (Discrete elements modeling of a reinforced
concrete structure submitted to a rock impact). Italian Geotechnical Journal (XXXIX), pages 83–94.

[Herminghaus2005] Herminghaus, S. (2005), (Dynamics of wet granular matter). Advances in Physics
(54), pages 221-261. DOI 10.1080/00018730500167855 (fulltext)

[Hubbard1996] Philip M. Hubbard (1996), (Approximating polyhedra with spheres for time-critical col-
lision detection). ACM Trans. Graph. (15), pages 179–210. DOI 10.1145/231731.231732

[Ivars2011] Diego Mas Ivars, Matthew E. Pierce, Caroline Darcel, Juan Reyes-Montes, David O. Po-
tyondy, R. Paul Young, Peter A. Cundall (2011), (The synthetic rock mass approach for jointed rock
mass modelling). International Journal of Rock Mechanics and Mining Sciences (48), pages 219 -
244. DOI 10.1016/j.ijrmms.2010.11.014

Bibliography 337

http://tel.archives-ouvertes.fr/tel-00486807/fr/
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(689)
https://yade-dem.org/wiki/File:Chareyre%26Villard2005_licensed.pdf
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://geo.hmg.inpg.fr/frederic/Discrete_Element_Group_FVD.html
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://www.ica1.uni-stuttgart.de/publications/2004/GMH04
http://dx.doi.org/10.1016/j.compstruc.2004.05.016
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
http://dx.doi.org/10.1080/00018730500167855
http://www.tandfonline.com/doi/abs/10.1080/00018730500167855
http://dx.doi.org/10.1145/231731.231732
http://dx.doi.org/10.1016/j.ijrmms.2010.11.014


Reference Manual, Release Yade documentation 2nd ed.

[Johnson2008] Scott M. Johnson, John R. Williams, Benjamin K. Cook (2008), (Quaternion-based rigid
body rotation integration algorithms for use in particle methods). International Journal for Numerical
Methods in Engineering (74), pages 1303–1313. DOI 10.1002/nme.2210

[Jung1997] Derek Jung, Kamal K. Gupta (1997), (Octree-based hierarchical distance maps for col-
lision detection). Journal of Robotic Systems (14), pages 789–806. DOI 10.1002/(SICI)1097-
4563(199711)14:11<789::AID-ROB3>3.0.CO;2-Q

[Kettner2011] Lutz Kettner, Andreas Meyer, Afra Zomorodian (2011), (Intersecting sequences of dD
iso-oriented boxes). In CGAL User and Reference Manual. (fulltext)

[Klosowski1998] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, Karel Zikan
(1998), (Efficient collision detection using bounding volume hierarchies of k-dops). IEEE Transactions
on Visualization and Computer Graphics (4), pages 21–36. (fulltext)

[Kuhl2001] E. Kuhl, G. A. D’Addetta, M. Leukart, E. Ramm (2001), (Microplane modelling and particle
modelling of cohesive-frictional materials). In Continuous and Discontinuous Modelling of Cohesive-
Frictional Materials. DOI 10.1007/3-540-44424-6_3 (fulltext)

[Lambert2008] Lambert, Pierre, Chau, Alexandre, Delchambre, Alain, Régnier, Stéphane (2008), (Com-
parison between two capillary forces models). Langmuir (24), pages 3157–3163.

[Lu1998] Ya Yan Lu (1998), (Computing the logarithm of a symmetric positive definite matrix). Appl.
Numer. Math (26), pages 483–496. DOI 10.1016/S0168-9274(97)00103-7 (fulltext)

[Lucy1977] Lucy, L.~B. (1977), (A numerical approach to the testing of the fission hypothesis). aj (82),
pages 1013-1024. DOI 10.1086/112164 (fulltext)

[Luding2008] Stefan Luding (2008), (Introduction to discrete element methods). In European Journal of
Environmental and Civil Engineering.

[Luding2008b] Luding, Stefan (2008), (Cohesive, frictional powders: contact models for tension). Gran-
ular Matter (10), pages 235-246. DOI 10.1007/s10035-008-0099-x (fulltext)

[Magnier1998a] S.A. Magnier, F.V. Donzé (1998), (Numerical simulation of impacts using a dis-
crete element method). Mech. Cohes.-frict. Mater. (3), pages 257–276. DOI 10.1002/(SICI)1099-
1484(199807)3:3<257::AID-CFM50>3.0.CO;2-Z

[Mani2013] Mani, Roman, Kadau, Dirk, Herrmann, HansJ. (2013), (Liquid migration in sheared un-
saturated granular media). Granular Matter (15), pages 447-454. DOI 10.1007/s10035-012-0387-3
(fulltext)

[McNamara2008] S. McNamara, R. García-Rojo, H. J. Herrmann (2008), (Microscopic origin of granular
ratcheting). Physical Review E (77). DOI 11.1103/PhysRevE.77.031304

[Monaghan1985] Monaghan, J.~J., Lattanzio, J.~C. (1985), (A refined particle method for astrophysical
problems). aap (149), pages 135-143. (fulltext)

[Monaghan1992] Monaghan, J.~J. (1992), (Smoothed particle hydrodynamics). araa (30), pages 543-574.
DOI 10.1146/annurev.aa.30.090192.002551

[Morris1997] (1997), (Modeling low reynolds number incompressible flows using {sph}). Journal of Com-
putational Physics (136), pages 214 - 226. DOI http://dx.doi.org/10.1006/jcph.1997.5776 (fulltext)
()

[Mueller2003] Müller, Matthias, Charypar, David, Gross, Markus (2003), (Particle-based fluid simulation
for interactive applications). In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. (fulltext)

[Munjiza1998] A. Munjiza, K. R. F. Andrews (1998), (Nbs contact detection algorithm for bodies of
similar size). International Journal for Numerical Methods in Engineering (43), pages 131–149. DOI
10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S

[Munjiza2006] A. Munjiza, E. Rougier, N. W. M. John (2006), (Mr linear contact detection al-
gorithm). International Journal for Numerical Methods in Engineering (66), pages 46–71. DOI
10.1002/nme.1538

[Neto2006] Natale Neto, Luca Bellucci (2006), (A new algorithm for rigid body molecular dynamics).
Chemical Physics (328), pages 259–268. DOI 10.1016/j.chemphys.2006.07.009

338 Bibliography

http://dx.doi.org/10.1002/nme.2210
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:BoxIntersectionD
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6555&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-44424-6_3
http://www.springerlink.com/content/e50544266r506615
http://dx.doi.org/10.1016/S0168-9274(97)00103-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.759&rep=rep1&type=pdf
http://dx.doi.org/10.1086/112164
http://adsabs.harvard.edu/full/1977AJ.....82.1013L
http://dx.doi.org/10.1007/s10035-008-0099-x
http://dx.doi.org/10.1007/s10035-008-0099-x
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1007/s10035-012-0387-3
http://dx.doi.org/10.1007/s10035-012-0387-3
http://dx.doi.org/11.1103/PhysRevE.77.031304
http://adsabs.harvard.edu/abs/1985A%26A...149..135M
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.1997.5776
http://www.sciencedirect.com/science/article/pii/S0021999197957764
http://dl.acm.org/citation.cfm?id=846276.846298
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1%3c131::AID-NME447%3e3.0.CO;2-S
http://dx.doi.org/10.1002/nme.1538
http://dx.doi.org/10.1016/j.chemphys.2006.07.009


Reference Manual, Release Yade documentation 2nd ed.

[Omelyan1999] Igor P. Omelyan (1999), (A new leapfrog integrator of rotational motion. the revised
angular-momentum approach). Molecular Simulation (22). DOI 10.1080/08927029908022097 (full-
text)

[Pfc3dManual30] ICG (2003), (Pfc3d (particle flow code in 3d) theory and background manual, version
3.0). Itasca Consulting Group.

[Pion2011] Sylvain Pion, Monique Teillaud (2011), (3D triangulations). In CGAL User and Reference
Manual. (fulltext)

[Potyondy2004] D.O. Potyondy, P.A. Cundall (2004), (A bonded-particle model for rock). In-
ternational Journal of Rock Mechanics and Mining Sciences (41), pages 1329 - 1364. DOI
10.1016/j.ijrmms.2004.09.011

[Pournin2001] L. Pournin, Th. M. Liebling, A. Mocellin (2001), (Molecular-dynamics force models for
better control of energy dissipation in numerical simulations of dense granular media). Phys. Rev. E
(65), pages 011302. DOI 10.1103/PhysRevE.65.011302

[Price2007] Mathew Price, Vasile Murariu, Garry Morrison (2007), (Sphere clump generation and tra-
jectory comparison for real particles). In Proceedings of Discrete Element Modelling 2007. (fulltext)

[Rabinov2005] RABINOVICH Yakov I., ESAYANUR Madhavan S., MOUDGIL Brij M. (2005), (Capil-
lary forces between two spheres with a fixed volume liquid bridge : theory and experiment). Langmuir
(21), pages 10992–10997. (fulltext) (eng)

[Radjai2011] Radjai, F., Dubois, F. (2011), (Discrete-element modeling of granular materials). John
Wiley & Sons. (fulltext)

[RevilBaudard2013] Revil-Baudard, T., Chauchat, J. (2013), (A two-phase model for sheet flow regime
based on dense granular flow rheology). Journal of Geophysical Research: Oceans (118), pages 619–
634.

[Richarson1954] Richardson, J. F.„ W. N. Zaki (1954), (Sedimentation and fluidization: part i). Trans.
Instn. Chem. Engrs (32).

[Satake1982] M. Satake (1982), (Fabric tensor in granular materials.). In Proc., IUTAM Symp. on De-
formation and Failure of Granular materials, Delft, The Netherlands.

[Schmeeckle2007] Schmeeckle, Mark W., Nelson, Jonathan M., Shreve, Ronald L. (2007), (Forces on
stationary particles in near-bed turbulent flows). Journal of Geophysical Research: Earth Surface
(112). DOI 10.1029/2006JF000536 (fulltext)

[Schwager2007] Schwager, Thomas, Pöschel, Thorsten (2007), (Coefficient of restitution and linear–
dashpot model revisited). Granular Matter (9), pages 465-469. DOI 10.1007/s10035-007-0065-z (full-
text)

[Soulie2006] Soulié, F., Cherblanc, F., El Youssoufi, M.S., Saix, C. (2006), (Influence of liquid bridges on
the mechanical behaviour of polydisperse granular materials). International Journal for Numerical
and Analytical Methods in Geomechanics (30), pages 213–228. DOI 10.1002/nag.476 (fulltext)

[Thornton1991] Colin Thornton, K. K. Yin (1991), (Impact of elastic spheres with and without adhesion).
Powder technology (65), pages 153–166. DOI 10.1016/0032-5910(91)80178-L

[Thornton2000] Colin Thornton (2000), (Numerical simulations of deviatoric shear deformation of gran-
ular media). Géotechnique (50), pages 43–53. DOI 10.1680/geot.2000.50.1.43

[Verlet1967] Loup Verlet (1967), (Computer ‘‘experiments” on classical fluids. i. thermodynamical prop-
erties of lennard-jones molecules). Phys. Rev. (159), pages 98. DOI 10.1103/PhysRev.159.98

[Villard2004a] P. Villard, B. Chareyre (2004), (Design methods for geosynthetic anchor trenches on the
basis of true scale experiments and discrete element modelling). Canadian Geotechnical Journal (41),
pages 1193–1205.

[Wang2009] Yucang Wang (2009), (A new algorithm to model the dynamics of 3-d bonded rigid bodies
with rotations). Acta Geotechnica (4), pages 117–127. DOI 10.1007/s11440-008-0072-1 (fulltext)

[Weigert1999] Weigert, Tom, Ripperger, Siegfried (1999), (Calculation of the liquid bridge volume and
bulk saturation from the half-filling angle). Particle & Particle Systems Characterization (16), pages
238–242. DOI 10.1002/(SICI)1521-4117(199910)16:5<238::AID-PPSC238>3.0.CO;2-E (fulltext)

Bibliography 339

http://dx.doi.org/10.1080/08927029908022097
http://arxiv.org/pdf/physics/9901025
http://arxiv.org/pdf/physics/9901025
http://www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html#Pkg:Triangulation3
http://dx.doi.org/10.1016/j.ijrmms.2004.09.011
http://dx.doi.org/10.1103/PhysRevE.65.011302
http://www.cogency.co.za/images/info/dem2007_sphereclump.pdf
http://www.refdoc.fr/Detailnotice?idarticle=7435486
http://books.google.com/books?id=w2ijcQAACAAJ
http://dx.doi.org/10.1029/2006JF000536
http://dx.doi.org/10.1029/2006JF000536
http://dx.doi.org/10.1007/s10035-007-0065-z
http://arxiv.org/pdf/cond-mat/0701278
http://arxiv.org/pdf/cond-mat/0701278
http://dx.doi.org/10.1002/nag.476
http://dx.doi.org/10.1002/nag.476
http://dx.doi.org/10.1016/0032-5910(91)80178-L
http://dx.doi.org/10.1680/geot.2000.50.1.43
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1007/s11440-008-0072-1
http://www.springerlink.com/content/l2306412v1004871/
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E
http://dx.doi.org/10.1002/(SICI)1521-4117(199910)16:5%3c238::AID-PPSC238%3e3.0.CO;2-E


Reference Manual, Release Yade documentation 2nd ed.

[Wiberg1985] Wiberg, Patricia L., Smith, J. Dungan (1985), (A theoretical model for saltating grains in
water). Journal of Geophysical Research: Oceans (90), pages 7341–7354.

[Willett2000] Willett, Christopher D., Adams, Michael J., Johnson, Simon A., Seville, Jonathan P.
K. (2000), (Capillary bridges between two spherical bodies). Langmuir (16), pages 9396-9405. DOI
10.1021/la000657y (fulltext)

[Zhou1999536] Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, A.B. Yu (1999), (Rolling friction in the
dynamic simulation of sandpile formation). Physica A: Statistical Mechanics and its Applications
(269), pages 536–553. DOI 10.1016/S0378-4371(99)00183-1 (fulltext)

[cgal] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, Mariette Yvinec (2002),
(Triangulations in cgal). Computational Geometry: Theory and Applications (22), pages 5–19.

340 Bibliography

http://dx.doi.org/10.1021/la000657y
http://pubs.acs.org/doi/abs/10.1021/la000657y
http://dx.doi.org/10.1016/S0378-4371(99)00183-1
http://www.sciencedirect.com/science/article/pii/S0378437199001831


Python Module Index

_
yade._packObb, 303
yade._packPredicates, 300
yade._packSpheres, 297
yade._polyhedra_utils, 307
yade._utils, 321

b
yade.bodiesHandling, 285

e
yade.export, 286

g
yade.geom, 289

l
yade.linterpolation, 293

p
yade.pack, 293
yade.plot, 303
yade.polyhedra_utils, 307
yade.post2d, 308

q
yade.qt, 311
yade.qt._GLViewer, 311

t
yade.timing, 312

u
yade.utils, 313

y
yade.ymport, 327

341


	Class reference (yade.wrapper module)
	Bodies
	Interactions
	Global engines
	Partial engines
	Bounding volume creation
	Interaction Geometry creation
	Interaction Physics creation
	Constitutive laws
	Callbacks
	Preprocessors
	Rendering
	Simulation data
	Other classes

	Yade modules
	yade.bodiesHandling module
	yade.export module
	yade.geom module
	yade.linterpolation module
	yade.pack module
	yade.plot module
	yade.polyhedra_utils module
	yade.post2d module
	yade.qt module
	yade.timing module
	yade.utils module
	yade.ymport module

	Bibliography
	Python Module Index

