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Abstract. A capillary stress tensor and an effective stress tensor are defined in DEM simulations of spheres packings with
capillary effect. It is shown that induced fabric anisotropy results in an anisotropy of the capillary stress, so that any stress-
like variable used to represent the effect of capillarity in granular materials should be represented by a non-spherical tensor.
The response of a sample to small isotropic stress increments is also presented, the loading being imposed either by a small
variation of the stress imposed at boundaries (method A) or by a variation of matric suction (method B). The comparison of
the results, with emphasis on micromechanical aspects, shows some differences between the results obtained with methods
A and B, even though the increment of effective stress is the same in both cases. The effective stress concept in unsaturated
granular materials is questionned on the basis of these results.
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INTRODUCTION

Macroscopic properties of granular materials such as
soils depend on particle interactions. In unsaturated soils
submitted to capillary effects, the presence of water leads
to the formation of water menisci between neighboring
grains, introducing new interparticle forces at contact.
For low water contents, water is under the form of liquid
bridges between grains, capillary theory allows the force
induced by those bridges to be linked to the local geom-
etry of the grains and to the capillary pressure inside the
medium. Along these lines we developped a microme-
chanical model based on the Discrete Element Method
[1], which takes into account capillary forces between
grains. Simulations are carried out on grain assemblies
whose response to different loading paths are related to
some microscale kinematic and static variables. Investi-
gating those variables offer an insight into the debated
unsaturated soil stress framework.

Stresses in unsaturated granular materials -
macroscopic views

In the framework of elastoplasticity, most models con-
sider that the strain tensor is governed by the net stress
tensor σi j −uaδi j (ua being the pore air pressure) and the
matric suction or capillary pressure ua−uw (uw being the
pore water pressure) inside the medium [3? , 2]. All these
formulations can be considered as extensions of the rela-
tionship initially proposed by Bishop and Blight [4] for
unsaturated soils:

σ ′
i j = (σi j −uaδi j)+χ(Sr)(ua −uw)δi j (1)

where χ(Sr) is called the effective stress parameter or
Bishop’s parameter, and is a function of the degree of
saturation Sr of the medium. Despite the effective stress
principle is by definition a macroscopic concept, several
authors (Lu and Likos [5] or Li [6]) proposed to use a
micromechanical approach for the effective stress princi-
ple. Such approach is proposed in the followings, based
on a set of simulated laboratory experiments.

A micromechanical interpretation

A simple expression relating the overall stress tensor
in such packing to the force distribution can be derived
using the Love [7] static homogenisation relation. Love
relation reads:
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where N is the number of particles within the volume,
~Fq,p is the interaction force exerted by the particle q onto
the particle p, and~lq,p is the branch vector pointing from
particle q to particle p (~lq,p =~xp −~xq). The expression
of Eq. (3), as proposed in [8], is a generalization of
Love relation for wet granular materials, considering that
interaction forces as the sum of a solid (Fcont,i, repulsive)
and capillary (Fcap,i, attractive) forces. On this basis, the
total stress can be split into two components as in Eq. (4).
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FIGURE 1. Liquid bridge between two particles of unequal
sizes: (a) global geometry, (b) details of the bridge.

the contact stress tensor σ cont
i j accounting for the con-

tact forces transmitted along the contact network, and the
capillary stress tensor σ cap

i j representing the effect of cap-
illary forces existing within the assembly. Considering
the concept as initially introduced by Terzaghi, σ cont

i j can
play the role of the so-called effective stress by govern-
ing soil deformation and failure. By analogy with Eq.(1),
Scholtes et al. [9] proposed to used it as a definition of a
microstructural effective stress.

DISCRETE ELEMENT MODELLING

A numerical model of capillary forces has been de-
veloped and implemented in the 3D open source code
YADE (see Kozicki and Donzé [10]), which is based on
the discrete element method as initially introduced by
Cundall and Strack [1].

The solid contact interaction is described by an elastic-
plastic relation between the force F and the relative dis-
placement U of two interacting particles. The parameters
of the relation are the normal stiffness Kn, the tangential
stiffness Kt , and the intergranular friction angle φ .

We assume that the water inside the sample is only
composed of capillary water as defined in the pendular
state, with disconnected liquid bridges between grains
(see Fig. 1). The exact shape of liquid bridges is de-
fined by the Laplace equation, relating the pressure jump
∆u = ua −uw across the liquid-gas interface to the mean
curvature of the bridge and the surface tension of the liq-
uid phase γ as :

∆u = γ
(
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+
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r2

)
(5)

This equation has been solved numerically, for the case
of spheres of different sizes, in order to link directly the
suction ∆u to the capillary force Fcap and water volume V
of the liquid bridge bewtween grains [8]. This approach
results in a suction-controlled model where capillary
forces and water volumes (Fcap,V ) are functions of the
imposed suction level ∆u.

The studied particle assembly is a 1 mm length cu-
bic sample of 10000 spheres, with a grain size distri-

FIGURE 2. stress-strain curves in triaxial compression tests
simulated at constant on a dry and wet samples (suction of
20kPa and confinement pressure 30kPa.

bution ranging from 0.025mm to 0.08mm, and a poros-
ity of 0.385. The parameters of contact laws are Kn =
300.R1+R2

R1R2 (MN/m), Kt = 0.5.Kn, and φ = 30.
Random packings are prepared by a compaction tech-

nique which ensures the packing isotropy and homo-
geneity [8]. Loose samples can be obtained if suc-
tion is activated during the compaction phase. Suction-
controlled triaxial loadings are simulated on the gener-
ated specimens. Two types of loadings are presented in
this paper : constant suction / variable external stress (ref-
erenced later as type A), and variable suction / constant
external stress (type B). For type A, the imposed stress-
strain paths are either deviatoric (constant strain rate im-
posed in one direction and constant stress in other di-
rections) or isotropic (all three principal stresses are im-
posed).

RESULTS

Macroscopic views

Fig. 2 shows the evolution of the deviatoric stress ver-
sus the axial strain in a type-A deviatoric loading path for
a dense sample in a dry and a wet configuration respec-
tively. The shear strength of the material is clearly in-
creased by the presence of capillary forces. Fig. 3 shows
the evolution of the principal capillary stress components
during the loading. It is to be noted that the capillary
stress varies during the loading, even though the imposed
suction itself is constant, and also that an anisotropy de-
velops with the deformation.

Fig. 4 presents the volumetric deformation produced
by a cyclic loading of type B on a loose sample under a
constant and isotropic external stress. The stress is given
in terms of contact stress. The results show a volumetric



FIGURE 3. Evolution of capillary stress components in tri-
axial tests simulated at constant suction

FIGURE 4. Volumetric strain versus contact stress in a cyclic
capillary loading : imbibition (A-B), drainage (B-C), imbibi-
tion (C-D). A positive value is a compression.

collapse induced by the first wetting cycle A-B (∆u from
30kPa to 10kPa), and a reversible behaviour for the
following cycles B-C and C-D.

Starting from state D, small stress increments of both

FIGURE 5. Volumetric response to small stress increments
with loading types A and B.

FIGURE 6. Contacts and menisci orientation distribution
P(~n): (a) initial state, (b) 15% deformation level.

types are imposed and reported on Fig. 5. The responses
are reversible and can be considered in the elastic regime,
but it has to be noted that the stress/strain relation (the
effective stiffness) is not the same for increments of types
A and B.

Micromechanical investigations

The distributions of the orientations of both contacts
and meniscii during the triaxial loading (Fig. 2) are plot-
ted on Fig.6, where θ corresponds to the angle of the
unit normal vector (~n) from the axis of axisymmetry of
the sample. Both contacts and menisci distributions are
identical in the initial state. The structural isotropy of the
sample appears clearly with a uniform distribution along
all the directions (Figs.6(a)), confirming here the accu-
racy of the generation process. However, after a 15% de-
formation level, the distributions are anisoropic. As liq-
uid bridges can exist in a certain range of increasing in-
tergranular distances, the distribution of liquid bridges
does not exactly follow the evolution of contacts net-
work, and tends to stay closer to the initial state. But due
to the sample dilatancy, a small induced anisotropy arises
from the disappearance of liquid bridges in the lateral di-
rections (Figs.6(b)).

The distribution of the normal displacement at con-
tacts in the two increments of Fig. 5 are plotted and com-
pared in Fig. 7. The displacements dU∗

n is normalised,
so that we would have dU∗

n = 1, for all contacts, if the
relative displacement between two grains was always ex-
actly εi j.l j (l j is the branch vector linking the centers of
grains). Clear differences between the ditributions can be
seen. For an external loading, the distribution is almost
symetric, with a spreading of dUn around one unique
value. With a capillary loading, on the other hand, the
ditribution has two peaks, one is close to 0 and the other
one is around 5, which suggests that there are two dif-
ferent groups of contacts, or two types of mechanisms
acting at the local scale, with each of them correspond-
ing to one of the peak values.



FIGURE 7. Distribution of normal displacement at contacts
for stress increments : (a) capillary loading, (b) external load-
ing, (c) comparison.

DISCUSSION

The results lead to some questions about the stresses in-
duced by capillarity. Indeed, suction effects are classi-
caly viewed as an equivalent pressure which isotropic
(see Eq.(1)) and also independant on the history of the
loading. As seen in Fig.3, computing the principal com-
ponents of this capillary stress tensor along the deviatoric
loading path of a triaxial test compromises both assump-
tions.

As seen in section 2.2, σ cap
i j can be written as:
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or, putting it in the continuous integral form with
Pmeniscus(~n) the normal density of menisci in the direc-
tion~n :

σ cap
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which clearly points out the origin of the evolution and
anisotropy of σ cap

i j is the anisotropy in the interaction net-
work, induced by the deformation. It suggests that the

pore fluid in unsaturated soil has its own fabric that may
be readily altered with changes in the granular fabric.
The global approximation which characterizes water ef-
fects in unsaturated materials by an equivalent pore pres-
sure is, therefore, unable in essence to point out this in-
trinsically anisotropic microstructural force contribution.

The non-uniqueness of the relation between σ cont and
the deformation of the sample, as seen in Fig. 5, is
another remarkable result of the simulations. The same
increment in σ cap will give different responses of the
material depending on the origin of the applied stress,
which seems to be in contradiction with the effective
stress concept itself. This result is supported, and partly
explained by the result of Fig. 7, which prooves that
the deformation mechanisms are qualitatively different at
the microscale. More investigations are needed to fully
understand the reasons for these differences, and the
DEM is a promising way for such research.
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