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ABSTRACT 

The understanding of dense suspensions rheology is of great 
practical interest for both industrial and geophysical 
applications and has led to a large amount of publications over 
the past decades. This problem is especially difficult as it is a 
two-phase media in which particle-particle interactions as well 
as fluid-particle interactions are significant. In this contribution, 
the plane shear flow of a dense fluid-grain mixture is studied 
using the DEM-PFV coupled model. We further improve the 
original model: including the deviatoric part of the stress tensor 
on the basis of the lubrication theory, and extending the solver 
to periodic boundary conditions. Simulations of a granular 
media saturated by an incompressible fluid and subjected to a 
plane shear at imposed vertical stress are presented. The shear 
stress is decomposed in different contributions which can be 
examined separately: contact forces, lubrication forces and drag 
forces associated to the poromechanical couplings.  

INTRODUCTION 

The rheology of grain-fluid mixtures is subject of practical interest for both industrial and 
geophysical applications. When the solid fraction of such mixture is high enough, i.e. in dense 
suspensions, the bulk behavior is affected by intricated phenomena combining the viscosity of 
the fluid phase as well as the interactions between the solid particles through solid contacts. 
Moreover, the contact interactions may be modified by the presence of the fluid, as described 
by lubrication theories. Additionally, in transient situations, poromechanical couplings may 
develop long range interactions by coupling the local rate of volume change to the pore 
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pressure field. Direct particle-scale modeling of this problem is a promising way to better 
evaluate the interactions between phases and to link the micro-scale properties and 
phenomena to the quantities measured for the bulk material, as it needs much less 
simplifications than former analytical developments (such as [Frankel et al. 1967, Brule et al. 
1991, Ancey et al. 1999]). This modeling can be based on lubrication models [Rognon et al. 
2011], or more elaborated methods to reflect the fluid viscosity through pair interactions 
between particles [Yeo et al. 2010]. This is advantageous as it does not need to actually solve 
Navier-Stokes (NS) equations in the fluid phase. The price to pay is that long range 
interactions due to poromechanical couplings are difficult to reflect. An alternative is to really 
solve NS in the fluid phase using a CFD solver, or to use a lattice-Boltzman model [Ladd et 
al. 2001]. It is to be noted that direct resolution of NS does not eliminate the need for a proper 
modeling of the lubrication forces, due to mesh size dependencies [Nguyen et al. 2002]. The 
main difficulty associated to this approach is the high computational cost, so that following 
large deformations of thousands of immersed particles in 3D remains a challenging task.  
A new method to simulate fluid-particle interactions has been developed recently and may be 
of some help to tackle the computational challenge [Catalano et al. 2013]. In this method, the 
solid phase is modelized with the discrete element method (DEM), and the fluid flow is 
solved using a pore-scale finite volume method (PFV). The key aspects of this DEM-PFV 
coupling are recalled in the first part of this paper. It was implemented in the open source 
code Yade-DEM [Smilauer et al. 2010]. Extensions of this method in order to study dense 
suspensions are being undertaken by the first author. Namely, the original model lacks a 
coupling term to link the fluid forces to the deviatoric strain, as explained hereafter. We also 
generalized the boundary conditions in order to allow very large deformations of the 
suspension in simple shear. Typical results of the preliminary enhanced model are presented 
in the last part. 

NUMERICAL MODEL 

Original DEM-PFV Coupled Model 

Our DEM approach defines the mechanical properties of the interaction between grains whose 
shape is assumed to be spherical. Following Newton’s laws, the positions of particles are 
updated and calculated at each time-step of the DEM simulation. As introduced in [Catalano 
et al. 2011], the PFV formulation is based on a simplified discretisation of the pore space as a 
network of regular triangulation and its dual Voronoi graph (figure 1). 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Regular triangulation (left) and Voronoi graph (right). 
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This network simplifies the formulation and resolution of the flow problem. The continuity 
equation is expressed for each pore, linking the rate of volume change of one tetrahedral 

element V̇ i
f

  to the fluxes qij  through each facet. Each flux can be related to the pressure 

jump between to elements via a generalised Poiseuille’s law, so that  
 

V̇ i
f =∑

j= j1

j 4

qij=∑
j = j1

j4

K ij ( pi� p j )
        (1) 

 
couples the particles velocity to the fluid pressure field. The expression of conductivity Kij  

has been validated recently by comparisons with glass beads experiments [Tong et al. 2012].  
The total force exerted by the fluid on particle k can then be defined as [Chareyre et al. 2012]:  
 

         (2) 
 

Lubrication forces 

As classical poromechanics, the original DEM-PFV model takes into account the isotropic 
part of the stress and strain tensors (pressure and divergence of solid phase velocity) in the 
coupling (equation 1). The contribution of the fluid to the bulk shear stress is de facto 
neglected. It is worth noting that the shear part of the coupling is similarly lacking in discrete 
models inspired by the coupling equations of poromechanics, such as the continuum-discrete 
methods [Zeghal 2004, Zhao et al. 2013].  
In order to deal with sheared suspensions, another viscous contribution has to be introduced 
for modeling the shear stress. Various ways may be used for this purpose such as viscous 
forces obtained in the framework of the lubrication theory. Lubrication effects are defined for 
all the elementary motions described in figure 2. Let's denote k and k′ two particles in 
interaction of radius ak and ak′, linear velocities vk and vk′ and angular velocities ωk and ωk′, 

respectively.  a = (ak + ak′)⁄2 is their average radius and h is the inter-particle distance 

(surface to surface). The relative motions between the particles k and k′ can be decomposed in 
four elementary motions corresponding to normal displacement (subscript n), shear 
displacement (s), rolling (r) and twisting (t). Lubrication forces and torques induced by these 
elementary motions are:  
 

F n
L=

3
2
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a2

h
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                                                                            (3) 
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                                               (6) 
 
where vn = ((vk′−vk)⋅n)n is the normal relative velocity, vt = (ak(ωk −ωn)+ak′(ωk′−ωn))×n 

is an objective expression of the tangential relative velocity and ωn = (vk′− vk) × n⁄(ak + ak′ 

+ h) is the angular velocity of the local frame attached to the interacting pair. The normal and 
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shear forces, Fn and Fs, are based on Frankel & Acrivos [Frankel et al. 1967, Brule et al. 

[1991] whereas Cr and Ct are based on Jeffrey & Onishi 1984. The reason of this choice will 

be discussed later. The total lubrication force FkL (resp. F k′L) applied by particle k′ on 

particle k (resp. by particle k on particle k′) and the total torque CkL (resp. C k′L) applied by 
particle k′ on particle k (resp. by particle k on particle k′) relative to the particle center read:  
 
F k

L=�F k '
L =Fn+F s            (7) 

Ck
L=(ak+

h
2
)F s+C r+Ct

           (8) 

Ck '
L =(ak '+

h
2
) F s�Cr�Ct

          (9) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Relative motion between particles [Marzougui et al. 2015]. 
 
 

Figure 3 shows the comparaison of the FEM results performed on a simple configuration of 

identical spheres rotating at a given angular velocity, with that of equation 4  where FsL is 

determined alternatively using the expression from Jeffrey & Onishi (   ) [8] 
and from Frankel & Acrivos 1967 (equation 4). Both expressions are asymptotically 
equivalent for h → 0 but that of Frankel & Acrivos is in much better agreement with the FEM 
results for small h. The expression of Jeffrey & Onishi leads to negative torques for large h. 
This can alter the stability of the numerical scheme.  
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Figure 3: Comparaison of viscous shear forces for the case of rotating sphere in a regular 
assembly of particles. h is the surface-to-surface distance and a is the particles radius 

[Marzougui et al. 2015]. 
 
The normal interaction between two elastic-like particles in a viscous fluid is described by the 
Maxwell visco-elastic scheme (figure 4) which combines a spring of stiffness k in series with 
a pad of viscosity η. This combination between the lubrication and the elasticity is close to 
that adopted by Rognon [Rognon et al. 2011]. kn is the contact stiffness and νn(h) is the 

instantaneous viscosity of the interaction as defined in eq. (3), such that  FnL = ν n(h)vn. The 

real velocity of approach between the two surfaces is , where   is the 
elastic deformation. The evolution of the normal lubrication force obeys, then, the differential 
equation  
          

            (10) 
Eq. 10 is integrated over time-steps using the form  
 

           (11) 

 
 
 
 
 
 
 
 

 
Figure 4: Visco-elastic scheme of the interaction between two elastic-like particles [Marzougui et 

al. 2015]. 
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Periodic Boundary Conditions 

As the system is considered infinite in the flow direction, some problems can arise from the 
boundary effects in the numerical simulation. In order to avoid such problems, periodic 
boundary conditions are implemented in the PFV model (figure 5) (the periodicity for the 
DEM part was developped independently). Denoting by S = [s1,s2,s3] (figure 5) the period 

size in the three dimensions and by i ∈ ℕ3 is the distance between one point of coordinates r  
and its periodic image r’  = r  + S ⋅ i in an adjacent period, then the pore pressure is expressed 
as follow:  
 

            (12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a): 2D periodic cell, (b): simulation period of size S = [s1,s2,s3] in [x,y,z] 
 

NUMERICAL RESULTS 

We generate an assembly of N=1000 frictional grains of average radius a = 0.025 ± 0.01 m, 

density ρ = 2500kg⁄m3 and friction angle Φ = 30∘. The assembly (Figure 6) is H = 18a high, L 
= 12a large and l = 12a wide. The granular material is first confined under a constant vertical 
stress Ty, then sheared without gravity, between two parallel walls distant from H and moving 

at a velocity ±V⁄2 = 0.75m⁄s respectively. In order to avoid slip zones near the plates, the first 
layer of spheres in contact with the plates is fixed to that ones by highly cohesive contacts. 
The boundary conditions for the top plate are the velocities vx = V⁄2, vz = 0, the total vertical 

stress Ty = 750 Pa and the fluid pressure p = 0. At the bottom plate, vx = −V⁄2, vz = 0 and the 

fluid velocity along the y axis vyf = 0. Periodic boundary conditions are applied along the 

horizontal axis for both the particles and the fluid. For the latest we impose a null pressure 
gradient at the macro-scale, i.e. ▽px = ▽pz = 0.  
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Figure 6: Simulation cell (left). Evolution of the shear stress and the solid fraction as the 

deformation (right) [Marzougui et al. 2015]. 
 

Simulations of such an assembly saturated of an incompressible fluid of viscosity η and 

submitted to a simple shear with shear rate 
γ̇=

dV
dH  at imposed vertical stress  

 are presented. The viscous stress is decomposed in different contributions which can be 
examined separately:  
 

σ=σC+σL+p I +σ I
              (13) 

 

ij
C

ij
C lF

V
=σ  

1 ⊗∑  is the contact stress applied on particles in contact where l ij  is the 

branch vector between particles i and j. ⊗∑ ij
L

ij
L lF

V
=σ

1
is the lubrication stress [Ancey et 

al. 1999], which is the sum of the normal and shear components of the lubrication force. p is 
the pressure associated to the poromechanical coupling [Catalano et al. 2014]. 

kkk
I vvm=σ  ⊗∑ reflect the inertial effects as defined in [Savage et al. 1981] where  

and  are the mass and the velocity of particle k respectively. In figure 7, both  
 (  is the force applied in the top plate and S is its area) and  

 are plotted and these two expressions compare consistently.  
Figure 7 shows the different contributions of each force applied on the granular media for 

. The inertial stress  (not represented here) is negligible compared with the total 
stress ( ). This indicates that the suspension is dominated by contacts and viscous 
interactions for the value of  investigated. The contact stress contributes to approximately 
half of the total stress.  Contrary to what is sometimes postulated in the literature, our 
numerical results show that tangential lubrication forces ( ) are significant 
compared with the normal ones ( ).  
The different contributions are investigated for different values of the viscous number   .  
is a dimensionless form of the shear rate [Boyer et al. 2011], reflecting the magnitude of 
viscous effects, and is defined as:  
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I v=
η∣γ̇∣
T y                     (14) 

 
The results obtained with only normal lubrication forces match qualitatively the empirical 
evolution of shear stress with . However, the solid fraction obtained with this model is 
almost constant for , while the experiments suggest a monotonic decrease. The 
normal lubrication alone leads to a satisfactory stress ratio but overestimate the solid fraction. 
When the shear lubrication forces are included, the results get closer to the phenomenological 
laws  and . Consequently, the shear lubrication forces play a significant role to the 
dilatancy law, and they also contribute to the shear stress. The rolling torques, the twist 
torques and the poromechanical coupling have only marginal effects.  

 
Figure 7: Stress ratio µ (left) and the solid fraction φ (right) at steady state versus Iv . Each 

symbol represents a different combination of lubrication terms. The solid line is the 
phenomenological law of Boyer et al. 2011. Inset: the total shear stress for different  

values of fluid viscosity [Marzougui et al. 2015].  

CONCLUSION 

In this contribution, we presented an original hydromechanical coupled model able to describe 
the behavior of dense granular materials subjected to a shear flow under constant pressure. 
The analysis of the various contributions to the bulk stress: contact forces, hydrodynamic 
forces and fluid pressure suggest that both the contact stress and the lubrication stress increase 
monotonically in the range of  investigated. The numerical model reproduces the behavior 
of dense suspensions described experimentally by the phenomenological laws from the 
experiments of Boyer et al [2]  and .  
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