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ABSTRACT

The understanding of dense suspensions rheology geat
practical interest for both industrial and geopbski
applications and has led to a large amount of pattins over
the past decades. This problem is especially diffias it is a
two-phase media in which particle-particle intei@ts as well
as fluid-particle interactions are significant.this contribution,
the plane shear flow of a dense fluid-grain mixtigestudied
using the DEM-PFV coupled model. We further imprdie
original model: including the deviatoric part oktktress tensor
on the basis of the lubrication theory, and extegdhe solver
to periodic boundary conditions. Simulations of earmlar
media saturated by an incompressible fluid andesubg to a
plane shear at imposed vertical stress are praekehtbe shear
stress is decomposed in different contributionsctvhtan be
examined separately: contact forces, lubricatione® and drag
forces associated to the poromechanical couplings.

INTRODUCTION

The rheology of grain-fluid mixtures is subject mfactical interest for both industrial and
geophysical applications. When the solid fractibswch mixture is high enoughe. in dense
suspensions, the bulk behavior is affected bydated phenomena combining the viscosity of
the fluid phase as well as the interactions betwhersolid particles through solid contacts.
Moreover, the contact interactions may be modibgdhe presence of the fluid, as described
by lubrication theories. Additionally, in transiesituations, poromechanical couplings may
develop long range interactions by coupling thealaate of volume change to the pore
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pressure field. Direct particle-scale modeling lof tproblem is a promising way to better
evaluate the interactions between phases and to tlie micro-scale properties and
phenomena to the quantities measured for the budikemal, as it needs much less
simplifications than former analytical developmefgsch as [Frankel et al. 1967, Brule et al.
1991, Ancey et al. 1999]). This modeling can beedasn lubrication models [Rognon et al.
2011], or more elaborated methods to reflect thd flviscosity through pair interactions
between particles [Yeo et al. 2010]. This is adagabus as it does not need to actually solve
Navier-Stokes (NS) equations in the fluid phasee Tdrice to pay is that long range
interactions due to poromechanical couplings affecdit to reflect. An alternative is to really
solve NS in the fluid phase using a CFD solvertoouse a lattice-Boltzman model [Ladd et
al. 2001]. It is to be noted that direct resolutadNS does not eliminate the need for a proper
modeling of the lubrication forces, due to meste sliependencies [Nguyen et al. 2002]. The
main difficulty associated to this approach is kigh computational cost, so that following
large deformations of thousands of immersed pagiti 3D remains a challenging task.

A new method to simulate fluid-particle interacsdmas been developed recently and may be
of some help to tackle the computational challej@ggalano et al. 2013]. In this method, the
solid phase is modelized with the discrete elemmeathod (DEM), and the fluid flow is
solved using a pore-scale finite volume method (PHAWe key aspects of this DEM-PFV
coupling are recalled in the first part of this paplt was implemented in the open source
code Yade-DEM [Smilauer et al. 2010]. Extensionghi$ method in order to study dense
suspensions are being undertaken by the first aut@mely, the original model lacks a
coupling term to link the fluid forces to the det@ac strain, as explained hereafter. We also
generalized the boundary conditions in order tovallvery large deformations of the
suspension in simple shear. Typical results ofpteéiminary enhanced model are presented
in the last part.

NUMERICAL MODEL

Original DEM-PFV Coupled Model

Our DEM approach defines the mechanical propedti¢lse interaction between grains whose
shape is assumed to be spherical. Following Newttaws, the positions of particles are
updated and calculated at each time-step of the BEMIlation. As introduced in [Catalano
et al. 2011], the PFV formulation is based on apéifired discretisation of the pore space as a
network of regular triangulation and its dual Vooograph (figure 1).

Figure 1:Regular triangulation (left) and Voronoi graph (rig ht).
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This network simplifies the formulation and resaluat of the flow problem. The continuity
equation is expressed for each pore, linking the cd volume change of one tetrahedral

f
element Vi to the fluxesqij through each facet. Each flux can be related ¢optfessure

jump between to elements via a generalised Pols&suihw, so that

. ja Ja
Vif:Z Q;= Z Kij(pi_ pj)
j:jl j:j1 (1)

couples the particles velocity to the fluid presstield. The expression of conductivilyj

has been validated recently by comparisons witbsgteeads experiments [Tong et al. 2012].
The total force exerted by the fluid on partiklean then be defined as [Chareyre et al. 2012]:

F¥= |, pnds+ [, tnds (2)

Lubrication forces

As classical poromechanics, the original DEM-PFVdelotakes into account the isotropic
part of the stress and strain tensors (pressurediaedgence of solid phase velocity) in the
coupling (equation 1). The contribution of the dluio the bulk shear stress is de facto
neglected. It is worth noting that the shear pathe coupling is similarly lacking in discrete
models inspired by the coupling equations of pordmaaics, such as the continuum-discrete
methods [Zeghal 2004, Zhao et al. 2013].

In order to deal with sheared suspensions, aneiteous contribution has to be introduced
for modeling the shear stress. Various ways maydel for this purpose such as viscous
forces obtained in the framework of the lubricattbeory. Lubrication effects are defined for
all the elementary motions described in figure 2t'd denotek and k' two particles in
interaction of radiusy anday, linear velocities/k andvy and angular velocitiesi andwy’,

respectively. a = (ax + ayy2 is their average radius ardis the inter-particle distance

(surface to surface). The relative motions betwbernparticlesk andk’ can be decomposed in
four elementary motions corresponding to normalpldisement (subscriph), shear
displacementd), rolling (r) and twisting {). Lubrication forces and torques induced by these
elementary motions are:

(3)
L 7“[_2a4—(2a+h)|n(28;h)]Vt (4)
3(3 a 63 h a

2" *50ca M (@ wn] ©)

(6)

wherevp = ((vk—Vvk)-n)n is the normal relative velocity; = (ax(wk —on)+ak(wk—on))xn
IS an objective expression of the tangential re¢atielocity andwpn = (Vk'— Vi) X NM(ak + ay’
+ h) is the angular velocity of the local frame at@gho the interacting pair. The normal and
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shear forcesk, andFg, are based on Frankel & Acrivos [Frankel et al67,9Brule et al.
[1991] wherea€; andC; are based on Jeffrey & Onishi 1984. The reasdhisfchoice will

be discussed later. The total lubrication fqué— (resp.F k'L) applied by particl&k’ on

particlek (resp. by particlé on particlek’) and the total torquéyl (resp.C /L) applied by
particlek’ on particlek (resp. by particlé on particlek’) relative to the particle center read:

Fi=—Fr=F,+F, 7)
Cllzz(ak_'—g) Fs_'_Cr_'_Ct
A (8)
C:(_:(ak4—2) Fs_Cr_Ct
)
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Figure 2:Relative motion between patrticles [Marzougui et al2015].

Figure 3 shows the comparaison of the FEM resw@dtfopmed on a simple configuration of

identical spheres rotating at a given angular ustpwith that of equation 4 whenésL IS

()
F, = In—
determined alternatively using the expression fdmfirey & Onishi ( © ey ) [8]

and from Frankel & Acrivos 1967 (equation 4). Bo#ixpressions are asymptotically
equivalent foh — 0 but that of Frankel & Acrivos is in much betsgreement with the FEM
results for smalh. The expression of Jeffrey & Onishi leads to negatorques for largé.
This can alter the stability of the numerical sckem
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Figure 3:Comparaison of viscous shear forces for the caseratating sphere in a regular

assembly of particles. h is the surface-to-surfaad#istance and a is the particles radius
[Marzougui et al. 2015].

The normal interaction between two elastic-liketiglas in a viscous fluid is described by the
Maxwell visco-elastic scheme (figure 4) which congs a spring of stiffness k in series with
a pad of viscosity). This combination between the lubrication and ¢hesticity is close to
that adopted by Rognon [Rognon et al. 20Kk}].is the contact stiffness angi(h) is the

instantaneous viscosity of the interaction as a@efim eq. (3), such tha-t*-nl- =v n(h)vp. The

real velocity of approach between the two surfases — U7 whereln = Fil K, is the
elastic deformation. The evolution of the normdrloation force obeys, then, the differential
equation

FL
FE = v, (v — 7
L (10)
Eq. 10 is integrated over time-steps using the form
: Fi
Fl=k_ (v, — L_n;':‘h}) (11)
ﬁc"

ky
i@
o}
Figure 4:Visco-elastic scheme of the interaction between twatastic-like particles [Marzougui et
al. 2015].
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Periodic Boundary Conditions

As the system is considered infinite in the flowedtion, some problems can arise from the
boundary effects in the numerical simulation. Imesrto avoid such problems, periodic
boundary conditions are implemented in the PFV rhdfiigure 5) (the periodicity for the
DEM part was developped independently). DenotingSby [s1,52,53] (figure 5) the period

size in the three dimensions andibg/N3 Is the distance between one point of coordinates
and its periodic image =r +S- i in an adjacent period, then the pore pressurgpsessed
as follow:

p=p+Vp.5=i (12)

Pi pi +/p*T

Figure 5:(a): 2D periodic cell, (b): simulation period of ste S = [§,5p,53] in [X,y,Z]

NUMERICAL RESULTS

We generate an assembly of N=1000 frictional grainaverage radiua = 0.025 + Q01 m,

densityp = 2500<gfm3 and friction angleb = 3C°. The assembly (Figure 6) is= 18 high, L
= 12alarge and = 12a wide. The granular material is first confined underonstant vertical
stressTy, then sheared without gravity, between two pdralldls distant from H and moving

at a velocity /2 = Q755 respectively. In order to avoid slip zones nearglages, the first
layer of spheres in contact with the plates isdixe that ones by highly cohesive contacts.
The boundary conditions for the top plate are thleaitiesvy = /2, vz = 0, the total vertical

stressTy = 750 Pa and the fluid pressyre 0. At the bottom plates = -\/2,vz = 0 and the

fluid velocity along the y axis f = 0. Periodic boundary conditions are applied gltme

horizontal axis for both the particles and thedluror the latest we impose a null pressure
gradient at the macro-scale, iNépy = Vpz = 0.
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Figure 6: $mulation cell (left). Evolution of the shear stres and the solid fraction as the
deformation (right) [Marzougui et al. 2015].

Simulations of such an assembly saturated of aompeessible fluid of viscosity; and
. dv
. . . Y= . .
submitted to a simple shear with shear re° dH at imposed vertical stress
T, are presented. The viscous stress is decomposeifferent contributions which can be
examined separately:

o=0"+o"+pl +o' (13)

1 . . . . .
¢ = —z FC O | is the contact stress applied on particles in aminwhere i is the
Vv ij ij

. , 1 . o
branch vector between particleand;j. o = —z FijL I; O is the lubrication stress [Ancey et
\

al. 1999], which is the sum of the normal and sloesnponents of the lubrication force. p is
the pressure associated to the poromechanical ioguplCatalano et al. 2014].

o' = kavk O v, reflect the inertial effects as defined in [Savageal. 1981] wheren,

and v, are the mass and the velocity of particle k repely. In figure 7, both
T.= F. /5 (F. is the force applied in the top plate and S is &ea) and
o, are plotted and these two expressions comparéstenisy.

Figure 7 shows the different contributions of eéafte applied on the granular media for
I, = 0.21. The inertial stresa;'}. (not represented here) is negligible compared thightotal
stress ;'}. < 2.5T,). This indicates that the suspension is dominhiedontacts and viscous
interactions for the value df, investigated. The contact stress contributes pyaagmately
half of the total stress. Contrary to what is sbmes postulated in the literature, our
numerical results show that tangential lubricatforces ¢ < 20 %T,) are significant
compared with the normal ones{’ < 20 % T,).

The different contributions are investigated fdfetent values of the viscous numbér . I,

is a dimensionless form of the shear rate [Boyealef011], reflecting the magnitude of
viscous effects, and is defined as:
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| _nlyl

T (14)

The results obtained with only normal lubricatimrces match qualitatively the empirical
evolution of shear stress with). However, the solid fraction obtained with this aebis
almost constant fof, = 0.02, while the experiments suggest a monotonic deereéise
normal lubrication alone leads to a satisfactorgsst ratio but overestimate the solid fraction.
When the shear lubrication forces are includedséiselts get closer to the phenomenological
laws 2(I,) and ¢(1,). Consequently, the shear lubrication forces plaigaificant role to the
dilatancy law, and they also contribute to the shsteess. The rolling torques, the twist
torques and the poromechanical coupling have omlgmal effects.
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Figure 7:Stress ratiop (left) and the solid fractione (right) at steady state versus Iv . Each
symbol represents a different combination of lubriation terms. The solid line is the
phenomenological law of Boyer et al. 2011. Inseth¢ total shear stress for different

values of fluid viscosity [Marzougui et al. 2015].

CONCLUSION

In this contribution, we presented an original loydechanical coupled model able to describe
the behavior of dense granular materials subjetieal shear flow under constant pressure.
The analysis of the various contributions to théklsiress: contact forces, hydrodynamic
forces and fluid pressure suggest that both théacbstress and the lubrication stress increase
monotonically in the range df, investigated. The numerical model reproduces gteabior

of dense suspensions described experimentally byptienomenological laws from the

experiments of Boyer et al [2](I.) and&(1,,).
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