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I. Introdution

Warning!

This presentation does not aim to give a state of the art about the lattice Boltzmann 
method and its coupling with DEM.

This presentation just gives an insight into a such approach and it is based on a 
development work still in progress, mistakes certainly exist and possibilities of 
improvements are great!

Consequently, if you want to go further please refer to reference books and litterature:

●  Master teaching book on statistical physics for background (Boltzmann equation, 
Chapman-Enskog expansion ...)
Ngô C. & Ngô H. “Physique Statistique Introduction”. Dunod, 2008 (in French  )

● Succi S. “The Lattice Boltzmann Equation for Fluid Dynamics and Beyond”. Oxford 
University Press, 2001, for the Lattice Boltzmann method.

● Many articles in the fields of physics and numerical methods in fluids.



I. Introdution
Coupled numerical method

● Description of the solid phase at the particle scale
● Description of the fluid dynamic in the inter-particle space

Solid phase: Discrete Element Method 
DEM, Yade Software

- Contact stiffnesses 
- Contact friction angle
- Contact adhesion 

Fluid phase
Lattice Boltzmann Method (LBM)

- Fluid viscosity
- position of each solid particle 

explicitely described 

Particle positions and

 velocities

hydro-dynamic

 forces

No assumption on fluid/solid interactions: permeability, drag forces, etc... result from the coupling.



I. Introdution
LBM, why?

● Need of a fine lattice (many nodes) to describe interstitial fluid flow 
(a minimum of about 10 lattice nodes in a particle diameter seems to be required, but 
possibility of parallelization)  
● Indirect description of the pressure field (related to fluid density), consequently only 
low pressure variations can be simulated 
● Space discretization (lattice) depends on velocity of the fluid flow 

● Description quite easy of moving boundaries with complicated 
geometrical shape 
● Nice numerical implementation (iterative process as for the DEM) 
● Versatile method for future development (surface tension and 
multiphase flows, thermal flow, reactive flow ...) 

⇒ DEM-LBM coupled method should be applied on a small domain (REV ...)
⇒ Should be use essentially to improve the qualitative understanding of 

physical phenomenon (quantitative approach seems tricky). 



I. Introdution
Outline

I. Introduction (what? why?)

II. Lattice Boltzmann Method (very few words about background)

III. Practical use of the LBM (main steps to be considered)

IV. DEM-LBM coupling (exchange of information and time step)

V. Application to piping erosion.
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II. Lattice Boltzmann Method
II-1 Boltzmann equation
Established by Ludwig Boltzmann (1872):
● The Boltzmann Equation aims initially to describe the statistical 
distribution of one particle (or molecule) in rarefied gas.
● This equation is the cornerstone of the kinetic theory (branch of the 
statistical physics) dealing with the dynamics of non-equilibrium 
processes and their relaxation to thermodynamic equilibrium.

Ex: heat up a pan of water, stop the heating: water temperature 
decreases with time until reaching the temperature of the outside 
environment and there is thermal equilibrium. 

● Originally developed in the framework of dilute gas systems, this 
equation is now applied in many physics area: interactions in two phase 
fluids, electron transport in semiconductors...

⇒ Central object of kinetic theory and Boltzmann Equation: the probability density or 
distribution function                  .

                   is the probability of finding a molecule (or particle) around position     at time t with 
momentum           (with              ).

f x , p ,t 

f x , p ,t  x
p p=mv
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⇒ Bhatnagar-Gross-Krook simplified collision operator (1954, BGK operator); can be 
seen as a “linearised” collision operator:

                                  is an equilibrium distribution function parametrized by macroscopic quantities, 
density    , speed     and temperature    .

τ is a typical time-scale associated with relaxation towards the equilibrium distribution function. 

f x ,t − 1
 [ f x ,t − f eq x , t ]

f eq x ,t 
 u T

The Boltzmann Equation is a non-linear integro-differential equation:

∂ f
∂ t

 v . ∂ f
∂x


F ext

m
. ∂ f
∂v

=∬ f ' f '1− ff 1vrel '  d  ' d v1

≡ Newton single-
particle dynamics

Collision between particles

II. Lattice Boltzmann Method
II-2 BGK collision operator
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⇒ Discretization of space, time, and particle velocities (based on Lattice Gas Cellular 
Automata (LGCA; Hardy et coll., 1973) ⇒ Lattice Boltzmann Equation:

  i represents a discrete space direction.
      is a discrete velocity of propagation in direction i 

                    of the distribution function f
i

e i

⇒ At each node of the lattice (the discretized space) 
macroscopic properties are deduced from:

pressure:                          with                           where C is the lattice speed       

velocity :density:

D2Q9 model

II. Lattice Boltzmann Method
II-3 Discretization (LGCA)

Propagation Collision
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II. Lattice Boltzmann Method
II-4 Derivation of Navier-Stokes Equations

⇒ Derivation of incompressible Navier-Stokes Equations based on
the Chapman-Enskog Expansion: 

- This procedure is based on a double Taylor series expansion from a spatial and temporal 
point of view, involving a multi-scale representation of space and time variables.

- Conservation of momentum, mass and energy at macroscopic scale are found for:

● a small Mach number

● small density variations (in classical LBM the fluid is slightly compressible)
● an equilibrium distribution function writing:

with w
0
 = 4/9; w

1,2,3,4
 = 1/9 and w

5,6,7,8
 = 1/36   for the D2Q9 model.

- Identification of the relation between τ and the kinematic viscosity ν :

D2Q9 model

(τ > 0.5  for υ > 0 )
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III. Practical use of the LBM 
III-1 Space discretization model

D2Q9 model

D2Q7 model

D3Q19 model  (Mansouri et al., 2009)

D3Q15
D3Q27
...

Some space discretization models are 
unable to recover Navier-Stokes!



- fixed lattice :

- time step :

- for each node, we define:

- 9 directions:

- 9 discrete velocities:

- 9 distribution functions:

D2Q9 model

III. Practical use of the LBM 
III-1 Space discretization model
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pressure:                          with 

- fixed lattice :

- time step :

- for each node, we define:

- 9 directions:

- 9 discrete velocities:

- 9 distribution functions:

- macroscopic properties: 

velocity :density:

D2Q9 model

III. Practical use of the LBM 
III-1 Space discretization model
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LB method in 2 steps: collisions and propagation
- consider 3 distributions functions arriving on a node 

- collisions: relaxation towards equilibrium functions

                      

- propagation along each direction

III. Practical use of the LBM 
III-2 A two steps iterative process



LB method in 2 steps: collisions and propagation
- consider 3 distributions functions arriving on a node 

- collisions: relaxation towards equilibrium functions

                      

- propagation along each direction

III. Practical use of the LBM 
III-2 A two steps iterative process



boundary link σ

 

● discretize the obstacles

● differentiate « fluid » nodes and « solid » nodes

● bounce back on each boundary link:

⇒ Vanishing of the macroscopic fluid velocity at the 
point where distribution functions are reflected.

⇒ For the LBM, the solid boundary is halfway 
between solid and fluid nodes. 

Obstacle boundary, Vb= 0

III. Practical use of the LBM 
III-3 No slip condition on solid obstacle boundary



boundary link σ

Case of moving solid obstacles:

       is the solid velocity at the middle of the boundary 
link, for a circular solid particle:

Obstacle boundary, Vb≠ 0

V b

×

V c

r c



III. Practical use of the LBM 
III-3 No slip condition on solid obstacle boundary

 



boundary link σ

Force applied by fluid on solid obstacles:

● Force (and then torque) is obtained by derivation of the 
momentum exchange with respect to time:

● For the whole solid boundary:

 

III. Practical use of the LBM 
III-3 No slip condition on solid obstacle boundary

Obstacle boundary, Vb≠ 0



III. Practical use of the LBM 
III-3 No slip condition on solid obstacle boundary

⇒ The bounce back rule presented here is one of the 
simplest (and rough) way to deal with interactions 
between fluid and moving solid boundaries.

⇒ More complex scheme exist such as the immerse 
boundary scheme where the LB equation is weighted by 
the solid/fluid surface ratio at the vicinity of the node 
considered. 

⇒ The classical bounce back rule limit the computation 
cost and is satisfactory as a first approximation.

Han et al, 2007



III. Practical use of the LBM 
III-4 Pressure boundary condition
The distribution function              is the only object handled with the LBM.

⇒ Pressure and velocity boundary conditions cannot be imposed directly.
⇒ Distribution functions have to be defined to match the desired boundary condition 

(see work of Zou & He, 1997; Succi 2001).

Case of a pressure limit condition

f ix , t 

D2Q9 lattice
model

Pressure 
condition on 

this boundary
For the considered node and after the 
propagation step:

●  f
2,3,4,6,7

 are known,

●  f
1,5,8

 are unknown.

⇒ Need of three equations where unknown 
distribution functions are expressed with 
respect to the macroscopic pressure and 
velocity.



III. Practical use of the LBM 
III-4 Pressure boundary condition

D2Q9 lattice
model

Pressure 
condition on 

this boundary

Projection on the two 
space directions

f 1 f 5 f 8=− f 0 f 2 f 3 f 4 f 6 f 7 



III. Practical use of the LBM 
III-4 Pressure boundary condition
⇒   ρ ?    v

x
 ?     v

y
?

● Pressure condition  ≡ density condition

● Assumption: tangential velocity to the boundary is nil,  v
y
 = 0

● Additional equation: bounce back  rule for the non-equilibrium part of the distribution 
functions normal to the boundary (Zou & He, 1997).

By developing the 
equilibrium functions

D2Q9 lattice
model

Pressure 
condition on 

this boundary



III. Practical use of the LBM 
III-5 Validation on simple flow cases

Poiseuille flow

y

x

⇒ agreement with serie 
solutions for transient and 
stationnary solutions

(Lominé et al, AGS'10, 2010)



III. Practical use of the LBM 
III-5 Validation on simple flow cases

Fluid flow in porous media
We consider bi-dimensional porous media with porosity Ф,made with spherical 
particles of diameter D.

⇒ we retrieve the Kozeny-Carman relation: k
D2 ∝

3

1−2

D (Ф) vary and N vary from ~3000 to ~5000 particles

(Lominé et al, AGS'10, 2010)



IV. DEM-LBM coupling 
IV-1 Subcycle
● DEM time step is limited for stability condition by a critical time step:

● LBM time step given by:

 ⇒ For usual material parameters (contact stiffness, solid density, fluid density and 
viscosity):  DEM time step < LBM time step.

dtDE  dt DE
cr = 2m/ k

LBM loop

 n DEM loop

new solid positions and velocities

hydrodynamic forces

 ⇒ The DEM loop is considered as a subcycle of 
the LBM loop (Feng et al., 2007)

● The DEM time step is adjusted such as an 
integer number n of DEM loop can be 
performed in one LBM loop:  dt = n dt

DE

● Same value of F
h
 applied on solid particles 

during the n DEM loop
  (smooth solid particle motion required during 
   the n DEM loop)  



IV. DEM-LBM coupling 
IV-2 Hydrodynamic forces and Newton's law
Action of fluid on solid particles is simply taken into account in Newton's law:

●

LBM loop

 n DEM loop

new solid positions and velocities

hydrodynamic forces

m = F c F h

J ̇= T c T h

Fluid (LB method)Contacts (DE method)

at t

at t
(ρ and v at t+dt)



V. Application to piping erosion
V-1 Characterization of soil erodability

(Pham, 2008: sand and clay mix) 

● Laboratory test: Hole Erosion Test (HET)

                                  
       pressure gauges      

turbidimeter

    Flowmeter   

(Regazzoni, 2009)
(Pham, 2008)

● Characterisation of particle detachments 
under hydro-mechanical loadings

→ Description of mechanisms involved at  
     microscopic scale.
→ Identification of relevant parameters related to the  
     solid and fluid phase



V. Application to piping erosion
V-2 Model description

- Cohesive frictional granular assembly:

φ
C
 = 20° C = -

 
C

n 
= C

s

- Initial hole drilled in the granular assembly,
- Water flow under constant pressure 
gradient: ∆P = P

1
 - P

2
.

⇒ Simplified 2D Hole Erosion Test (HET): 

800 solid particles;     fluid lattice of 335 000 nodes

F
s

F
n

-C
n

C
s

Contact lost

Cohesion
broken:
C

n
= C

s
= 0

φ
c

φ
c

kn

ks
φc

P1              P2

shear contact 
force

normal contact 
force

⇒ Brittle cohesive inter-particle contacts:

Lominé F., Sibille L., Marot D. (2011). “A coupled discrete element – lattice Boltzmann method to investigate internal 
erosion in soil”, In Proc. 2nd Int. Symp. on Computational Geomechanics COMGEOII, Dubrovnik, 27-29 avril 2011



⇒ Ratio of eroded mass for a cohesion C/d = 0.506 N/m 

→ No erosion for ∆P = 0.01 Pa.

→ Acceleration of kinetic of erosion when ∆P increases.

V. Application to piping erosion
V-3 Numerical results

(Lominé et al., 2011)



⇒ Classical interpretation with respect to the hydraulic shear stress τ :
 

(Shields 1936, Wan & Fell 2002) 
τ

c 
: critical shear stress

k
d 
: erosion rate  .

if

→ Hydraulic shear stress   
     computed along the hole   
     border:

k
d
 = 9.1 s/m

τ
c 
= 9.10-4 Pa

V. Application to piping erosion
V-3 Numerical results

(Lominé et al., 2011)


