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I. Introduction
I-1 Stress and strain probes, why?

σ1 / ε1

σ2 / ε2
σ3 / ε3

● In DEM, physics is described at the contact and grain scale (contact stiffness, 
friction, adhesion, grain shape ...).

● At the macroscopic scale (over a REV) the mechanical behaviour (often 
complex) results from the collective response of particles (involving fabric, 
forces chains, force cycles, etc ...).

⇒ At the present time, there is no way to fully characterize a priori the 
macroscopic behaviour of the numerical granular assembly.
⇒ This situation is somehow similar to that of real (natural) granular matter.
⇒ The macroscopic mechanical behaviour can be exhibited through loading 
experiments.

● Gudehus (1979) proposed to characterize graphically incremental constitutive 
relations by plotting the response envelops to unit strain probes.

⇒ This approach based on response envelops can be extended to real 
materials (although it is technically painful, Royis & Doanh 1998), or to virtual 
(numerical) materials (much easier!) 

kn

ks φc
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I. Introduction
I-1 Rate independent material
● For rate independent materials:

where Gh depends on the previous stress-strain history through the memory parameters h.

●                                             →   G is homogeneous of degree 1 →  Application of Euler's 
identity gives:

● Identifying                                ,   Mh is homogeneous of degree 0  (                                 )

→  Mh depends only on the direction                       of         and not its norm. 

For     ,       expressed as pseudo vectors (in principal stress and strain direction for simplicity) 

d =Ghd 

∀ Ghd =Ghd 

d =
∂Gh

∂d 
d 

M hd =
∂Gh

∂d 
M hd =M hd 

u=d /∥d ∥ d 

d  = M h ud 

d  = M h d 
∥d ∥d  d ={d 1

d 2

d 3

d ={d 1

d 2

d 3

d  d 

⇒ The incremental constitutive relation can be exhibited through strain (stress) 
responses to stress (strain) increments describing the different stress (strain) 
space directions.

(See Darve 1987-90)
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I. Introduction
I-2 Rendulic stress or strain plane

General restrictions:

● For the sake of simplicity we consider:
- irrotational strains and stresses,
- axisymmetric  strain and stress states around axis `1'  (σ2 = σ3  and ε2 = ε3), 

where axes 1, 2 and 3 correspond to principal strain and stress directions (classical triaxial 
states)

⇒ A stress state is completely represented in the Rendulic stress plane (or 
axisymmetric stress plane). 

1

2 .3





∥∥=1
22

23
2=1

22.3
2

1

33
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⇒ A strain state is completely represented in the Rendulic strain plane (or 
axisymmetric strain plane). 

1

2 .3





∥∥=1
22

23
2=1

22.3
2

1−11

1
1−2

I. Introduction
I-2 Rendulic stress or strain plane
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II. Directional stress/strain probes, and incremental   
response

Graphical characterization of material behaviour:

● The material constitutive behaviour is represented by the incremental strain (stress) 
responses to “unit” stress increments applied in different directions. 

⇒ Sequential loading of the material from the same initial state by a “unit” stress 
loading in different space directions (stress probes). 

d 1

2 .d 3

d 



d 1

2 .d 3

d 



∥d ∥Same            but different α       

d  = M h u d 
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2 .d 3 2 .d 3

d 1 d 1

∥d ∥Same            but different α       

II. Directional stress/strain probes, and incremental   
response

Graphical characterization of material behaviour:

● The material constitutive behaviour is represented by the incremental strain (stress) 
responses to “unit” stress increments applied in different directions. 

⇒ Sequential loading of the material from the same initial state by a “unit” stress 
loading in different stress directions (stress probes). 

d  = M h u d 
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2 .d 3 2 .d 3

d 1 d 1

∥d ∥Same            but different α       

II. Directional stress/strain probes, and incremental   
response

Graphical characterization of material behaviour:

● The material constitutive behaviour is represented by the incremental strain (stress) 
responses to “unit” stress increments applied in different directions. 

⇒ Sequential loading of the material from the same initial state by a “unit” stress 
loading in different stress directions (stress probes). 

d  = M h u d 
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2 .d 3 2 .d 3

d 1 d 1

∥d ∥Same            but different α       

II. Directional stress/strain probes, and incremental   
response

Graphical characterization of material behaviour:

● The material constitutive behaviour is represented by the incremental strain (stress) 
responses to “unit” stress increments applied in different directions. 

⇒ Sequential loading of the material from the same initial state by a “unit” stress 
loading in different stress directions (stress probes). 

d  = M h u d 
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2 .d 3 2 .d 3

d 1 d 1

∥d ∥Same            but different α       

II. Directional stress/strain probes, and incremental   
response

Graphical characterization of material behaviour:

● The material constitutive behaviour is represented by the incremental strain (stress) 
responses to “unit” stress increments applied in different directions. 

⇒ Sequential loading of the material from the same initial state by a “unit” stress 
loading in different stress directions (stress probes). 

d  = M h u d 
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Graphical characterization of material behaviour:

2 .d 3

d 1

The envelop of the incremental strain (stress) responses is called the Gudehus strain 
(stress) response envelop.

⇒ This representation is suitable to characterize the mechanical behaviour of rate-
independent materials where the material response depends on the previous 
stress-strain history and loading direction.

⇒ The shape of the response envelop fully characterizes the constitutive behaviour

2 .d 3

Circle
d 1 Response 

envelop

II. Directional stress/strain probes, and incremental   
response
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III. Typical response envelops
III-1  Incrementally linear response

Incrementally linear constitutive behaviour:
a single linear relation between the strain increment and 
the stress increment, for all the stress loading directions 
(or strain directions) (i.e. there is a single tensorial zone)

⇒ The strain response envelop is an ellipse centred at 
the origin of the Rendulic strain increment plane. 

Exemple: isotropic Hooke's law
(in principal stress and strain axes) d 1 =

1
E [d 1 − d 2d 3]

d 2 =
1
E [d  2 −d 1d 3]

d 3 =
1
E [d 3 − d 1d  2]

⇒ The strain response envelop is an 
ellipse. The size and the shape depend 
on E and ν only.

(see details in: Gudehus 1979, Proc. 3rd Numer. Meth. in Geomechanics ; and Bardet 1994, 
Int. J. Plasticity)

d  = M h u d 
d 1

2 .d 3

d  
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Exemple: isotropic Hooke's law

⇒ shape of ellipse depends on ν only. ⇒ size of ellipse depends on E only.

III. Typical response envelops
III-1  Incrementally linear response
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Anisotropic linear elasticity: case of the transverse isotropic Hooke's law

Same properties in directions 2 and 3:

But different properties in direction 1:

d 1 =
d 1

E1
− 2

31

E3
d 3

d 3 =−
13

E 1
d 1 −

3

E3
d 3 

d 3

E 3

13

E1
=

31

E3

with:

E2 = E3 23 = 32 =3

E1 ≠ E 3
13 ≠31

III. Typical response envelops
III-1  Incrementally linear response
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Transverse isotropic Hooke's lawIsotropic Hooke's law

Purely deviatoric stress increase:                                     and                                  ⇒  α = 125,3° dp = d 12 d 3=0 dq = d 1−d 30

Isotropy  ⇒  inclination of ellipse major axis: 125.3°, and direction of strain response to 
purely deviatoric stress loading aligned with ellipse major axis.

α = 125.3° α = 125.3° 

III. Typical response envelops
III-1  Incrementally linear response
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Gudehus G., “ A comparison of some constitutive laws for soils under radially symmetric loading and 
unloading”, Proc. 3rd Numer. Meth. in Geomechanics, A. A. Balkema, Aachen, p. 1309-1323, 2-6 April, 
1979.

2 .d 3

d 1

d 

Linear constitutive 
relation for a given 
tensorial zone

M 1
h

M 2
h

M 3
h M 4

h

Exemple: elastoplastic law with two yield functions 
(incrementally piece-wise linear relation with 4 tensorial zones)

⇒ 4 pieces of ellipses centred at the origin of the Rendulic stress rate plane

III. Typical response envelops
III-2  Incrementally piece-wise linear response
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II. How to perform stress or strain probes with DEM
II-1 The loading programme
Case of stress probes

1. Reach an initial stress state and stabilize the granular assembly at this stress state.
2. Choose a value for the size of the increment of the stress loading         .
3. Apply this stress increment in a given direction α from the initial stress state considered.
4. From the same initial stress state apply the same stress increment in a 2nd, 3rd,  ... 
direction α.

Classically, the initial stress states can be reached after an isotropic compression followed 
by a triaxial drained compression.

d 1

2 .d 3

∥d ∥
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IV. How to perform stress or strain probes with DEM
IV-1 Initial stress state
Perform an triaxial drained compression with a full stress control
● The compression, even if it's stress controlled should be made slow enough to stay in a 
quasi-static strain regime.
● Stop the simulation when the quasi-equilibrium threshold is reached (with respect to the 
kinetic energy or the global unbalance force for instance).

Use for instance with Yade the ThreeDTriaxialEngine:
ThreeDTriaxialEngine(stressControl_1=1, stressControl_2=1, stressControl_3=1, 

sigma1=150e3, sigma2=100e3, sigma3=100e3,
strainRate1=0.05, strainRate2=100, strainRate3=100)

Time or iterations

S
tre

ss
es

σ1

σ2 & σ3

Axial strain ε1

S
tre

ss
 d

ev
ia

to
r q

 =
 σ

1-σ
3

× Initial state
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IV. How to perform stress or strain probes with DEM
IV-2 Stress loading increment

For rate-independant materials:
The mechanical response depends only on the history and the loading direction. 

d 

d 

∥d ∥

⇒  for stress probes:
● the size of the of the strain response  
should be proportional to the size of the 
stress increment           ,

● the direction of the strain response 
should be independent of the size of the 
stress increment          .∥d ∥

∥d ∥ Alonso-Marroquin, 2004

Practically not true: the strain response 
path to a stress loading applied in a 
given direction is not rectilinear. 

⇒  history run continuously
⇒  mechanisms at the origin of 
irreversible strain can be more or less 
discontinuous in time 

d  = M h u d 
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IV. How to perform stress or strain probes with DEM
IV-2 Stress loading increment

∥d ∥=0.1 kPa ∥d ∥=1.0 kPa Sibille, 2006

● Irreversible mechanisms, contact sliding, opening (eventually discontinuous in time) 
involved for sufficiently large stress increments.
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IV. How to perform stress or strain probes with DEM
IV-2 Stress loading increment

Froiio & Roux , 2009

● According to elasto-plasticity, the plastic strain increment is proportional to the active part of 
the stress increment (part of the stress increment pointing outward from the elastic domain).

⇒ to respect this condition:                                   ... but not too small!  ∥d ∥ 0.022 P
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IV. How to perform stress or strain probes with DEM
IV-2 Stress loading increment

⇒  existence of residual elastic response 
from the initial state considered.

“ A small parasite effect of this intermediate 
`creep' transition [during the stabilisation of the 
sample at the initial stress state] before stress 
probing is that part of the plastic memory, stored 
at contact between particles, is erased due to a 
slight unavoidable rearrangement of the contact 
network ” (Froiio & Roux, 2009)

Sibille, 2006
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IV. How to perform stress or strain probes with DEM
IV-2 Stress loading increment

Authors Type (kPa)
Bardet DEM  2D - 0.05
Royis & Doanh Exp. tests 10 0.10
Calvetti et al. DEM 3D 10 0.10
Kishino DEM 3D 1 0.01
Alonso-Marroquin DEM 2D 0.016 10-4

Sibille DEM 3D 1 0.01

Froiio & Roux DEM 2D - <0.02
(but not too small)

∥d ∥ ∥d ∥/ p0

⇒  What size of stress loading increment should we choose?

A size sufficiently small to characterize the initial stress state considered with its proper 
history (and not other stress states in the vicinity), but sufficiently large to involved 
irreversible mechanisms (contact sliding, opening, contact creation) characterizing the 
stress state considered.

⇒  when                               then=
k n

〈DS 〉 p
∥d ∥/ p0 (Froiio & Roux, 2009)
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IV. How to perform stress or strain probes with DEM
IV-3 Apply the stress increment in a direction α
⇒  Increase progressively each principal stresses such that a rectilinear stress path 
is followed (i.e. such that the final value is reached at the same time for σ

1
 and σ

3
 )

d 1

2 .d 3

d 



∥d ∥cos

∥d ∥sin

Time or iterations

Stresses

σ1

σ2 & σ3

∥d ∥sin

∥d ∥cos
2

ThreeDTriaxialEngine(stressControl_1=1, stressControl_2=1, stressControl_3=1, 
sigma1=Sa_curr, sigma2=Sr_curr, sigma3=Sr_curr,
strainRate1=100, strainRate2=100, strainRate3=100)

Sa_curr = Sa_final * nbIte / nbIteRamp
Sr_curr = Sr_final * nbIte / nbIteRamp

With:  
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IV. How to perform stress or strain probes with DEM
IV-3 Apply the stress increment in a direction α

Typical strain response envelops:

● DEM simulation by Calvetti et al.:
Calvetti F., Viggiani G., Tamagnini C., “ A 
numerical investigation of the incremental 
behavior of granular soils”, Rivista Italiana di 
Geotecnica, vol. 3, p. 11-29, 2003

and Sibille (2006)
(spherical particles with locked rotations, 
purely frictional contacts)

● DEM model fitted on experimental 
results on dense Hostun sand from 
Royis & Doanh:
Royis P. and Doanh T., “Theoretical analysis of 
strain response envelopes using incrementally 
non-linear constitutive equations”, IJNAMG, vol. 
22, p. 97-132, 1998.

⇒  Stress probes at 3 stress deviator 
levels: q = 0; 100 and 300 kPa
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IV. How to perform stress or strain probes with DEM
IV-3 Apply the stress increment in a direction α

q = 0; isotropic state q = 100 kPa; 
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II. How to perform stress or strain probes with DEM
IV-3 Apply the stress increment in a direction α

q = 300 kPa; 
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IV. How to perform stress or strain probes with DEM
IV-3 Apply the stress increment in a direction α

Same experimental results, but comparison with an incrementally piece-wise linear 
constitutive relation: Darve's Octolinear model (8 tensorial zones with respectively height 
linear relations between stress and strain increments)
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IV. How to perform stress or strain probes with DEM
IV-4 Reversible and irreversible strain response 

Alonso-Marroquin, 2004

The strain response envelop can be split into:
●  a reversible strain response envelop
●  an irreversible strain response envelop

We assume that:
(or in the framework of elasto-plasticity:                          )      

Three different methods:

1/ For each probe direction perform (Bardet 1994, Kishino 
2003, Alonso-Marroquin 2004):
● an incremental loading by applying        → computation of 
the total strain response

● then unload the sample to reach the initial state 
considered → computation of the irreversible strain.

⇒  Hypothesis: completely reversible strain response 
during unloading (error limited for small size of stress 
increment           ). ∥d ∥

d 

d  = d  rd i
d  = d ed  p
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IV. How to perform stress or strain probes with DEM
IV-4 Reversible and irreversible strain response 

Three different methods:

2/ For each initial stress state perform two stress 
probes (Calvetti et al. 2003, Sibille et al. 2009):
● Classical stress probes → computation of the 
total strain.

● Stress probes where local irreversible 
mechanisms are avoided (sliding, contact 
opening) → computation of the reversible strain.
(For inhibited particle rotations, avoiding sliding 
with ϕC=90° is sufficient to also prevent contact 
opening.)

● 

 

d i = d −d  r
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IV. How to perform stress or strain probes with DEM
IV-4 Reversible and irreversible strain response 

⇒  Can we reasonably limit irreversible strains for 
rotational particles by inhibiting sliding only?

Spherical particles with purely frictional contact law with ϕC=90°  (                        ) ∥d ∥/ p0=0.01

Loading
Unloading

Loading
Unloading

Initial state Initial state

After loading

After 
loading

Total strains
Reversible strains
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IV. How to perform stress or strain probes with DEM
IV-4 Reversible and irreversible strain response 

Three different methods:

3/ Use the stiffness matrix associated to the 
contact network (Froiio & Roux 2010):
● Classical stress probes → computation of the 
total strain.

● Build the elasticity tensor      (                    ) by 
assembling the contributions stiffness kn and kt of 
each contact involved in the contact network 
(Agnolin & Roux 2007).

Compute the elastic part of strains from:

●

 

d = C e d e
C e

d e = C e
−1 d 

d  p = d −d e

Froiio & Roux 2010
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IV. How to perform stress or strain probes with DEM
IV-5 Stress or strain probes?
Stress probes and strain probes are dual → make your choice

Nevertheless:

● It's easier to perform strain probes with DEM (no need of stress control, fixed strain rate, 
stabilisation easier after the application of dε )

● Interpretation in framework of elastoplasticity easier from stress probes (elastic and 
plastic strain decomposition...) 

Stress probe
Strain probe

Stress probe
Strain probe (Sibille 2006)
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V. Interpretation in the framework of elastoplasticity
V-1 Few words about elastoplasticity

Strain decomposition into elastic strain (reversible) and plastic strain (irreversible): into elastic strain (reversible) and plastic strain (irreversible):

Yield surface f (elastic limit surface): surface in the stress space limiting the stress 
states reach from fully reversible strains.

Plastic potential g: surface in the stress space; the increment plastic strain vector is 
perpendicular to the plastic potential (Flow rule).

For g ≠ f  the material is non-associated.

d  = d ed p
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V. Interpretation in the framework of elastoplasticity
V-1 Few words about elastoplasticity

For
or 

   and                    (unloading)

then: 

f  =0

f  0

∂ f
∂ 

d 0

d e = H  d 

d p = 0

Generalised
Hooke's Law

For    and                    (loading) 

then:

f  =0 ∂ f
∂ 

d 0

d e = H  d 

d p=d 
∂ g
∂ 

Plastic
Multiplier

2 tensorial zones (elastoplasticity with single mechanism of plastic strain)
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V. Interpretation in the framework of elastoplasticity
V-2 Elastic deformation
Elastic strain response envelops at the isotropic state η = q / p = 0

         and for an deviatoric stress state η = q / p = 0.74

⇒  Response envelops typical of an isotropic, and transverse isotropic, elastic linear 
behaviour (can be modelled with a generalized Hooke's law)
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V. Interpretation in the framework of elastoplasticity
V-2 Elastic deformation

Distribution of contact orientations after a drained triaxial compression
(x1 is the direction of compression)

⇒  transverse isotropy of contact orientations ≡ transverse isotropic elasticity.
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V. Interpretation in the framework of elastoplasticity
V-3   Plastic deformation

The strain response can be split into (Calvetti 
et al., 2003):

● the norm of the strain response vector:

● the direction of the strain response vector: 

∥d e∥=d e1
22d e3

2 ∥d p∥=d  p1
22 d  p3

2

e p

(Sibille et al., 2009)
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V. Interpretation in the framework of elastoplasticity
V-3   Plastic deformation

● Occurrence of plastic strains only for given 
stress direction: in a plastic tensorial zone.

● Direction of plastic strains constant and 
independent of stress direction → clear 
indication of flow rule existence.

(Sibille et al., 2009)
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V. Interpretation in the framework of elastoplasticity
V-3   Plastic deformation

● First and last directions of plastic tensorial 
zone are almost tangent to the yield surface 
f   (α = 60° and 240°).

● Rigth and left tangents are collinear 
(60°+180° = 240°) →  smooth yield surface.

● Normal    to the yield surface along 
direction α = 150° → maximum of 
≡           proportional to the active part of 

n
∥d p∥

∥d p∥ d 

(Sibille et al., 2009)
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V. Interpretation in the framework of elastoplasticity
V-3   Plastic deformation

● Plastic flow in direction βp = 129° = direction of 
the normal     to the flow rule

●     (150°) ≠      (129°) →  non-associated flow 
rule.
 

m

mn

(Sibille et al., 2009)
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V. Interpretation in the framework of elastoplasticity
V-3   Plastic deformation

For axisymmetric stress probes after an 
axisymmetric initial triaxial compression:

● Elastic linear behaviour typical of a Hooke's law.
● Occurrence of plastic strains for a given tensorial 
zone limited by a smooth yield surface.
● Plastic flow characterized by a constant direction 
different from the normal to the yield surface.
● Size of plastic strain response proportional to the 
active part of the stress increment.

⇒ The behaviour in axisymmetric conditions of the discrete numerical assembly of 
spheres is very well represented by classical elasto-plasticity with a single loading 
mechanism.

(Sibille et al., 2009)
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V. Interpretation in the framework of elastoplasticity
V-4   Preloaded initial state (Calvetti et al., 2003)

● 2 plastic flow directions (142° and 310°), in almost opposite directions!
● No purely elastic tensorial zone, but two elasto-plastic tensorial zones

⇒ cannot be described by classical elasto-plasticity! 
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V. Interpretation in the framework of elastoplasticity
V-5   Non-axisymmetric Stress probing (Kishino, 2003)

Plastic 
response 
envelop

● The plastic strain response envelop is not a straight 
line and seems to depend on stress direction.
● The “elastic” tensorial zone is well reduced (≈ 60°) → 
the yield surface is not flat (or not unique)
● dε p

m synchronized with dσ.m (and not dσ.n)

⇒ Mechanical behaviour greatly incrementally 
non-linear (many tensorial zones are required to 
describe such behaviour)
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V. Interpretation in the framework of elastoplasticity
V-5   Rotation of principal stress axes (Froiio & Roux 2009)

Without rotation of principal stress axes
Stress probing in the plane σ11 - σ22

With rotation of principal stress axes
Stress probing involving σ12

● 3 plastic mechanisms of deformation can be identified

● Authors shown that results can be described with an elasto-plastic relation with 3 yield 
criteria and 3 flow rules.

⇒ Once again the mechanical behaviour is well incrementally non-linear.

d  = M h d 
∥d ∥d 
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