Grenoble – June 27, 2011

Physics of geomaterials at small scale

J. Carlos Santamarina Georgia Institute of Technology "... Coulomb... purposely ignored the fact that sand consists of individual grains

Coulomb's idea proved very useful as a working hypothesis but it developed into an obstacle against further progress as soon as its hypothetical character came to be forgotten by Coulomb's successors.

The way out of the difficulty lies in dropping the old fundamental principles and starting again from the elementary fact that sand consists of individual grains"

Terzaghi (1920)

Size (F=ma)

Shape

Strength: $\tau = \sigma' \tan \phi$ Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

(N. Skipper - UCL)

Footprints at 1/6 g

Fabric map - Kaolinite

Stern potential and R_{DL} decrease van der Waals attraction prevails

Particle Forces – Spherical Particles

Skeletal	$\underline{\mathbf{N}} = \sigma' \mathbf{d}^2$	boundary- determined
Weight	$W = (\pi G_s \gamma_w / 6) d^3$	
Buoyant	$\mathbf{U} = \mathbf{Vol} \cdot \boldsymbol{\gamma}_{w} = (\pi \boldsymbol{\gamma}_{w} / 6) \mathbf{d}^{3}$	particle-level
Hydrodynamic	$F_{drag} = 3\pi\mu v d$	
Capillary	$F_{cap} = \pi T_s d$	
Electrical	A_{h}	
attraction	$Att = \frac{1}{24t^2} d$	contact-level
repulsion	$\operatorname{Re} p = 0.0024 \sqrt{c_{o}} e^{-10^{8} t \sqrt{c_{o}}} d$	
Cementation	$T = \pi \sigma_{ten} t d$	

Force Balance: Capillary Force

Particle Forces - Balance

Effective stress: boundary determined

Archimedes buoyancy force

- NOT affected by u
- depends on du/dz

Skeletal force (effective stress)

NOT affected by u

Effective stress:

- established at the boundary
- In the field? seepage force

Shape

Strength: $\tau = \sigma' \tan \phi$ Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Sun - NASA's STEREO ultraviolet - 1 million degrees

Sun - NASA's STEREO ultraviolet - 1 million degrees

Crater on Mars NASA

red on left

Formation on Mars NASA

Berries on Mars NASA

Berries on Mars NASA

Diamond coring on Mars NASA

Table Salt

Crushed carbonate

Characterization

Krumbein and Sloss (1963)

Coarse Grained: Shape + Relative Size

(Youd, 1973; see also Maeda, 2001)

6

10

Shape

Strength: $\tau = \sigma' \tan \phi$

Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Bearing Capacity – Ng factor

Particle Shape

<u>size d</u>

alignment

roundness $\lambda = \pi d/10$ angularity

smoothness $\lambda = \pi d/100$ roughness

interlocking

surface µ

Fine Grained?

Kaolinite

Solid and Electrical Roughness

solid roughness h/ζ

electrical roughness

solid-fluid islands

Rotational frustration: coordination \downarrow

2D Free (high e) 2D Frustrated (low e) 3D Frustrated (low e)

Lower coordination

 \rightarrow reduce rotational frustration \rightarrow avoid contact slip

Chain Buckling: Coordination[↑]

both, coarse and fines (conglomerates)

Evolution of internal micro-scale – 3D

Chantawarangul, 1993

Macroscale Response in q, p', e, ε

Constant Volume Friction - Roughness

Constant Volume Friction vs. Roundness

 $\Phi_{\rm cv}$

Dilatency Angle

Ψ

Peak Friction Angle

■ (DEM 2D from Kruyt and Rothenberg 2006)
□ (DEM 3D from Thornton 2000)

Drained TC(r), Undrained TC(p), Drained TE(TM), Undrained TE($^{~}$) (DEM-3D from Yimsiri 2001) * (experiments) \diamond (DEM 3D from Suiker and Fleck 2004) \bullet GT work.

Residual Friction Angle - very large strains

particle alignment

size segregation

shape segregation

Residual Friction Angle

Note: clay fraction must exceed ~20%

Frictional strength anisotropy

$$\phi_{E}$$
=1.0 to 1.5 ϕ_{C}

Constant angle of repose?

Narsilio, Dodds, Fugle, Trott, Kim, Yun

Size (F=ma)

Shape

Strength: $\tau = \sigma' \tan \phi$

Stiffness: $G=\alpha(\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Un-cemented soil

Contact Stiffness + Fabric Change

Hertz

$$cn \uparrow \rightarrow \beta \uparrow$$

Velocity-Stress: Contact + Fabric

Un-cemented soil – Effective stress

Cementation Controlled Stiffness

Cemented soil

Stress-Cementation History

- 1: Confinement
- 2: Cementation
- 3: Load
- 4: Unload

- 1: Confinement
- **2: Cementation**
- 3: Unload
- 4: Re-load

Cementation Pore Habit

cement-free sediment

distributed cementation

patchy cementation

<u>Mineral</u>

= 0.62~0.82mm
= 3,762~4,806
= 0.402, 0.532
= 0.1-to-1MPa
= 1×10 ⁷ N/m
= 1×10 ⁷ N/m
= 0.5

Distributed hydrates

Hydrate saturation $= 0 \sim 50\%$ Hydrate particle diameter= 0.22mmHydrate particle number $= \sim 74,940$ Bonding strength= 200 kPa

Patchy hydrate saturation

Hydrate saturation	= 0~50%
Cluster number	= 15 groups
Grain numbers in cluster	= 12~160
Parallel Bonding strength	= 5MPa

Stress-Strain Response (3D)

distributed cementation

patchy cementation

Note: increase in stiffness , strength, dilation with S_{hvd}

pore habit affect dilation
Critical State - large strain (3D)

distributed cementation

patchy cementation

Contact Force Chains (2D Simulation)

Size (F=ma)

Shape

Strength: $\tau = \sigma' \tan \phi$

Stiffness: $G=\alpha(\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Grain Size Distribution: The Role of Fines

Sediment	e₁ _{kPa}	FC*
Silt	~0.7	~ 25 %
Kaolinite	~1.5	~ 20 %
Illite	~3.7	~ 11 %
Montmorillonite	~5.4	~ 8 %

Fines Migration and Clogging

Grains and Pores: Clays

Sediment compaction

$$e = e_{1kPa} - C_c \log\left(\frac{\sigma'}{1 \, kPa}\right)$$

Sediment	e _{1kPa}	Cc	S [m²/g]	mean d _{pore}	∆P [Mpa]
Silt	~0.7	0.02-0.09	0.045-1	5 µm	0.05
Kaolinite	~1.5	0.19-0.3	10-20	0.5 μm	0.5
Illite	~3.7	0.5-1.1	65-100	0.05 μm	5
Montmorillonite	~5.4	1-2.6	300-780	0.005 μm	50

Mean of d [micron]

Network Models – Upscaling

Poiseuille's Eq.

$$q = \frac{\pi R^4}{8\eta \,\Delta L} \Delta P \left(\alpha = \frac{\pi R^4}{8\eta \,\Delta L} \right)$$

Mass Balance at Nodes

$$0 = \sum q_c$$

$$0 = \alpha_a (P_a - P_c) + \alpha_b (P_b - P_c) + \alpha_r (P_r - P_c) + \alpha_1 (P_1 - P_c)$$

$$P_c = \frac{\alpha_a P_a + \alpha_b P_b + \alpha_r P_r + \alpha_1 P_1}{(P_c - P_c)}$$

$$\frac{1}{\alpha_{a}} = \frac{1}{(\alpha_{a} + \alpha_{b} + \alpha_{r} + \alpha_{1})}$$

System of Equations

$$\underline{\mathbf{B}} = \underline{\underline{\mathbf{A}}} \underline{\mathbf{P}} \qquad \text{then} \qquad \underline{\mathbf{P}} = \underline{\underline{\mathbf{A}}}^{-1} \underline{\mathbf{B}}$$

Spatially Correlated Porosity

Log (d_{pore}/micron)

Size (F=ma)

Shape

Strength: $\tau = \sigma' \tan \phi$ Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Surface Tension

BBC News In pictures Visions of Science.jpg

CO₂-H₂O: Interfacial Interaction

High P

Surface Tension and Contact Angle

Water droplet in

Invasion vs. Nucleation

Characteristic Curve & k_r

Log-normal distribution of R², $\sigma(\ln(R/[\mu m]))=0.4$, Network size: 3D 13x13x13, cn=6, $P_c=2T_s\cos\theta/R$, $T_s=72mN/m$, $\cos\theta=1$

Forcing Gas Into Sediment

Evolution

Gas-Driven Fracture

Invasion vs. Localization

Size (F=ma)

Shape

Strength: $\tau = \sigma' \tan \phi$ Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation

Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Reactive Fluid Transport

Volcanic Ash Soils: Formation

Experimental Results

DEM Simulation

N= 9999 (in 2D) - 8000 (in 3D) cov particle diameter: 0.25 Interparticle friction: 0.5 Simulation: reduce D or G

DEM Simulation 2D - diameter gradually reduced - 20% of particles

DEM Simulation dR/dt=f(N)

Shear Localization

FEM simulation

natural sediments

Shear Localization: Marine Sediments

Cartwright (2005)

Size (F=ma) Shape Strength: $\tau = \sigma' \tan \phi$ Stiffness: $G = \alpha (\sigma'/kPa)^{\beta}$... Cementation Pores

Mixed fluids (Unsaturated Soils)

Reactive Fluids

Closing Thoughts

Sleeping Beach – Antoni Pitxot – Museu Dali

Fun and Important Problems

important problems

fun problems

 ∞

fun & important problems

Fun and Important Problem: Energy

Hobby

Hobby

Hobby

D. Carbajal Solsona
Hobby

Potential – Attitude – Dedication – Impact

Potential – Attitude – Dedication – Impact

$$I = 0.04P + 0.18A + 0.73D$$

$$cc\approx 0.89$$

$$I = P^{0} A^{0.18} D^{0.94}$$

$$cc\approx 0.89$$

$$I = [min(P,A)]^{0.18} D^{0.92}$$

$$cc\approx 0.88$$

"per ardua ad astra" through struggle to the stars

