GENERATION, COMPRESSION, QUASISTATIC
DEFORMATION OF MODEL GRANULAR
MATERIALS
grain-level simulations, micromechanical
approaches

Role of microscopic model ingredients, definition of

relevant variables and control parameters
Jean-Noél ROUX

Laboratoire Navier, Université Paris-Est, France

SCOPEassembling processes for granular packings, isotropiogdometric
compression), elastic properties, small to moderatenstiairesponse to
deviatoric loads.

Model systems: assemblies of spherical beads (or disks in 2D)
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Solid fraction and coordination number in isotropic pressue cycle
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Initially isotropic states A, B, C, D. Very nearly reversfior ®, not reversible for
z*, which decreases if initially high.

Similar behaviour in systems assembled by pluviation.



Normal force distribution under growing pressure

f=Fn/(Fn),

P =10, 100, 103, 104, 10° kPa
Distribution narrows as force indeter-
minacy increases.

A0 = frictionless system. A=AO0 in
Initial state

A is frictional, assembled without
friction.




P(cos0)

Confinement conserves inherent fabric anisotropy...

even though initial stresses
were anisotropic
2 systems made by pluviation,
sameQ)”, differentH; (0 and 20)
Continuous line = inherent
anisotropy after pluviation
Dotted line = anisotropy after

—————— application of isotropic pressure
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Plastic compaction of cohesive system

2.2 M
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® p/a=0
p/a=0.005

1/®
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Under growingP* open, tenuous contact networks irreversibly collapse.
Definition of P* — correct pressure range where plastic collapse occurs
Note influence of small RR. Void index varies linearly withP* as in traditional
presentation of “consolidation curves”.



Cohesive system under highP*: maximum consolidation
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Repulsiveforces only, similar force

chains and density as in cohesionless
systems.
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Cohesive system under lowP* after pressure cycle
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How can one obtain truly loose packings of beads ?

II;J
o651 ]
| “(NO COHESION)
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055 L —.| /,/’ COHESIVE: B
L Glass beads
[ oS + menisci
05 L e a = 0115 mm
B i Dried at high pressure -
i i then uncompressed
0'45 _IIIIII| l 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1111111
1 10 100 1000 10* 10°

P (kPa)
Suppress capillary cohesion at higti, then uncompress- lower density
In the lab,moist tampingprocedure to make loose configurations

“Loose random packing”: no definition independent on pracecnd contact law !
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Some conclusions on preparation process and confinement aflsl granular samples

Density alone not enough to classify packings: coordimatiomber may
change a lot for dense samples Extreme cases obtained cetiliged)
lubrication and with (idealised) vibration

Compacting = avoiding the effects of friction

Moderate anisotropy in simulations of pluviation (coordioa similar to
partially lubricated case)

Cohesive systems exhibit a much wider variety of structuoem loose
structures with different degrees of branching... Assergldiage bound to
depend on effects of surrounding fluid in practice

Effect of compression in cohesionless systems: signifigaffects system
geometry as decreases te- 10°

Pressure cycle: little irreversibility for density, impant effect on
coordination number

With cohesion: plastic collapse, ruled By, with A(1/®) oc —Aln P*

Quantitative comparisons to experimenis“elastic properties



PROPERTIES
OF CONTACT NETWORKS



Definitions: system, load

N grains in dimensiod = Nd(d + 1)/2 degrees of freedom, displacements
u; and (small) rotationd;, 1 <i < N. In general, boundary conditions
(walls, periodic boundaries...), global degrees of freedontritmuten, < N
DOF — N; = Nd(d + 1)/2 4+ n, degrees of freedom, assembled in a grand
displacement vectdd, with N, coordinates.

Theload vecto* gathers all components of external ford&%' and
momentd'$** exerted on the grainsand conjugate forces to the, boundary
or collectife DOF's.

2D biaxial test, with 2 mobile walls, 2 fixed
ones, or opposite walls requested to have op-
Fy Fy posite velocities

= Ng = 2

12



Relative displacements and rigidity matrix G

Define in each one aW. contacts (or interactions across small interstices) a
“first” grain, say: and asecond ongsayj. Therelative displacemens

—

Uijzui—Uj+(§7;ARij—5jARji,

/hich defines theigidity matrix G
(d x N, rows in dimensionl, N; columns)

(dim . N;) U+ G-U =Y (dim. 3N, in 3D)

For spheresR,;; = R;n;;, R;; = —R;n;; and

—

Z/{@'j = U; — Uy + (Rzé; + R]é;) N\ n;;

We introducedranch vectorgarbitrary grain centre in general) andrmal
unit vectorsat contacts.



Properties of rigidity matrix G

e “Mechanism” motionsU such that; - U = 0. — k-dimensional space,
k=degree of displacement indeterminakgrnel ofG. Includes global
rigid-body motions.

e Compatibility of relative displacements: condition th_étorresponds to some
displacement vectdd by G
Range ofG, dimensionN; — k.

(We use arassumption of small displacemensSD)
(n;;, R;; constant, displacements dealt with as infinitesimal, @ Yi&locities)

14
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Contact forces and equilibrium equations

In each contact define tle@ntact forcef;; as the one transmitted by the “first”
grain to the “second” one
Equilibrium condition = linear relation between contaatces and external

load
FO =) f;
J#t
I‘gXt = Z fij AN Rz'j
JF#t

If f is the vector of contact forceB®* the applied load, then
F*'=H-f (dN.-dimensional vectors)

e Self-balanced contact forcebsuch thatd - f = 0. — kernel of H, space
of dimensionh, degree of force indeterminacy

e Supportable loading vector E®X corresponding to some contact force
vectorf by H — range ofH, dimensiond N, — h



Remarks on rigidity matrices

e Forf andi/, distinguishnormal and tangential parts (convenient coordinates
In dN,. spaces of contact forces in relative displacements)

e With frictionless contactgnore tangential components

e Therigidity matrix (non-square in general, purely geometric) should not be
confused with thetiffness matrisquare, involves material behaviour)

e Namerigidity matrix originates irnrigidity theory (for frameworks of articulated
bars, cable networks, tensegrities). Not used by ererybdsgme calt- A the
rigidity matrix...

H IS related tog:

16



17
Theorem of virtual work and consequences

H=g"

If £, a set of contact forces, balances Id'
If U, displacement vector, corresponds to relative displacésbé then (ASD)

f.-U=F*U
e Compatibility of relative displacements = orthogonalityself-balanced forces

range( G ) = (Ker(ﬂ))L in RNe

e Supportable loads = those orthogonal to mechanisms
range( H ) = (Ker(g))L in IRV

e Force and displacement degrees of indeterminacy related by

Nf+h=dN.+ k| ingeneral,orN; + h = N. + k| without friction

In a large systemV,. = zN/2 (N = nb of grains).
Frictionless disks or spheres &£ > N (2D) ork > 3N (3D)
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ELASTIC PROPERTIES

AND SMALL STRAIN
BEHAVIOUR

1. Some experimental observations
2. Simulations: incremental response of contact networks
3. Predictions of elastic moduli of model materials

4. Simulation results, comparisons simulation/theonyéeinent
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Elastic behaviour in granular materials, sands, geomateals

Cyclic loading Monotonic loading
Linear elastic elastic-weak plastic elastic-obvious plastic g E o
" eq
a)
Esec-Eeq (

Monotonic loading for

Over-consolidated soils.and
N1 cyclic presheared soils

ESeC
s |
Limit of elastié‘-\‘ \ | Drained cyclic loading (€)ga O e
response in "
monotonic loading,

, N
Undrained cyclic

\_~Monotonic loading
loading of saturated .
loose sands and S o—ee
C.softclays Tt 000 T———TDeo
e y e e —= Residual
-6 -5 -4 =4 =2 =
10 10 10 10 10 107" 10°
log (€). log (€)ga
(b) (in decimal) Average strain | Local strain in shear band
107 10° 10°° 107 10 107 10" 10°
Hard rocks| u T sy
Soft rocks

A\

10' 10
v T T T T
== r NNNN
I Einea e'*’s“‘:—| Car {E'aslic-o!asﬁc\ AT shear banding\ Residual
sipiipts op
Gravels i \‘\l
Sands ) SNEE ~

‘~-/// , So-called
critical state
1 -~ i b //
o T ! t = +
Laboratoryf Ultra-sonic T~ _ Special tests measuring strains
esonant-column ~ < _inshearband
tests o : ~
Tests measuring stresses and strains =~
+ { } 2§ 1
Field Seismic survey Bore hole loading tests
tests

(cyclic) (monotonic)

1 1 1
1, For normally consolidated soils subjected to monotonic loading

2. Increase as OCR increases and with cyclic loading

Fig. 3-8 (a) and (b): Illustration of straln level versus
soll properties and related testing methods

Hoque & Tatsuoka

e Linear elasticity (“tan-

gent elasticity”) forsmall

iIncrements of strains

and stresses about

a
prestressedtate

different methods agree
when

simultaneously
available

lots of data on geomateri-

als... less on model mate-
rials!
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Static versus dynamic moduli
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e \Wave velocities for isotropic medium:
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Measurement of elastic moduli in stress-strain test

120 Deviateur axial (kPa) over stress/” %

; L P
Panodes de fluage e

- i
o |
241 h

& &

Deéfofmation axiale (%)

0 0.1 0.2 0.3 U.4

Déviateur axial
(kHa)

Debut du fuage
248 = Emax

240 | Fin du ':IIJEQI"E'
Deformation axiale (%)

0,18 0.2 0,22

Lmavres oo B1icima FETTE L mnr

Creep periods (constant
stress) along monotonic curve
In triaxial compression

Incremental response elas-
tic after some creep interval of
strain

Moduli measured with cyclic
load of small amplitude

compression test resumed
back to previous stress-strain
curve



Elasticity. Isotropic case.

Aoy Ci1 Cia Cho 0 0
Aoag Ci2 Cpp Cio 0 0

. Aoss Ci2 Cia Ch 0 0

AQ = —
AO’23 O O O 2044 O
AO‘31 0 0 0 0 2044
AO’12 0 0 0 0 0
with:

Cll — 012

. 1
Convention: = = (Vu+ "Vu)

€11
€22
€33
€23
€31

€12

102

[N\

22



Transversely isotropic material

Axis of coordinater; particular

with :

5 independent constants instead of 2.

AO’11
AO’QQ
AO’33

AO’Qg

AO’31
AO’12

Ci2 Ci2
Coa  Cag
Coz  Cao
0 0
0 0
0 0
Cyq =

0 0

0 0

0 0
2Cus 0

0 2C5

0 0

022 _ 023
2

1

[N\

Longitudinal waves in direction 1 < ¢ < 3 propagate with velocity/C’; /p

23
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Incremental response of contact network: local stiffness mitrix

Contact laws relate contact forcis to relative displacements; ;.

Linearize for small variations> define contact stiffness matrlgij.
Using basis;;, t;; = ﬁ, w;; = n;; X t;;, for linear contact elasticity, one
has:

Afy =K. - AU,

If ||F/;|| < uF];, one hasdastic formof local stiffness matrix)

’Lj’

KJ 0 0

K =Kf=|0 KY o0

— — ..
0 0 KY
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Incremental response of contact network: local stiffness mitrix

If ||FL|| = pFy,
4 _K}L\-g_
K%
K o= |
| O
,éE

\ —1J

0O O
0O O
0 Ky

then glastoplastic form of local stiffness matrix)

it KYAU; -t — pK 3y, - Al;; > 0

otherwise

Thuscontact stiffness matrix depends on directiondf; ; in general.
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Local stiffness matrix, Hertzian case

With Hertz-Mindlin contacts,
o stiffnessed(, Kt depend on elastic normal fordéy.
e thecontact law is always path-dependent

gfj should becorrected
e for receding pairgrescaling prescription foK ),

| . o Frl\"?
e and, possibly, to Mindlin form involvindactor (1 - ! FTH> , because of
HL'N
gradual friction mobilization.

Such corrections depend on directionAxﬁM

Contact network elasticity is at best an approximation

(even if no contact force reaches the edge of the Coulomb cone)

Computations of elastic moduli ignore such correctiongfgetically inconsistent
with small cyclic loads).
Small error on “moduli” (below~ 3%, I. Agnolin & J.-N. Roux 2007}



27

Local stiffness matrices and structural stiffness matrix

One may writeAf = K - A with dN.-dimensional vectors, and a contact
stiffness matrix. K does not couple different contacts, is diagori:@ﬂ In elastic
case (approximation).

As AU = G - AU and AFe<t = Tg - Af, (with the rigidity matrix and its

transpose) one has

1
i

AF™ =KW . AU, with |[KY = TG -

KWY=N £ x Ny matrix = (structuralptiffness matrixa.k.a. dynamical matrix)

K" symmetric ifK is symmetric. Elastic forC” =-positive elements on
diagonal only= Ker (K(l)) = Ker (G).



The geometric stiffness matrix

As grains move'™ = —G - f changes because
1. contacts deforni/ changes, whence stiffness matit")

2. the direction of changes, whence additional contributgﬁ” to stiffness
matrix

K ® is not symmetric, involves radii of curvature of contactmgfaces
(general expressions written by Kuhn & Chang, and Bagi
g(” - U expresses transport of force in rigid body motion, rollipyoting

In decomposition of stiffness matrix as

K:§(1)+§(2): Tg,g,g_,_g(?)

K contains contact law (material behaviour + surface progge#t geometry)
G contains network geometry (normal vectar;s + branch vector® ;)

K@ contains surface curvatures

28
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The geometric stiffness matrix in the case of spheres

Normal forceF;} n;; between 2 spheres follows motionwf;, (r;; = ||r; — r;||)

1
Anij = 7“_ (; —n;; ¥ Hij> - (Auj — Allz) :
ij

FZ; follows rolling motion ofn;; and average pivoting motion of the grains.

nij

1 . L
ARG = [ (Aw — Au)] 04 187+ A7) ny] (ny; x BT

Tz'j

(to be added to effect of contact law).
. f

In general (not for spheres only) one hasf(fﬁ) < K((ylﬁ) like H—RH < Ky.

= Geometric matrix usually negligible, except forsuch thaK") - U ~ 0
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Stiffness matrix and stability

, A
Stability criterion: one should havé&(depending o \AEH)

AU-K-AU > 0,

for all AU, or 52W = AF®. AU > 0 (second order work).
With 62W (V) < 0, if grains are “kicked” in motion with velocity, then, at
short timet, the net force

AF™ = K- Vi

accelerates the motion and kinetic energy increases.

With frictionless spheres (all rotations ignor@” IS symmetric (buhegative)

FN
2 v e . . 2 2
aK® = Tj (1 —ni; ®ny)) if j #i, andK? = - %ﬁ; K
771

Thus mechanisms lead to instabilitie@'j\; > 0, I.e. on thebackbone, whenceno
displacement indeterminacgts announced.
With friction, K - V = 0 for the free motion of a sphere with 2 (fixed) contacts



Computation of elastic moduli in simulations

NeglectK ), forbid free motion of 2-coordinated grains, use approxiam
K= QE = positive definite stiffness matrik, such that

W(U)=-U-K-U

DO | =

IS an elastic energy.

“Experimental” observation (from simulations!): in wedfuilibrated states
|Fr]| < uFn, whencek = £

31
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Computation of elastic moduli in simulations (periodic boundaries)

Periodic boundaries suppress wall effects (macroscapit éipproached faster).
Define (for instance)

U = ((ﬁi,éz)lgz‘gmg) and F™ = ((F7, T 1<i<n.Q0)

1 0 0] Aoy 0 0]
withe= |0 e 0] (orfullmatrix..),Ac=| 0 Ao, 0 [,andy;
0 0 €3 0 0 AO’g_

the (perio_dic) displac_ements superimposed on_globarserfzﬁécts, so that

u;, = —¢-r; +u; = displacement of
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Computation of elastic moduli in simulations (periodic boundary conditions)

Relative displacements (definition 6f) involver;; = r; —r; (with nearest image
convention):

Uij Zﬁi—ﬁj T €Ty,
Then solve

AF® = (0,0)1<i<n,Ac) =K U

for unknownU (which compriseg), and deduce compliances. Alternatively,
Imposee fixed, and use

U, 0 ~
= > K- U =-L¢
€ Ac| = - -

H
Iiss ||7:‘
=~ ||

Elastic moduli might also be directly computed by standakdM) imposing small
strain or stress increments in various directions (casthgt also yields elastic
range)



Estimation of elastic moduli (isotropic case)

Naive Voigt approachu; = 0 into formula forg, to be evaluated as sums (talk2)
over contacts, results in

~\ 2/3
BVoigt _ £<KN> _ Z(I/B) <Z¢E> P1/3, GVoigt _ 6 + 9ar BVoigt

3T 2 3T 10 ’
: K 2—2
WlthaT:K—T: 5 V.
N — VUV

Uses(Kw f(ny;)) = (Kn) f(nj;), values of((nf;)*), etc...
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Estimation of elastic moduli (iIsotropic case) : variationdapproach |

If F&is imposedU minimizes

1
Wi (U) = §U-§-U — AF®. U,
Find best value of for trial U with u; = 0 andé; = (0 for all 7.
ImposeAo; = Aoy = Aoy = AP = optimal valueW; = — L (AP)? =

upper bound to B
With Aoy = —Acs = ¢, Aoz = 0, optimal value FV; = —2L¢* = upper
boundto &G

Results identical to “naive Voigt approach”, but shai¥'9t andGY°'9t are
estimatesn excess of true moduli
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Estimation of elastic moduli (isotropic case): variationaapproach Il

Increments of contact forcest minimize
Wo(Af) = %Af-g_l - Af
under the constraint that they balance applied load inoner& !,
TG - Af = AF®

With increment of pressure, optimal valuig; = (AP) W3 = %cﬂ with
deviatorq = lower boundsto B and &G
Note importance of force indeterminacy. Triaf? Available choice foA P

under isotropic pressuti:

ChooseAf = %f'

Defining Z(5/3) = (Fix F? (1+5TTN>>/<FN>5/3 With rpny = ”11::;”
(Z(5/3) only slightly larger tharZ (5/3))

N\ 2/3
B> BR= 22 () = (CDE) pi/s

3N T 9Z(5/3) \ 37
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Estimation of bulk modulus in isotropic states

BG
Z(5/3)

_ BRGUSSS B < BVoigt _ Z(]_/B)Be

e The smaller the degree of force indeterminacy, the betefReuss”
approximation

e Note rather accurate bracketingBf(response to stress increment
proportional to previous stress§(1/3)Z(5/3) > Z(1/3)Z(5/3) > 1
always satisfied.

e No such lower bound fof’

e RatioG/B estimated at6 + 9a7)/10 ~ 1.34 (with v = 0.3 for glass),
whence a very small effective Poisson ratio~ 0.03

e more elaborate schemes available (L. La Ragione, J. JeR&ihs= LRJ)=
estimates lower than Voigt ones



Elastic moduli vs. P in isotropic systems

[N

o

o

o
I

B (MPa)

102 <

i B p
Ll Lol Coo vl T | /III |

10 102 10° 10* 10° 10 100
P (kPa)

IIIII 1 1 IIIIIII 1 1 L1 1110
1000 10* 10°
P (kPa)

A and B : highz* (~ 6 under lowP) ; CetD : lowz* (~ 4.5)
Butd 4 ~ Q> P > Pp.

KJ = Kuwano & Jardine (2005), measurements on loose glass laaaols—-
measuremoduli to infer coordination numberz*?

38



Elastic moduli and coordination number

Plotb, = B/(E%/3P'/3), g, = G/(E?*3P'/3) versusz®)?/? for all
configurations A, B, C, D in pressuogcle

0.3 —

0.15 |

0.1 L—

Dotted, straight lines show® andG¢ =

(sz)2/32 °

39
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Comparison with experiments: speed of sound waves

1000

V (m/s)

. T
- S/
L Experiments: A
4 Domenico Al
® Jia and Mills (dry)

OJia and Mills (lubricated)
100 — —

10 100 1000 104 10°
P (kPa)

C= better model for dry grains. Effects of lubrication in thb (® decreases from
0.64 to 0.62) similar to B compared to C. Anisotropy ?



Diversity of experimental results for speedV/p.

1000 —

-V, (m/s)

A7

e Jia (dry, dense)

x Dano (EM04)

o Jia (lubr., dense)

= Dano (pluv. dense)

e Dano (pluv. loose)

10 100 1000
P (kPa)

Vibrated=- lower wave velocity

e Jia = Marne-la-Vallée
(X. Jia, P. Mills).
Vibration or lubrication, oe-
dometric confinement

e Dano = results of Sharifipour,
Dano, Hicher, Ecole Centrale
de Nantes.

1 vibrated sample (EM04),
2 pluviated ones
|sotropic pressure
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Numerical results for Vp (pluviation)

1000

e Jia (dry)

o Jia (lubr.)

x Dano (EM04)

= Dano (pluv. dense)

e Dano (pluv. loose)

10 100 1000
P (kPa)

Ratio of longitudinal moduli inZ directions~ 1.1

SIMULATIONS:
e A:verydense, isotropic,
large z (~ 6)
e pluviation,
=03, ar=0
H; =0andH, = 20
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Numerical vs. experimental results forVs (pluviation)

1000

SIMULATIONS:

e A:verydense, isotropic,
large z (~ 6)

2500

e Open dots = dense, low
coordination number (C)

- SD
* SD

]_OO 1 1 1 L1 1 || 1 1 1 L1 1 ||
10 100 1000
P (kPa)
EXPERIMENTS:Danoet al., JM=Jia-Millsas on previous slide

Not as good an agreement as 16+ !

dense)
+ lache)




Predictions for elastic moduli.

107° 107* 1073 0.01

2.6 [ . .
2.4 F -

22 ]

GeSt/G
® W
[
|

O'? i 1 1 llllHl 1 1 llllHl 1 1 llllHl 1 1 |
10 10° 10° 10* 10°
P (kPa)

B/ B¢ (with error bars),
boundsZ(1/3),1/Z(5/3) for A andC

Estimations ofz: G'9 (dashed lines),
G (solid lines)
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Systems with low degree of force indeterminacy: frictionlss case

107" 107° 0.01 083 11—
e
0.2 + —
© A
oY)
/!’
0.1 —
//r/
/!/
w
L t)t’
1 | 1 | 1 | I 1 L1111 O 1 L*I 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
10 10? 10° 10* 10° 6 6.5 - 7 7.5 8

P (kPa)

AO = assembled and confined without friction, tangentiasitaty. AOO =

frictionless case.

G has anomalous scaling with pressuyg = singular amplitude (remove obvious
. . . Gzl/S

factors of average stiffness, etc... definjg= Eg/gpl/gzu/g)(l_xo)@/g),

g, vanishes proportionnally to degree of hyperstaticity;‘as 6




Systems with low degree of force indeterminacy: frictionakase

46

O . 6 T 1 T T T || L B B ¥ O . 25 [ LI
| o i .
3@‘\;»’ e 0.2 f
I ‘3-%;\006 X _ 2 ’
0.4 S i L :%“
i e 'm 0151 LS 1 . R
@ . L . ' . x
ol % (@] o
0.2 e - oL T -
» -»‘Z 0.05 —
O [ S T R R | PR | O Ly

Left: low-coordinated 3D systen(3, D AND Z, the latter assembled with

1t = 400, so that indeterminacy approaches zero.

2** correctsz* for effect of 2-coordinated grains’* = z* 4+ 2x5/[3(1 — xg)]
Right: 2D case (see black data points)

= Singular factor iz tends to zero proportionally to degree of hyperstaticity!



Systems with low degree of force indeterminacy

e ProportionalityG Ni was proposed by M. Wyart (2005, PhD thesis,

f
Annales de Physique)
Argument relies on additive effects of addition of contaotssostatic
structure for shear strain energy (but not for volumetnaist)

e Difference betweem3 (correctly estimated, not especially singular) @nhd
due to consideration o$otropically prestressed systems. In general (P.-E.

Peyneau& J.-N. R., Phys Rev E 2008) distinguish responserto
proportional tor

e Weakly hyperstatic systems also have anomalous distoibati vibration
modes (eigenvalues of stiffness matrix), with a large exoésoft ones
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Conclusions

Elastic moduli in simulated systems compare well to expental results
(although information is sometimes incomplete on avadahboratory
measurements)

Predictions of moduli: possible fako o« g, more difficult in other cases
(more sophisticated schemes available)

Systems with low coordination number have anomalous elpstiperties:
low G (if stresses isotropic) prop. to degree of hyperstatiatyd(soft modes)

Stiffness matrices useful in study of quasistatic anelassponse too

Anisotropic systems assembled by controlled pluviatiorelraoderately
anisotropic moduli under isotropic pressure.

Measurement of elastic moduinteresting as non-destructive
characterization method
Essentially determined by coordination number.



STRESS-STRAIN BEHAVIOUR

1. Elastic regime and beyond

2. The origins of strain

3. Deformation of a contact network before its failure
4. Network rearrangements

5. Stress, strain and fabric. The critical state
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Linear elastic regime and beginning of triaxial compressio
0 —

0 0.05 0.1 0.15 0.2

C-type sample (dense, small coordination). Triaxial casplong = 01 = o3,
constant, = sigmas.

Left = q versus, = €1, right =¢,, versuse,,

Dots = DEM results ; Continuous line = initial slope from avaiion of moduli
with stiffness matrix

Initial values of £* and1 — 2v*
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Linear elastic range

107 F e E 0.06 g
A o > T
2 10 L D _ 0.04 -
P
107% x . 0.02 = . X
10—7 N REIT] BN A R TET] B A AR IT] B S AR T |_| 0 I L Hlmlllo 1 |||||u|2| |||||u|8| il
1 10 2 3 4 1 10 10 10*
Plkpa)’® 1P P {kPa)
. . — E™e
As conventionnally defined from . ? < 0.05.
€a

Left: ase, interval; Dashed line has slopé¢3
Right: asAq/q interval. Note smalleP dependence, larger initial state

dependence
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Small strains, load reversal, and initial network response

0.25 | —— et
/
ool N e
%Y, /
0.15
bC')
N
o W
0.1 S
|
0.05
0 | | | [
0 1 2 3
10%,

Initial stateC (low z).

—-0.9

—-1.5

—10%,

O IV VA | 1 /A | 1 /1 1 | 11 | | 11 | 72
0 0.2 0.4 0.6 0.8 1

10°%,

Initial stateA (largez).

Load reversal at different stages. Elastic range = linesstiel range.

Thin blue line = computation without new contaetsbeginning of curves express
response of fixed networklote (different) blown-up strain scales

uw=0.3, Py =09 =03 =100 kPa (¢ ~ 8400)



Comparison with isotropic compression cycle

T T T | T T T | T T T | T T T | T T T
| | | l | | | l | | | l | | | l | | |

O
-
o)
—_
O
N
o)
—
—
o)

OneC sample
Much closer to elastic for larger relative stress changest 2P
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Reproducibility and stress-strain curves: from initial to peak deviator state

4 -0.5
(1) :
O 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] _1
0 0.001 0.002 0.003 0.004
6&

5 samples of 4000 beads. Note different strain scales irsdasé and [ =C
Lateral confining strain = 100 kPa for glass beads-(8400)

Peak strengtlpparently given bynitial densityandintergranular friction(for
large enoughk), butstrain to peakelated tocoordination number
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Effect of initial coordination number (for given density) and of dynamical parameters

15 T 171 T 11 T 171 T T T

q/0,

0.5

€
O I I | | N I | | 11

a

0 0.01 0.02

0.03 0.04

1.5

0.02

a

Level of damping relative to “critical” one €. Inertial numberl = ¢,

characterizes dynamical effects

IIII|IIII|IJII|IIII|IIII0.08
. Effects of damping i
i and strain rate
=0.3 ; C (1.005)=2ag™
Rz (1.003
iy
- a/05 — 0.02
A
/7 (= 0.9 and [=10-3 —€,
/ =0 and [=10-3
¢= 0.9 and I=104
— 0.01
P=o,=0, 100kPa — 0
IIII|IIII|IIII|IIII|IIII_
0 0.01 0.02 0.03 0.04 0.05
€

m

alP
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Triaxial compression, influence ofx, few contacts initially

15 T T T T T T T T | T T T T | T T T T | T T T T
P=10kPa ;
P=31.6 kPa ; P=100kPa |
1 P=1MPa |
Il M N
0.5 H o & —
104 6; 1
O L1 | L1 1 | L1 | 11 | L1 1 —
0 0.2 0.4 0.6 0.8 1
O | | | | | | | | | | | | | | | | | | | | | | | |
0 0.01 0.02 0.03 0.04 0.05
€

a

0.03

0.02

0.01

O 7| 1T | T 1T | T 1T | T 1T |7 1
—02F -
- 704 [ —

C *1056\7
- 08 [ 7
il B 11 | | | | L1l | NN
0 005 0.1 0.15 s
104 €, —

P=10kPa ;

P=31.6 kPa ; P=100kPa |
P=1MPa N
Coeono b e e e ]
0.01 0.02 0.03 0.04 0.05
€

a

Dense state GI > 0.635 for largex), weakz* ~ 4.6 if x > 10* (10 kPa). Strain
Independent ok except fore, very weak (slope in insert = elastic modulus)
Type Il strains: contact network breaks
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Triaxial compression, influence ofx, many contacts in initial state

[ [ [ [ | [ [ [ [ | [ [ [ [ [ [ IA_,_ ]_.5 ]..5
B AN A = _q/U
1 11! 1 - 11!
_103; i | 1
a/f 4105 - 105
0.5 --d/ 710 05 xi 0
N ] - ]
1 o0& 1 _0=E
O | | | | | | | | | | | | | | | | | | | ] _1 O zv | | | | | | | | | | | | | | | | | | | ] _1
0 0.001 0.002 0.003 0.004 0 0.001 0.002 0.003 0.004
€ 2/3
a e.(P,/P)

Dense state A% ~ 0.637), largez* ~ 6 if k > 10* (10 kPa). Strain of ordet—!.
Type | strains: initial contact network resists



Some observations on regimes | and |l

e Regime I.

— strictly quasistatic, granular assembly behaves like agtwf springs and
plastic sliders. Strains inversely proportional to sprmogstant

— Smooth response in finite samples

— Excludes macroscopic instabilities. Failure at some dewialue
depending on initial state (coodination number/frictioalitization).
Static calculation possible. Uniqueness (ignoring cartsses) if second
order work criterion satisfied for all increment directid® McNamara).

— Contact losses, no gains

e Regime Il:

— Contact network keeps getting broken and repaired (neeaueior
contacts!)

— Small simulation samples exhibit microscopic instalabt(bursts of
kinetic energy), whicliloes not necessarily imply macroscopic instability.
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Induced anisotropy

N

T
ﬁ .

A

7 T T T | T T T |
- €, 0
[ €. = 0.004
- ¢ = 0.01
°[ e = 0028
- e, = 0.06
5 |
E/N_
Halinlpa ="
4 - 7
2 i | | | | | | | |
0 0.2 0.4

Triaxial compression of sample

o
(o)
o
(@9}
—_
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Observation of elastic moduli on unloading

1.5 L L B B N B B B T T
= 0.01
1 ¢
- 0.005
O 5 E 76\7
. . 0
0 1 —0.005
€
a
600 T T T [, T T T T [ T T T T [ T T
" Modules (MPa) i
o C ]
200 |- H -
—  &—= s = @m = 5 g @ s ——u |
0 L AR RSSO SO SO SO AT SO SO S S AR | C12
0 0.01 0.02 0.03
€

Moduli sensitive to fabric anisotropy AND to stress anispyro
N. B. Index 3 here corresponds to vertical (major principal) compression axis, denoted with
index 1 in rest of document.
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Equilibration under constant stress and resumed strain-rdae controlled test

1.5 T T T T T T T T | T T T T T T T T 0.02
. P=100kPa ’
. w=0.3
L I=10-3 __ 0.015
1 i
— 0.01
s ]
o €A
— 0.005
0.5 i
o
O ® | | | | | | | | | | | | | | | | | | | ] _0005
0 0.01 0.02 0.03 0.04

Elastic moduli (right plot) observed after test is stoppader constant stresses

a

3

10%Ae,

1

0.5

-0.5

and some creep Is observed before a well equilibrated caafign is obtained.
(Reminiscent of some experimental results)

61



Critical state

0.64
0.62

0.6

0.58

0 0.1 0.2 0.3 0.4

Dense, dilatant (A), intermediate (D1), and loose, comtdaratL) samples all
approach critical solid fractiof® and critical deviator plateau at large strains
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Approach to critical state: internal variables

15 T T T T T T T T T T T T T T 7

1.4

1.3

1.2

1.1

(as also observed by Radjal, Kruyt and Rothenburg...)
Critical state is characterised by specific, “critical” was$ for coordination
number and fabric parameters
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Critical state: dependence on friction coefficient

04 T T T | T T T T T T T T T T 1.02 i T T L T T UL LI T ]
O B o - i
0.3 . s s s s s s — T T oo, -
e & 2098 o, . .
* 30 L . ]
0.2 — 50.96 - DD —
el i . . (b) 1
- 1 0.94 | DDD .
0.1 Fo = i 8og, ]
I ] 0.92 |- “0ay, .
i ] ] P000ooppgg s
O | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | ] 09 I TV N TN T N TN T S TR N T SO S A
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
v v

Left: critical internal friction parameter

Right: critical density divided by RCP density

Data from Fazekaat al. (Budapest), Estrada al. (Montpellier), UR Navier (our
group), Thornton (Birmingham), Campbell (U Southern Gathifa). 2D (black
dots)/ 3D (open symbols)



Some conclusions

gualitative features of granular material behaviour, aseoled in laboratory,
are retrieved

Microscopic approach and numerical simulations providahts on
Influence of initial state (coordination number) and micemimanical features
(sliding and rolling friction, particle shape, etc.) on nrakconstitutive
behaviour

Type I/ type Il strains to be distinguished.
Elastic moduli probe microstructure

Perspectives: we should investigate failure mechanismsearrangements
(spatial structure, correlations...)
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