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GENERATION, COMPRESSION, QUASISTATIC

DEFORMATION OF MODEL GRANULAR

MATERIALS

grain-level simulations, micromechanical

approaches

Role of microscopic model ingredients, definition of

relevant variables and control parameters
Jean-Noël ROUX

Laboratoire Navier, Université Paris-Est, France

SCOPE:assembling processes for granular packings, isotropic (oroedometric

compression), elastic properties, small to moderate strains in response to

deviatoric loads.

Model systems: assemblies of spherical beads (or disks in 2D)
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Geometric and micromechanical features
• Note periodic boundary condi-

tions

• Force disorder (force chains,

wide force distribution)

• Coordination number

z = 2NC/N (N grains,

Nc force-carrying contacts)

• Rattlers – fraction x0 of grain

number – carry no force

• Backbone = force-carrying net-

work of non-rattler grains

• Backbone coordination number

= z∗ =
z

1 − x0
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Geometric and micromechanical features

• In addition toΦ, z, x0, force distribution, friction mobilization, introduce

fabricor distribution of contact orientations

• Displacement fields also exhibit considerable disorder.

Displacement field̃ui corresponding to

small strainsǫ1, ǫ2, effect of global strain

subtracted:

ũi = ui + ǫ · ri

∆2 =
1

n∗||ǫ||2
n∗
∑

i=1

||ũi||2

to characterize importance of displace-

ment fluctuations. Correlation length ?
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CONTACT LAWS
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CONTACT LAWS: COULOMB FRICTION

Grains interact mainly via a force at the contact point. Normal component

FN ≥ 0 is repulsive in the absence of adhesion, and tangential componentFT

satisfies theCoulomb condition

||FT || ≤ µFN

involving thefriction coefficientµ.

Little is known in general aboutµ (depends on surface properties).

In generalFN , FT relate torelative motionof the rigid bodies (away from

contact). Contact laws = solutions to ancillary continuum mechanics problems

for 2 infinite half spaces, in contact in a priori unspecified region.

Difficult and sensitive to uncontrolled fine scale featuresof the material
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CONTACT LAWS: NORMAL ELASTICITY

Smooth-shaped, convex grains made of elastic material (E, ν): Hertz law
relatesFN to normal contact deflectionh.

(2 spheres, diametera, with Ẽ = E/(1 − ν2)) FN =
Ẽ
√

a

3
h3/2

(Different diameters⇒ use2a1a2/(a1 + a2)). Corresponds to stiffness
constant

dFN

dh
= KN =

Ẽ
√

a

2
h1/2 =

1

2
(3a)1/3Ẽ2/3F

1/3
N

Contact region = disk, radiusb = 1
2

√
ah, normal stress:

p(r) =
3FN

2πb2
(1 − r2/b2)1/2

Contact elasticity often modelled as linear, withconstantKN .
⇒ Justification? “Limit of rigid contacts”?
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CONTACT LAWS: TANGENTIAL ELASTICITY / FRICTION

Hertz problem + tangential relative displacement, Coulombcondition applied

to stress vector (surface traction)

Cattaneo-Mindlin-Deresiewicz problem (see contact mechanics literature)

δuT = tangential relative displacement⇒ tangential elastic forceFT .

HereFN ր first, with δuT = 0, thenδuT varies at constantFN .

Tangential stiffness decreases as

(

1 − ||FT ||
µFN

)1/3
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CONTACT LAWS: TANGENTIAL ELASTICITY / FRICTION

Initial stiffnessKT , asδuT increases from zero:

K
(0)
T =

(

∂FT

∂(δuT )

)

δuT =0

=
2 − 2ν

2 − ν
KN (h)

If δuT decreases, a different unloading path is followed while in an outer

annulusr ≥ c′, c′ > c there is slip in the opposite direction,c < c′ ≤ r ≤ b
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CONTACT LAWS: TANGENTIAL ELASTICITY / FRICTION

Moreover, if bothh andδuT vary simultaneously, stress distributions and

forces arepath-dependent, even without any local sliding (µ = +∞) !

(Elata & Berryman 1996)

⇒ simplification: use tangential stiffnessKT (h) independent ofδuT

Linear tangential elasticity – constantKT – also often implemented in models.

In calculations, incrementally updateFT and project back onto circle of radius

µFN in tangential plane if needed
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VARIABLE TANGENTIAL STIFFNESS AND ENERGY DISSIPATION

Hysteresis in contact elasticity should imply energy dissipation, not creation!

(Elata & Berryman 1996)

⇒ solution: rescaleFT with KT (h) when it is decreasing, and not when it is

increasing (overestimates dissipation)
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TANGENTIAL FORCE EVOLUTION IN GENERIC SITUATION

General motion of two contacting grains involves:

1. global motion as one single rigid body

2. relative displacements at contact point (h,δuT ) → ∆FN , ∆FT

3. rolling (relative rotation about tangential axis)

4. pivoting (relative rotation about normal axis)

How should elastic componentFT move with the grains (effects of 1, 2, 4) ?

Very little information in the literature!

Should remain tangent and follow rigid-body motion (objectivity)

Possible solution:FT follows rolling motion of normal directionn and rotates

aboutn with average pivoting rate of both grains
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CONTACT FORCES: VISCOUS DISSIPATION

One most often addsviscous termsto elastic componentsFN , FT , opposing

relative velocitiesδVN , δVT :

F v
N = −αNδVN F

v
T = −αT δVT

Linear contact elasticity⇒ restitution coefficientseN , eT determined byα’s.

Definingζ = αN/αc
N , critical valueαc

N = 2
√

m∗KN with m∗ = m1m2

m1+m2

,

eN = exp
−πζ

√

1 − ζ2

Choice ofF v
N = −2ζ

√

m∗KN (FN )δVN with Hertz contacts also yields a

velocity-independent restitution coefficient.

In general, viscous forces or restitution coefficients usedin simulations do not

rely on physical models

Choice: add viscous components to elastic ones and enforceFN ≥ 0 in

Coulomb condition, or apply inequality to elastic forces only
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A PAIR OF GRAINS IN INTERACTIONS : LIST OF PARAMETERS

• Geometry and inertia: diametera, massm, moment of inertia,

polydispersity parameters

• Contact law:

KN

αN

KT

µ

(αT missing on the figure).KN,T depend on forces (or relative

displacements) in general.

• Other possible ingredients (will be mentioned later): resistance to rolling,

adhesion

• Many poorly known effects influence dissipation
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DIMENSIONLESS CONTROL PARAMETERS

Use of dimensional analysis in order to reduce the number of parameters !

Results in dimensionless form depend on data in dimensionless form

With material parameters + confining pressureP , strain ratėǫ,

• Reduced stiffnessκ. “Interpenetration” (= contact deflection)h/a ∼ κ−1 :

κ = (Ẽ/P )2/3 for Hertzian contacts in 3D,KN/ad−2P for linear law with

in d dimensions (a = diameter)

Glass beads, 100 kPa⇒ κ ∼ 8400 if E = 70 GPa,ν = 0.3

• Friction coefficientµ (0.2, 0.3 ... 1 ?? )

• KT /KN or ν

• Viscous damping levelζ

• Reduced strain rate or inertia numberI = ǫ̇
√

m/aP .

Quasi-static lab. experiments⇒ I ∼ 10−9

Numerically:I = 10−5 already very slow and cautious!
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Important limits to be investigated

• Quasistatic limit: I → 0 (or ∆q/p → 0 if applied deviator stepwise

increased)

Is I or ∆q/p small enough ? Do dynamical parameters become irrelevant ?

(inertia, viscous forces)

• Rigid limit: κ → +∞. Stiffness level irrelevant ? Rigid contact model

possible ?

• Large system limit: N → +∞.
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Maximum density of identical particles⇒ regular lattices

In 2D, Φmax =
π

2
√

3
.

z = 6 on perfect “crystal” lat-

tice, unstable to perturbations

“Crystallisation” iseasy

En 3D,Φmax =
π

3
√

2
.

z = 12 on parfect lattice.

CFC ou hexagonal compact ou hybrides...

“Crystallisation” isdifficult

In practice avoid equal-sized disks (form spontaneously non-generic, ordered

patterns)

Equal-sized spherical balls form disordered assemblies with generic properties
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DISORDERED PACK OF IDENTICAL BEADS
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CUT BY A PLANE

• difficult to measurez directly (even with sophisticated tomographic

techniques, cf. Asteet al.)

• HereΦ ≃ 0.639 or 0.64 = random close packing(RCP)solid fraction,

maximum value for disordered systems. “Order parameters” characterize

evolution to crystal patterns on applying repeated shakes or large numbers

of shear cycles.
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Bounds on coordination numbers

• Upper boundin the rigid limit (κ → +∞) (spheres:z∗ ≤ 6, disksz∗ ≤ 4)

• Lower boundfor z∗ frictionless spheres or disks (recallz∗ = z/(1 − x0)),

identical

• Lower boundwith frictional grains?

Assumek = 0. Then, (N∗ = N(1 − x0))

z∗d

2
− d(d + 1)

2
+

k

N∗
≥ h

N∗
≥ 0 ⇒ z∗ ≥ d + 1 .

A correction due to mechanisms obtained with spheres:

1

1

1

N

N

T

T21

21

3131

1

(a)

(b)

α

α

2

2
3

3

Sphere 1 mobile, 2 and 3 fixed.h = k = 1.

If x2 = fraction of 2-coordinated grains,

z∗ ≥ 4 − 2x2

3(1 − x0)
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Distribution of contact orientations (fabric)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

 

 

P(
co

s
)

P(cos )

Isotropic⇒ flat distribu-

tion

Continuous line = order 4

Dotted line = order 6

ζ = coordination number

Axisymmetric case(system deposited under gravity).P (cos θ) even, restricted to
interval[0, 1], expansion in Legendre polynomials:

P (cos θ) = 1 + b2
3 cos2 θ − 1

2
+ b4

35 cos4 θ − 30 cos2 θ + 3

8
+ . . .

with

b2 =
15

2

[

〈cos2 θ〉 − 1

3

]

; b4 =
9

8

{

35

[

〈cos4 θ〉 − 1

5

]

− 30

[

〈cos2 θ〉 − 1

3

]}

. . .
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Other variables and characteristic features of granular systems in equilibrium

• Probability density function for normal or tangential force values: often

measured, described, attempts at predictions...P (FN ) typically flat or slightly

increasing below〈FN 〉, decreasing (roughly exponentially) above. Shape may be

characterized by reduced moments

Z(α) =
〈Fα

N 〉
〈FN 〉α

• Friction mobilization: typically larger for small forces than for large ones

• Connectivity (distribution of number of contacts among grains,x0, x2, xi,

i = 3, 4 . . . )

• distribution of interparticle gaps. If cumulated⇒ z(h), coordination number of

neighbours at distance≤ h

• Force values observed to correlate over distance of severalto∼ 10 diameters
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Relation between contact forces and stress tensor

Consider a plane surfaceS, areaA cut through granular sample atz = z0, unit

normal vectorn (oriented upwards,z ր).

J(z0) = momentum transferred from lower partz < z0 to upper partz > z0 per unit

time = (kinetic contribution) + (contribution of forces,Jf (z0)).

In equilibrium,J = Jf

ThenJ(z0) = Aσ · n or, for coordinateα, Jα(z0) = Aσαz

J(z0) =
∑

i | zi<z0, j | zj>z0

Fij

Macroscopic stresses vary on scaleL ≫ a ⇒ average over positionz0 (a ≪ l ≪ L)
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Aσ · n =
1

l

∫ z0+l/2

z0−l/2

J(z)dz

=
1

2l

∑

|zi−z0|<l/2,|zj−z0|<l/2

Fij(zj − zi)

=
1

2l

∑

|zi−z0|<l/2,|zj−z0|<l/2

Fij [(rj − ri) · n]

whence for a sample of volumeV in uniform state of stress:

σ =
1

V

N
∑

i=1

1

2





∑

j, j 6=i

Fij ⊗ rij



 ,

with rij = rj − ri, or

σ =
1

V

∑

1≤i<j≤N

Fij ⊗ rij.

σαβ =
1

V

∑

i<j

F
(α)
ij r

(β)
ij
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Average contact force and pressure

With spherical grainsrij andnij are parallel. In dimensiond = 3 or 2

P =
1

d

d
∑

i=1

σii =
1

dV

∑

i<j

FN
ij (Ri + Rj)

Nc contacts, grain diametera ⇒ P =
aNc

3V
〈FN 〉

Contact densityNc/V also writeszΦ/(2v) with v = πad/(2d=volume of one grain.

Therefore,

〈FN〉 =
πa

d−1

zΦ
P.

With different diameters, assuming〈FN
ij (Ri + Rj)〉 = 〈FN 〉〈a〉,

P =
π〈ad〉

zΦFN 〈a〉 .

Accurate formula for moderate polydispersity (say, diameter ratio below∼ 3)
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Some useful quantities in packs of Hertzian beads

• Typical contact deflection

〈h3/2〉2/3

a
=

(

3πP

zΦẼ

)2/3

=

(

3π

zΦ

)2/3

κ−1

• Average contact stiffness

〈KN 〉 =
31/3

2
Ẽ2/3a1/3Z(1/3)〈FN 〉1/3 =

1

2
Ẽ2/3P 1/3

(

3π

zΦ

)1/3

a

• Maximum pressure within contact transmitting normal forceFN

pmax

Ẽ
=

2 × 31/3

π2/3(zΦ)1/3

(

FN

〈FN 〉

)1/3

κ−1/2

• Maximum shear stress near contact transmitting normal forceFN

τmax

Ẽ
≃ 0.31

pmax

Ẽ
(if ν = 0.3)

Material elastic moduli, amounts of damage, etc... independent of a
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ASSEMBLING PROCEDURES
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Numerical assembling procedures (no cohesion)

1. Idealised methods, to explore range ofpossible configurations, all perfectly isotropic

2. Simulation of one laboratory method:controlled pluviation

3. Other deposition processes under gravity

Numerical preparation of isotropic configurations (no cohesion)

2 procedures:

• Isotropic compression of a “granular gas” (no contact , solid fractionΦ = 0.45)

Apply P = 10kPa, requestI ≤ 10−4, until equilibriumκ = 39000 for GB. BothΦ

and coordination numberz decrease asµ ր. One may useµ0 < µ.

– Classical trick to get a dense state: useµ0 = 0 (state A).

– µ0 = µ ⇒ looser state D

– µ0 = 0.02: imperfect lubrication, B

• Compactionvia vibration⇒ different dense states, C. Dilate configuration A (coord.

×λ > 1), then vibrate (kinetic energy) and then compact (µ = 0.3).
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Ideal, isotropic assembling procedures(our results with I. Agnolin)

Hereµ = 0.3 Friction mobilisation:

M1 = 〈FT

FN
〉 for FN > 〈FN 〉 ; M2 = 〈FT

FN
〉 for FN ≤ 〈FN 〉

Procedure Φ z∗ x0 (%) x2 (%) Z(2) M1 M2

A 0.637 6.074 1.3 0 1.53 0 0

B (µ0 = 0.02) 0.6271 5.80 1.65 ∼ 10−4 1.52 0.016 0.018

C (λ = 1.005) 0.635 4.56 13.3 2.64 1.65 0.135 0.181

D 0.593 4.546 11.1 2.39 1.58 0.160 0.217

ΦC > ΦB butz∗C < z∗B . Φ andz∗ independent for isotropic states

vibration procedure→ low coordination in final equilibrated state
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The random close packing state(RCP, Φ∗ ≃ 0.639)

• frictionless contacts in assembling stage⇒ apparentlyunique (isotropic)

state independent on dynamical parameters and process, if fast enough

• enduring agitation at0.5 ≤ Φ = 0.5 ≤ 0.6 → partial crystallisation

• stable equilibrium of rigid, frictionless objects = local density maximum

in configuration space. Thus

To increase density, reduce or circumvent friction

• z∗ = z/(1 − x0) equal to 6 for spheres in the rigid limitκ → +∞
(consequence of isostaticity)

RCP= frictionless equilibrium state, forκ → ∞, isotropic, assembled on

minimising crystallisation

Laboratory assembling processes are rather fast (similar time scales as

numerical compression)
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The random close packing state

0 0.01 0.02 0.03 0.04 0.05

n
-1/2

0.63

0.635

0.64

0.645

Φ

A, n=4000, n=1372
A’, n=4000
OSLN regression

A = fast compression, frictionless. A’ = longer agitation
(Lubachevsky-Stillinger algorithm)
OSLN = results by O’Hernet al., 2003, different simulation method, Dots =
DEM preparation.
A’ more ordered than A.
With bidisperse systems:separationrather than crystallisation.
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Geometry of sphere assemblies: interstices

Gap-dependent coordination number:

number of neighbors at distance≤ h.

Here rattlers have been “stuck” to

backbone to get a fully defined pack-

ing geometry

Results forh/a ≤ 0.04 not determined by density, still inaccessible to direct

measurements (X-ray tomography, Asteet al. 2004, 2005 : accuracy of

∼ 0.05 × a)
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“Ideal” isotropic assemblies

• No dependence on dynamical parameters (if compression is slow enough,

sayI ≤ 10−4)

• Definition of random close packing

• Enduring agitation induce ordering or separation by size

• Coordination number and density can vary independently – undetectable

in 3D systems by direct visualisation
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Controlled pluviation : principle, control parameters

 Q 

Echantillon
granulaire

Hp

Vp

Vc

Grilles
mobiles

Couche agitée

Couche 
statique

• Constant height of free fall

Hp ⇒ dimensionless ratio

H∗
p =

Hp

a

• mass flow rate per unit areaQ,

controlled from upper reservoir

outlet

⇒ reduced flow rate

Q∗ =
Q

ρp
√

ag

• agitation in superficial layer, ap-

proach to equilibrium below

• Final densityր asH∗
p ր and as

Q∗ ց
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Distribution of contact orientations (fabric)
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tion

Continuous line = order 4

Dotted line = order 6

ζ = coordination number

Axisymmetric case(system deposited under gravity).P (cos θ) even, restricted to
interval[0, 1], expansion in Legendre polynomials:

P (cos θ) = 1 + b2
3 cos2 θ − 1

2
+ b4

35 cos4 θ − 30 cos2 θ + 3

8
+ . . .

with

b2 =
15

2

[

〈cos2 θ〉 − 1

3

]

; b4 =
9

8

{

35

[

〈cos4 θ〉 − 1

5

]

− 30

[

〈cos2 θ〉 − 1

3

]}

. . .
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Simulating the pluviation process: results

• anisotropic states, characterised by distribution ofcos θ, θ = angle between

normal to contact and vertical direction

• Homogeneity: same state, apart from stress level, except near bottom or top

Wrong if Hp not constant !

• Under agitated upper layer, nearly quasistatic oedometriccompression

• Influence of viscous damping(bad news !)

• Difficult to compare with experiment (damping + shape/size of beads)⇒
compare mechanical properties !

• Coordination and fabric conserved on isotropically compressing

• Moderate fabric anisotropy and rather large coordination number (closer to A

than C in dense states) with “reasonable” choices of dampingparameters



36

Final state (simulations).

Density is fixed once material is buried under surface, “fluid” layer.

σh/σv decreases from 1 (fluid) toK0 < 1. Fabric anisotropy as shown previously

numerical results: S. Emam
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Less controlled pluviation

Drop the grains from fixed height (red)⇒ larger density at bottom, whereH∗
p is

larger.
Dotted curve = pluviation results with varyingH∗

p

Blue = controlled pluviation result
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Fabric in 2D

Angular distribution of normal vector orientation at contactsp(θ) is π-periodic

If system is symmetric about axisθ = 0, p(θ) is an even function, whence a Fourier

expansion as

p(θ) =
1

2π



1 +
∑

k≥1

ak cos 2kθ





Coefficients are given byak = 2〈cos 2kθ〉.

〈n ⊗ n〉 =







1

2
+

a2

4
0

0
1

2
− a2

4
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Some results on 2D granular layers under gravity(G. Combe)

Fabric in grain by grain deposition (left) versus bulk dumping (right)

Extreme fabric anisotropy, fitted with 2 coefficients (a2 anda4)
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Some results on 2D granular layers under gravity
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Unlike grainwise deposition (left), bulk dumping (right) results in inhomogeneous

solid fraction. Wave propagates upwards after pack hits substrate.



41

Some results on model cohesive powders (2D)
(coll. F. Gilabert & A. Castellanos, Seville)

Additional ingredients in contact law: Adhesion...

 

 Kn

(a)

h ij

Nij
e + Nij

a

D0

-F0

-F0
-  F0

(b)

 F0

 

 

Tij
max

Nij
e + Nij

a

... and (possibly) rolling resistance:FT , Γ at contact limited byµNe, resp.µrN
e

⇒ a contact withdeflectionh0 such thatN = Ne − F0 = 0 can resist tangential

relative displacement and rolling⇒ enhanced effects of friction and rolling friction

Physically,µr (length) is of orderl (distance between asperities)
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Effects of cohesion

• Let grains “stick” to one another (e.g.,ballistic aggregation), until a

macroscopic aggregate has formed, then apply external pressure⇒ very

loose states

• Geometry studied in colloid aggregation models... now one maystudy

mechanicsas well!

• importance of irreversible compaction (“consolidation curve”) under

isotropic loads

• Behaviour ruled by reduced pressureP ∗ =
ad−1P

F0
. Cohesion dominates

for P ∗ ≪ 1, external pressure dominates forP ∗ ≫ 1 (similar, then, to

cohesionless case)
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Preparation method: aggregation versus compression
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(1) Direct compression of isolated grains→ dense configuration

(2) Aggregation first, until only one cluster is present, then compression to

P ∗ = 0.01 ⇒ looser state.

T0 =
√

ma2/F0. Note long equilibration times.
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Loose structure underP ∗ ≪ 1

Repulsive and attractive forces of

orderF0 nearly compensate.

Blue lines, grey disks = unstressed

regions

Fractal structure below length (“blob

size”) ξ ∼ 5 to 10a

Fractal dimension of ballistic aggre-

gation process (dF ≃ 1.55) with

small RR, different without RR.
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Effect of small RR

With RR (left) thinner “arms”, smallerdF

In ballistic aggregation aggregates are undeformable solids, and form without

loops⇒ z = 2. With RR the degree of force indeterminacy is the number of

independent loops of the contact network.
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Force networks: small RR, effect of initial energy
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µ, µr irrelevant for ini-

tial assembling phase in

that limit
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Some conclusions on preparation process of solid granular samples

• Density alone not enough to classify packings: coordination number may

change a lot for dense samples Extreme cases obtained with (idealised)

lubrication and with (idealised) vibration

• Compacting = avoiding the effects of friction

• Moderate anisotropy in simulations of pluviation (coordination similar to

partially lubricated case)

• Cohesive systems exhibit a much wider variety of structures, form loose

structures with different degrees of branching... Assembling stage bound to

depend on effects of surrounding fluid in practice


