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Collection of solid particles of size above

The interactions between particles are governed by frictional 

contact and inelastic collisions.

inelastic collisions.

Granular materials:
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Contact Particle Packing Material
Structure, 
process

δ d g(r) RVE BVP

RVE:   Representative Elementary Volume

BVP:   Boundary Value Problem

Statistical behavior Constitutive behavior (rheology)

Multi-scale modeling

 composition + interactions

DEM

DEM: Discrete Element Method

FEM

FEM:  Finite Element Method
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Granular materials are inhomogeneous at all scales:
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1) Sub-RVE inhomogeneities arise from geometrical disorder.

Particle velocities Contact forces
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2) Large-scale inhomogeneities arise from bulk forces and complex 
boundary conditions.

Avalanche (by L. Staron)
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σ3

The behavior is homogeneous when the strains and stresses are uniform 
in the bulk. This happens if the number of particles is large enough for the 
sample to be statistically representative and the finite-size and wall effects 
are absent. The sample may then be considered as a RVE and the behavior 
as intrinsic to the material (rheology).
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The homogeneous behavior is consequence of the composition and 
nature of interactions (example: frictional behavior). But these are mainly 
expressed at the macroscopic scale through the microstructure, which is 
at the origin of the emergent (generic, collective) properties of granular 
materials (example: internal friction angle evolves with the fabric 
anisotropy). Some properties are of purely structural nature (example: 
dilatancy).  
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The DEM provides a general tool for the investigation of the constitutive 
behavior by integrating the equations of motions of all particles, described 
by their geometrical and mechanical properties as well as their frictional 
interactions.        

D
EM

The DEM was introduced by Peter Cundall in 1975 by analogy ith the 
molecular dynamics method (MD), but applied to solid particles with 
frictional contacts.  A radically different method, called contact dynamics 
(CD) was introduced in 1991 by Jean Jacques Moreau and Michel Jean.     M

D
 v

s. 
C

D

Their common feature is to describe the particles as rigid bodies with a 
finite number of degrees of freedom (dynamical variables): 6 in 3D and 3 in 
2D. 

�U i

ωi
i
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Analogy with homogenization (coarse-graining, upscaling): 

The physical input in both the DEM and homogenization is the 
composition and local interactions, and the macroscopic behavior is 
obtained from collective particle dynamics by averaging. 

By providing detailed information about the microstructure and its 
evolution, the DEM is an ideal ally for analytical homogenization.    
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3 levels of discrete modeling:

Basic1)

2)

3)

Extended

Advanced

Spherical particles + frictional contact interactions 

Particle clusters, adhesion forces (capillary, lubrication, adhesion 
threshold), high polydispersity, rolling friction

Non-spherical particles, Particle fracture, pore-filling continuous phase 
(liquid, solid), evolving interactions and phase transformations  
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Physical 
model

Preparation

Analysis

Parameters

AlgorithmsPhysical 
interpretation

12
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A physical model is defined by the choice of composition and paricle 
interactions. The model parameters need to be fixed and the initial state 
generated by a preparation method. The algorithm provides the 
evolution of particle positions. The numerical data are analyzed by  
post-processing. It might be necessary to adjust model parameters 
(cycle 1). If the physical interpretation is not consistent with the 
experimental behavior, the physical model should be modified (cycle 2).
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1) Yield function (accessible stresses)
2) Flow rule (direction of plastic strain)
3) Hardening rule (evolution of the state parameters)

Constitutive framework

At very small strains, the behavior is elastic. The nonlinear behavior 
is a consequence of nonlinear Hertz law and the evolution of the 
number of contacts (see the coarse of J.-N. Roux). 

At very larger strains, the behavior is plastic. It is characterized by 
three ingredients: 
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- The plastic strain reflects only the relative particle
displacements + rate-independence The volume change
scales with the shear strain  flow rule given by an angle 

Dilation angle 

In the case of a granular material composed of rigid
particles interacting via a Coulombic friction:

- No force scale  The yield surface in the stress space is 
expressed as a stress ratio  Coulomb cone  

Internal angle of friction

pl
as

tic
 b

eh
av

io
r

mercredi 29 juin 2011



 

Set of state parameters

The plastic behavior is defined by specifying

Steady state:
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p =
1
3
(σ1 + σ2 + σ3)

q =
1
3
(σ1 − σ3)

sinϕ =
3q

2p + q⇒

3D

2D

p =
1
2
(σ1 + σ2)

q =
1
2
(σ1 − σ2)

⇒ sinϕ =
q

p

Angle of friction in terms of stress invariants:

σ1

σ2

σ3

σ2 = σ3
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ρ ρ(I) � ρmax − a I

µ∗(I) � µmin + b I

I = ε̇
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viscous behavior at large strain-rates
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Size polydispersity

Shape polydispersity

Grain geometry
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Size polydispersity

V (d) Volume fraction of grains of size 

h(d)

F (d) Proportion of grains of size below

f(d) Proportion of grains with diameter

h(d) =

� d
dmin

V (x)f(x)dx
� dmax

dmin
V (x)f(x)dx

F (d) =

� d

dmin

f(x) dx

d

d

d

Cumulative volume fraction of grains

Grading curve

dmin

dmax

lower bound

upper bound
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dx = h−1(x)
h

d

x

dx

Cu =
d60
d10

Coefficient of uniformity

Cc =
d230

d10d60
Coefficient of curvature

d60 − d10 Size span

Cu = 1Mono-disperse system

mercredi 29 juin 2011



D
is

cr
et

e 
re

pr
es

en
ta

tio
n

dmin

dmax

s =
dmax − dmin

dmax + dmin
span

Nc

δd =
dmax − dmin

Nc

Npf(d) δd Number of grains of size ∈ [d− δd/2, d+ δd/2]

1 2 30

Number of classes Np Number of particles

dr(d) =
d− dmin

dmax − dmin
reduced size
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s = 0.02
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s = 0.97
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The quality of the discretized grading function depends on

‣ the number of classes 

‣ the number of grains in each class

‣ the volume of grains in each class
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For the simulation of polydisperse systems, the tractable number of 
particles should be comprimized with the statistical representativity 
of the size distribution. 
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Granular dynamics involves fine length scales such as elastic 
particle deformations, contact deflection

λ sub-particle length scale (contact deformation, ...)

δr spatial resolution

δr � λ ⇒ The spatial resolution is too large to resolve 
fine length scales.  

⇒ particle-scale dynamics (rigid particles)

le
ng
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Contact interactions
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δn

fn

�
δn > 0 ⇒ fn = 0
δn = 0 ⇒ fn ≥ 0.

fn

δn

normal force

normal distance

Signorini’s conditions

Alternative writing:

fn

δn

0

None of the two variables can be reduced 
to a (mono-valued) function of the other. 

0 ≤ fn ⊥ δn ≥ 0

Complementarity relation

In particle-scale dynamics, the contact between two particles 
becomes a unilateral constraint. 
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δn =
��ri − rj

��− ai − aj for two disks
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δn = 0

un = δ̇n = 0Persistent contact: and

un > 0

δn = 0

andBreaking contact: 

The normal force vanishes at a breaking contact:






δn > 0 ⇒ fn = 0

δn = 0 ∧
�

un > 0 ⇒ fn = 0
un = 0 ⇒ fn ≥ 0

⇒

0 ≤ fn ⊥ un ≥ 0

for δn = 0 fn unand (i.e. for a contact) 

satisfy a complementarity relation: 

fn

un

In this form, the geometrical contact 
becomes a kinematic constraint.  

velocity-Signorini conditions
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ft

µfn

−µfn

ut






ut > 0 ⇒ ft = −µfn

ut = 0 ⇒ −µfn ≤ ft ≤ µfn

ut < 0 ⇒ ft = µfn

Coulomb friction law

The Coulomb law of dry friction is a nonsmooth relation 
between the sliding velocity and the tangential force.   

It can be cast in two complementarity relations:

0 ≤ µfn − ft ⊥ −ut + |ut| ≥ 0

0 ≤ µfn + ft ⊥ ut + |ut| ≥ 0
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Rigid-body dynamics is nonsmooth (involves velocity 
discontinuities).

δt

τ

time resolution (time step)  

contact duration 

Head-on collision between two balls at time     t

The acceleration is defined:    

Example:  

The motion is fully described by 
Newton’s equations given the 
applied forces.

Γx(t) =
dUx(t)

dt

δt� τ ⇒ Smooth motion    (1)

x

i j

miΓi
x = F i

x(t, ri
x, U i

x, rj
x, U j

x)

mjΓj
x = F j

x(t, ri
x, U i

x, rj
x, U j

x)

tim
e 

sc
al

es
Nonsmooth motion
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⇒ Velocity jumpδt� τ

During collision and in the absence of external forces, we have  

which is a material dependent force law.

(2)

This is a “jump” in the sense that the velocity change occurs 
in negligibly small time. The time resolution is insufficient to 
resolve the motion. 

⇒ The motion involves instantaneous velocity change:

Mathematically, this means that the velocity       has no 
density (is not differentiable) with respect to time. 

In this mathematical limit, the acceleration is not defined. ⇒

left-limit velocity right-limit velocityt

F i
x = −F j

x = fx(ri
x, U i

x, rj
x, U j

x)

δU i
x(t) = U i

x(t + δt)− U i
x(t)

U i
x

U i+
x (t)U i−

x (t)
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The velocity jump replaces the acceleration:

Newton’s equations should be “coarse-grained” by integration 
over the time resolution: 

impulsion

This relation simply expresses the conservation of linear 
momentum. 

For head-on collision:

These are 2 equations, but we have 3 unknowns: 

Px

time-averaged force

δU i
x(t) = U i+

x (t)− U i−
x (t)

mi(U i+
x − U i−

x ) = Px

mj(U j+
x − U j−

x ) = −Px

U i+
x U j+

x

m(U+
x − U−x ) =

�

δt
Fx dt = Px = �Fx� δt
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For the description of nonsmooth motion (here, a collision), 
we need one more equation relating these variables. 

Classically, the relative velocities before and after a collision 
event are related through a restitution coefficient:

This is a kinematic constraint which works only for a binary 
collision (not for multiple collisions). 

⇒

U j+
x − U i+

x = −en (U j−
x − U i−

x )

Px =
mimj

mi + mj
(1 + en)(U i−

x − U j−
x )

U i+
x = U i−

x +
mj

mi + mj
(1 + en)(U i−

x − U j−
x )

U j+
x = U j−

x − mi

mi + mj
(1 + en)(U i−

x − U j−
x )

re
st
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Np particles

�U i

ωi
i

Newton-Euler equations of dynamics (2D):  

m �̇U = �F + �Fext

I ω̇ = M+Mext

�Fext

Mext

�cα

M = ẑ ·
�

α

�cα × �fα

�F =
�

α

�fα

bulk or boundary forces

resultant of contact forces exerted by 
neighboring particles

moment of external forces

total moment of contact forces i

α

contact vector

Eq
ua

tio
ns

 o
f m

ot
io

n
Multibody dynamics
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m d�U = d�F � + �Fext dt
I dω = dM� +Mext dt

Hence, the equations of dynamics should be written as the 
equality of measures

Integration over the time increment yields 

m (�U+ − �U−) = δt �F + δt �Fext

I (ω+ − ω−) = δtM+ δtMext

where
� t+δt

t
dM� =M δt

� t+δt

t
d�F � = �F δt

�F is a coarse-grained force and its dynamic content 
depends on time resolution.  
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Matrix representation

The particles are labelled with integers:  i ∈ [1, Np]

The forces and force moments acting on the particles are arranged in a 
single high-dimensional column vector represented by a boldface letter. In 
the same way, external bulk forces applied on the particles and the particle 
velocity components are represented by column vectors. The particle masses 
and moments of inertia define a diagonal matrix.:

F =





F 1
x

F 1
y

M1

F 2
x

F 2
y

M2

...
F

Np
x

F
Np
y

MNp





U =





U1
x

U1
y

ω1

U2
x

U2
y

ω2

...
U

Np
x

U
Np
y

ωNp





M =





m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 I1 0 0 0

· · ·
0 0 0 mNp 0 0
0 0 0 0 mNp 0
0 0 0 0 0 INp





m
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The system of equations can then be written as a single matrix 
equation:

M(U+ − U−) = δt(F + Fext)

F,U−, U+, Fext ∈ R3Np M ∈ R3Np × R3Np






δn > 0 ⇒ fn = 0

δn = 0 ∧
�

un > 0 ⇒ fn = 0
un = 0 ⇒ fn ≥ 0






ut > 0 ⇒ ft = −µfn

ut = 0 ⇒ −µfn ≤ ft ≤ µfn

ut < 0 ⇒ ft = µfn

Signorini

Coulomb

Given         and a time resolution       , find         and            U+U− δt (fn, ft)
satisfying the equations of dynamics and frictional contact 
inequalities.
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Contact velocities are expressed as a function of particle 
velocities :

un =
�
Ui −Uj

�
· n

ut =
�
Ui −Uj

�
· t− (aiΩ

i + ajΩ
j)× n

j

i

n

t

The contacts are labelled with integers

The normal and tangential contact velocities can be collected in 
a column vector u ∈ R2Nc

α ∈ [1, Nc]

Since the contact velocities   are linear in particle velocities   , 
the transformation of the velocities is an affine application. 

u

u = G U

2Nc × 3NpG matrixwhere is a
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Approximating the nonsmooth contact laws by regularized 
functions: 

⇒ force laws

fn

δn

ft

µfn

−µfn

ξt

ξt =

� t

t0

ut dt

fn = fn(δn, un) ft = ft(fn, ξt, ut)

sm
oo

th
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g
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e 

la
w

s
Molecular dynamics
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Linear dashpot model

Simplest force law of smooth DEM

with

ξn = −δn

⇒ binary collision

lin
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fn = knξn + γnξ̇n

en = exp

�
−πγn

2m
/

�
kn
m

−
� γn
2m

�2
�

ξ̇n = unwith
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fn can become negative when  ξ̇n < 0

⇒
Regularized Coulomb law

ft = −sign(ut) ·min {|κtξt|, µfn}

fn = max{0, knξn + γnξ̇n}

re
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d 

fr
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We consider a linear chain of grains governed by linear harmonic 
interactions : 

j j+1 N1 2 3 j−1

m
d2xj

dt2
= −kn(2xj − xj+1 − xj−1)− γn

�
2
dxj

dt
− dxj+1

dt
− dxj−1

dt

�

Staionary solution :

xj = j∆x+ x0 with ∆x = L/N
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Time-dependent solution: xj(t) = j∆x+ wj(t)

wj(t) = Aesmteiπmj/N

sm = −µm ±
�

µ2
m − ω2

m

ωm = �ω0, µm = �2µ0, with � = 2 sin
πm

2N

ω0 =

�
k

m
, µ0 =

γ

2m

For the wave m = N the frequency has its highest value 2ω0

To resolve the motion with sufficient precision, the time step must 
be smaller than  1/2πω0

⇒ δt �
�

m

k

tim
e 

st
ep
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With the Herz law, the contact stiffness, and hence the 
characteristic frequency, increases with the load. To choose the time 
step, the maximum value of the normal force should be estimated. 

In a granular flow, the time step must also be small enough so that 
the fastest grain move only a small fraction of of the their size 
during one time step : 

⇒ δt � pd

ε̇kn

ε̇δt � pd/kn
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Leap-frog (Verlet) scheme

The velocities are calculated at intermediate times between the 
grain positions.  

U(t+ δt/2) = U(t− δt/2) + a(t) δt

r(t+ δt) = r(t) + U(t+ δ/2)δt

To calculate the forces and accelerations, it requires the positions 
and velocities at time t

U(t) = U(t− δt/2) + a(t− δt)δt/2
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Gear’s predictor-corrector scheme

Prediction (Taylor expansion of all degrees of freedom)

�rp(t+ δt) = �rp(t) + δt �̇r(t) +
1

2
δt2 �̈r(t) +

1

6
δt3

...
�r (t) + . . .

�̇rp(t+ δt) = �̇rp(t) + δt �̈r(t) +
1

2
δt2

...
�r (t) + . . .

�̈rp(t+ δt) = �̈rp(t) + δt
...
�r (t) + . . .

...

Force computation (for the predicted values) 

�F i(�rp, �Up) �Mi(�rp, �Up) ⇒
�̈r c(t+ δt) θ̈ c(t+ δt)
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Correction

∆�̈r = �̈r c − �̈r p

�r c(t+ δt) = �r p(t+ δt) + c0
1

2
(δt)2∆�̈r

�̇r c(t+ δt) = �̇r p(t+ δt) + c1
1

2
(δt)∆�̈r

�̈r c(t+ δt) = �̈r p(t+ δt) + c2∆�̈r

...
�r

c
(t+ δt) =

...
�r

p
(t+ δt) + c3 3(δt)−1∆�̈r

...

c0 =
19

90
c1 =

3

4
c2 = 1 c3 =

1

2
c4 =

1

12

For an expansion of fifth order: 
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M(U+ − U−) = δt(F + Fext)






δn > 0 ⇒ fn = 0

δn = 0 ∧
�

un > 0 ⇒ fn = 0
un = 0 ⇒ fn ≥ 0






ut > 0 ⇒ ft = −µfn

ut = 0 ⇒ −µfn ≤ ft ≤ µfn

ut < 0 ⇒ ft = µfn

Signorini

Coulomb

Dynamics

We need to express the equations of dynamics in contact 
variables.

Contact dynamics
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The contacts are labelled with integers

The normal and tangential contact velocities can be collected in 
a column vector u ∈ R2Nc

f ∈ R2Nc

In the same way, the normal and tangential contact forces are 
represented by a vector

α ∈ [1, Nc]

Since the contact velocities   are linear in particle velocities   , 
the transformation of the velocities is an affine application. 

u U

A similar linear application relates     to     . f F

u = G U

2Nc × 3NpG matrix

H 3Np × 2Nc matrix

F = H f

where
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F · U = f · u

H
iα = H

iα
n + H

iα
t

H = G
TEquality of powers ⇒

Contact matrix

The contact matrix is generally singular and its null space has a 
dimension at least equal to 2Nc − 3Np

Decomposition: 

u
α
n =

�
i

H
T,αi
n U

i

u
α
t =

�
i

H
T,αi
t U

i

U
i

F
i

fα

u
α

H
iα

H
T,αi





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⇒ The equations of dynamics can be transformed into two 
equations for each contact: 

u
α+
n − u

α−
n = δt

�
i,j

H
T,αi
n M

−1,ij {
�
β

(Hjβ
n f

β
n + H

jβ
t f

β
t ) + F

j
ext}

u
α+
t − u

α−
t = δt

�
i,j

H
T,αi
t M

−1,ij {
�
β

(Hjβ
n f

β
n + H

jβ
t f

β
t ) + F

j
ext}

ut =
u+

t + et u−t
1 + et

un =
u+

n + en u−n
1 + en

1 + en

δt
(uα

n − u
α−
n ) = Wαα

nn f
α
n +Wαα

nt f
α
t

+
�

β( �=α)

{Wαβ
nn f

β
n +Wαβ

nt f
β
t }+

�

i,j

H
T,αi
n M

−1,ij
F

j
ext

1 + et

δt
(uα

t − u
α−
t ) = Wαα

tn f
α
n +Wαα

tt f
α
t

+
�

β( �=α)

{Wαβ
tn f

β
n +Wαβ

nt f
β
t }+

�

i,j

H
T,αi
t M

−1,ij
F

j
ext
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where

cα
it = �cα

i · �tα
cα
in = �cα

i · �nα

Wαα
nn =

1
m1α

+
1

m2α

+
(cα

1t)2

I1α

+
(cα

2t)2

I2α

Wαα
tt =

1
m1α

+
1

m2α

+
(cα

1n)2

I1α

+
(cα

2n)2

I2α

Wαα
nt = Wαα

tn =
cα
1ncα

1t

I1α

+
cα
2ncα

2t

I2α α

1α

2α

"c
α

1

"c
α

2

"t
α

"n
α

Wαβ
k1k2

=
�

i,j

H
T,αi
k1

M
−1,ij

H
jβ
k2

with

inverse reduced inertia
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Alternative representation :

Wαα
nn fα

n +Wαα
nt fα

t = (1 + en)
1
δt

uα
n + aα

n

Wαα
tt fα

t +Wαα
tn fα

n = (1 + et)
1
δt

uα
t + aα

t

with
aα

n = bα
n − (1 + en)

1
δt

uα−
n +

�
�F 2α

ext

m2α

−
�F 1α

ext

m1α

�
· �nα

aα
t = bα

t − (1 + et)
1
δt

uα−
t +

�
�F 2α

ext

m2α

−
�F 1α

ext

m1α

�
· �tα

bα
n =

1
m2α

�

β( �=α)

�fβ
2α

· �nα − 1
m1α

�

β( �=α)

�fβ
1α

· �nα

bα
t =

1
m2α

�

β( �=α)

�fβ
2α

· �tα − 1
m1α

�

β( �=α)

�fβ
1α

· �tα

and

coupling terms with 
other particles

offsets

transfer equations
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Iterative resolution
In order to solve the system of transfer equations (in 2D) with 
the corresponding complementarity relations, we proceed by an 
iterative method which converges to the solution simultaneously 
for all contact forces and velocities.

Single contact problem 

Determine                          at a single contact given the values 
of the offsets    and    at the same contact: local Singnorini-
Coulomb (SC) problem.

fα
n , fα

t , uα
n, uα

t
aα

n aα
t

fn

un

ft

µfn

−µfn

ut
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The two transfer equations are generally coupled and thus the 
two intersections can not be established separately.   

We consider the inersection of the transfer equations with the 
force axis by setting un = ut = 0

gα
n =

Wαα
tt aα

n −Wαα
nt aα

t

Wαα
nnWαα

tt − (Wαα
nt )2

gα
t =

Wαα
nn aα

n −Wαα
tn aα

t

Wαα
tt Wαα

nn − (Wαα
tn )2

gα
n < 0 ⇒ fα

n = fα
t = 0 breaking contact

gα
n ≥ 0 ⇒ fα

n = gα
n

gα
t > µfα

n ⇒ fα
t = µfα

n

gα
t < −µfα

n ⇒ fα
t = −µfα

n

−µfα
n < gα

t < µfα
n ⇒ fα

t = gα
t

sliding contact

rolling contact
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xF
1

F
2

Example of head-on collision under the action of 
two parallel forces

Wnnfn = (1 + en)
1
δt

un + an

an = −(1 + en)
1
δt

u−n +
�

F 1

m1
+

F 2

m2

�

The collision implies un = 0

u+
n = −enu−n⇒

fn = an = − 1
δt

m1m2

m1 + m2
(1 + en) u−n +

�
m2F 1 + m1F 2

m1 + m2

�

unresolved force resolved force

Resolved and unresolved forces

transfer equation

offset equation

⇒

In the CD method, the impulsive force decreases with time step. 
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u−n = 0 ⇒ u+
n = 0 fn =

m2F 1 + m1F 2

m1 + m2

U2+ = U2− + δt
−F 2 + fn

m2

U1+ = U1− + δt
F 1 − fn

m1

U1− = U2− = 0

⇒

Center-of-mass velocity

U1+ = U2+ =
F 1 − F 2

m1 + m2

Particles initially at rest
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Multicontact problem

The solution for each contact depends on all other contacts of 
the system and it must be determined simultaneously for all 
contacts. This is the  global Singnorini-Coulomb (SC) problem.

We search the solution as the limit of a sequence

{fα
n (k), fα

t (k), uα
n(k), uα

t (k)} α ∈ [1, Nc]

{fα
n (k), fα

t (k)}

{aα
n(k), aα

t (k)}

{fα
n (k + 1), fα

t (k + 1)}

offset equation

single contact problem

The set                     evolves with k by successive  corrections 
and it converges to a solution satisfying the transfer equations 
and complementarity relations at all potential contacts of the 
system.    

{fα
n (k), fα

t (k)}
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The iteration is stopped when a precision criterion is satisfied: 

| fα(k + 1)− fα(k) |
fα(k + 1)

< εf ∀α

From the converged contact forces, the particle velocities can 
be computed by means of the equations of dynamics

This is a robust procedure. Moreover, the information is treated 
locally and no large matrices are manipulated during iterations. 

The number of required iterations for convergence depends on 
the precision, the initialization (first guess) of the forces and the 
propagation of the information (ordering).   
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Evolution of the probability density of normal forces with iterations. The forces 
are normalized by the mean force at the converged state.
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The number of iterations (for initially zero forces) as a function of 
convergence criterion. 
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Time-stepping

The global SC problem may well occur as an event at particular 
instances of a granular flow. The iterative resolution method can 
then be applied to calculate the contact forces and particle 
velocities at those instances. But in dense multicontact granular 
media the events cannot be predicted. 

In the CD method, the global SC problem is embedded in a 
time-stepping scheme. This scheme is based on two features of 
the nonsmooth framework:

1) The multicontact SC problem is formulated at the velocity 
level for both dynamics and contact laws, and the position-
Signorini condition is accounted for by involving only the 
eligible contacts, determined geometrically, in the SC problem. 
Hence, in a time-stepping scheme, the contact network should 
be defined explicitly from particle positions and it will no more 
evolve during a time step. 
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2) The right-limit velocities are calculated such that the 
complementarity relations will not be violated by the 
subsequent motion of the particles. This feature is named 
viability lemma by Moreau. It is ensured by the following 
condition as a consequence of the velocity-Signorini condition:

Hence, the numerical treatment is implicit and the right-limit 
velocities  should be used to increment particle positions. 

δn ≤ 0 ⇒ u+
n ≥ 0
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[t, t + δt]

{�ri(t), θi(t)} {�U i(t), ωi(t)}

{α,�nα,�tα}

�ri
m ≡ �ri(t) +

δt

2
�U i(t)

time step

Positions and velocities at the beginning 
of the time step

�U i− = �U i(t)

ωi− = ωi(t)

The left-limit velocities are the velocities at the beginning of the time step:

1) The particles are moved to the half-step configuration: 

A typical scheme

2) The contact network is set up from this configuration

3) The global SC problem is solved iteratively for this contact network and the 
right-limit particle velocities are calculated. These are the right-limit velocities. 

�U i(t + δt) = �U i+

ωi(t + δt) = ωi+
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4) The positions are updated for the remaining half-step:

�ri(t + δt) = �ri
m +

δt

2
�U i(t + δt)

θi(t + δt) = θi
m +

δt

2
ωi(t + δt)

This scheme is unconditionally stable due to its implicit nature. Hence, no 
damping parameters at any level are needed. For this reason, the time step can be 
large.

The time step controls only the position updates. The precision on the velocities 
and forces is controlled by the convergence criterion. The time step should rather 
be considered as a coarse-graining parameter for nonsmooth dynamics. It should 
be reduced if the impulse dynamics at small time scales is of interest. 
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Rolling resistance: Complementarity relations are introduced 
between a torque and a contact spin variable. 

Adhesion: The complementarity relations are shifted.

Particle deformability: Elastic interactions are introduced by 
associating strain variables to the particles rather than to the 
contacts. The strains can be defined either from rigid-body 
degrees of freedom or associated with new internal 
degrees of freedom.

Particle shape: It is a generic feature of the CD method that, in 
contrast to force laws, the nature of the contact 
complementarity relations does not depend on the particle 
shape. Hence, the solver which handles the resolution of the 
global SC problem is independent of the particle shape. The 
potential face-face or face-edge contacts are represented by 
three or two points which are treated as independent point 
contacts by the solver. 

Extensions
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n n

xi

xj

t

Ci Ci CiRi

Rj

Cj
Cj Cj

Ij Ij

Ii Ii

i i

!
"ij

"ji
j

dn dt

t

j

(a) (b) (c)

Cohesion = Freezing of relative degrees of freedom between 
particles
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Signorini Sliding friction law Rolling friction law

�

ωr = ω1 − ω2
branch-vector length

ft

ut

µs(fn + fa)

−µs(fn + fa)
−fa

un

fn

−µr!(fn + fa)

µr!(fn + fa)

ωr

M
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Advanced DEM simulations based on the particle-scale dynamics 
provide new insights into the physical mechanisms that underly the 
rheology of granular materials. 

Some complex features are generic and depend only quantitatively 
on the composition and nature of interactions.  

But the influence of composition and interactions can be evaluated 
through the statistical descriptors of the microstructure and force 
anisotropy.   

DEM can be used with allied methods (LEM, LBM) for the simulation 
of immersed and unsaturated granular materials.  

Conclusions
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