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Introduction

Granular materials: Collection of solid particles of size above 1 um

The interactions between particles are governed by frictional

contact and inelastic collisions.
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------------------------------------------------ Multi-scale modeling o>
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scales of description

BVP: Boundary Value Problem
RVE: Representative Elementary Volume

DEM: Discrete Element Method
FEM: Finite Element Method
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Granular materials are inhomogeneous at all scales:

|) Sub-RVE inhomogeneities arise from geometrical disorder.
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2) Large-scale inhomogeneities arise from bulk forces and complex
boundary conditions.

Inhomogeneities

Avalanche (by L. Staron)
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The behavior is homogeneous when the strains and stresses are uniform
in the bulk. This happens if the number of particles is large enough for the
sample to be statistically representative and the finite-size and wall effects
are absent. The sample may then be considered as a RVE and the behavior
as intrinsic to the material (rheology).

01

Homogeneous behavior
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Constitutive
behavior

Microstructure

Composition
Interactions

The homogeneous behavior is consequence of the composition and
nature of interactions (example: frictional behavior). But these are mainly
expressed at the macroscopic scale through the microstructure, which is
at the origin of the emergent (generic, collective) properties of granular
materials (example: internal friction angle evolves with the fabric
anisotropy). Some properties are of purely structural nature (example:
dilatancy).

Emergent and specific behavior
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The DEM provides a general tool for the investigation of the constitutive
behavior by integrating the equations of motions of all particles, described
by their geometrical and mechanical properties as well as their frictional
interactions.

The DEM was introduced by Peter Cundall in 1975 by analogy ith the
molecular dynamics method (MD), but applied to solid particles with
frictional contacts. A radically different method, called contact dynamics
(CD) was introduced in 1991 by Jean Jacques Moreau and Michel Jean.

Their common feature is to describe the particles as rigid bodies with a

finite number of degrees of freedom (dynamical variables): 6 in 3D and 3 in
2D.

—_ .

U’L
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Analogy with homogenization (coarse-graining, upscaling):

The physical input in both the DEM and homogenization is the
composition and local interactions, and the macroscopic behavior is
obtained from collective particle dynamics by averaging.

By providing detailed information about the microstructure and its
evolution, the DEM is an ideal ally for analytical homogenization.

?
é____é
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input

[ Force ]<:>[Displcaementj
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3 levels of discrete modeling:
|) Basic
Spherical particles + frictional contact interactions

2) Extended

Particle clusters, adhesion forces (capillary, lubrication, adhesion
threshold), high polydispersity, rolling friction

3) Advanced

Non-spherical particles, Particle fracture, pore-filling continuous phase
(liquid, solid), evolving interactions and phase transformations
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Physical L 3 parameters Preparation
model

ol Q|

Physical [€——  Analysis <<—| Algorithms
interpretation

——

Modeling cycle

A physical model is defined by the choice of composition and paricle
interactions. The model parameters need to be fixed and the initial state
generated by a preparation method. The algorithm provides the
evolution of particle positions. The numerical data are analyzed by
post-processing. It might be necessary to adjust model parameters
(cycle I). If the physical interpretation is not consistent with the
experimental behavior, the physical model should be modified (cycle 2).
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Constitutive framework

o

2 At very small strains, the behavior is elastic. The nonlinear behavior

% is a consequence of nonlinear Hertz law and the evolution of the

< number of contacts (see the coarse of |.-N. Roux).

=

k:

v
At very larger strains, the behavior is plastic. It is characterized by
three ingredients:

o

E . . .

S 1) Yield function (accessible stresses)

_D [] [] [ []

g 2) Flow rule (direction of plastic strain)

< 3) Hardening rule (evolution of the state parameters)
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In the case of a granular material composed of rigid
particles interacting via a Coulombic friction:

- No force scale - The yield surface in the stress space is
expressed as a stress ratio > Coulomb cone -

Internal angle of friction

- The plastic strain reflects only the relative particle
displacements + rate-independence - The volume change
scales with the shear strain = flow rule given by an angle

Dilation angle w
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Set of state parameters f

—> The plastic behavior is defined by specifying

P(F)
$(F)
2 F(F,é)
Steady state: = (]:*)
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Angle of friction in terms of stress invariants:

1
p = 5(01+U2+03)
1

5 3D q= —(o1 —o03)
° 3
E sin = 34
% — Y = 2+ q
1
p=§(01+02)
1
2D q:§(01—az)
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visco-plastic behavior

T

viscous behavior at large strain-rates
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Grain geometry

Size polydispersity

Polydispersity

Shape polydispersity
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Size polydispersity

f(d) Proportion of grains with diameter (]

V(d) Volume fraction of grains of size (

F(d) Proportion of grains of size below (

h(d) Cumulative volume fraction of grains

Definitions

Grading curve

F(d) = /d LA =

dmz’n lower bound

alma:,3 upper bound
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d
C, = —60 Coefficient of uniformity
d10
(%]
8 2
2 C. = 30 Coefficient of curvature
C
& d10deo
i
9
(%)
>
9 deo — d1o Size span
c
=
c
0O
O
Mono-disperse system Cy, =1
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dmfin

d - dmzn
d-(d) = reduced size

dmaa:' dmax - dmzn

dma:c _ dmzn
S = span

dmaa: + dmzn

o 1 2 3 Ne

dm iTL d dm ax

N.  Number of classes

Discrete representation

d — dp;
5d — maax min
Ne¢

N,  Number of particles

Npf(d) 6d  Number of grains of size € |d —dd/2,d + dd/2]
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The quality of the discretized grading function depends on

» the number of classes
» the number of grains in each class

» the volume of grains in each class

For the simulation of polydisperse systems, the tractable number of
particles should be comprimized with the statistical representativity
of the size distribution.
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Contact interactions

Granular dynamics involves fine length scales such as elastic
particle deformations, contact deflection

A sub-particle length scale (contact deformation, ...)

or  spatial resolution

or > A —>  The spatial resolution is too large to resolve
fine length scales.

length scales

—>  particle-scale dynamics (rigid particles)
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In particle-scale dynamics, the contact between two particles
becomes a unilateral constraint. v

fn normal force V\
b

O normal distance

o On
0y = ‘rz — r”‘ —a' —a’ fortwo disks
op >0 = f,=0 S it
5, =0 = f,>0. Ignorini's condrtions r

Alternative writing:

0<f, L 6&,>0

Complementarity relation

None of the two variables can be reduced
to a (mono-valued) function of the other.
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Persistent contact: O0p =0 and q, = 5n =0

Breaking contact: 6, =0 and ¢ >0

The normal force vanishes at a breaking contact:

(6, >0 = f,=0
B U, >0 = f,=0
\(Sn—o A {un:O ~ >0

N\

—> for 0, =0 (i.e.foracontact) fn and Un In

satisfy a complementarity relation:

0<f, L wu,>0

velocity-Signorini conditions

In this form, the geometrical contact
becomes a kinematic constraint.
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Coulomb friction law

The Coulomb law of dry friction is a nonsmooth relation
between the sliding velocity and the tangential force.

fe

y

us >0 = ft:_:ufn
< ut:O — _,ufngftgﬂfn

\ut<0 = ft::ufn

_Ufn
It can be cast in two complementarity relations:

O0<ufn+ft L wu+|u|>0
0<upufn—fr L —ur+|ul >0
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Nonsmooth motion

Rigid-body dynamics is nonsmooth (involves velocity
discontinuities).

Example: Head-on collision between two balls at time ¢

] J
0t time resolution (time step)
T  contact duration ®_> 6 T
>
(1) dft<T =  Smooth motion
dUL(t)

The acceleration is defined: T',(t) = o

The motion is fully described by m'T = F'(t,r", U, rl, U?)
Newton’s equations given the o . S
applled forces. m’ F‘gc — Fag (tv T;Lca U;‘a ngm ng)
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—

During collision and in the absence of external forces, we have

F! = _Faz — fx(T;,Ué,Ti,Ug)

X

which is a material dependent force law.

(2) 6t >71 = Velocity jump SUL(t) = UL(t + 6t) — U(¢)

This is a “jump” in the sense that the velocity change occurs
in negligibly small time. The time resolution is insufficient to
resolve the motion.

Mathematically, this means that the velocity U’ has no
density (is not differentiable) with respect to time.

In this mathematical limit, the acceleration is not defined.

—> The motion involves instantaneous velocity change:

left-limit velocity U’ (¢) t U.T(t) right-limit velocity
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The velocity jump replaces the acceleration:
OUL(t) = U™ (t) = U, (1)

Newton’s equations should be “coarse-grained” by integration
over the time resolution:

m(U+ — U = / F, dt = P, = (F,) ot
ot

/A

impulsion .
P time-averaged force

This relation simply expresses the conservation of linear

momentum. o .
m' (U, —U,") =P

m! (U7 —Up") = —Pa

These are 2 equations, but we have 3 unknowns:

For head-on collision:

P, U UM
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For the description of honsmooth motion (here, a collision),
we need one more equation relating these variables.

Classically, the relative velocities before and after a collision
event are related through a restitution coefficient:

UT = U = —en (U7 = U,7)

This is a kinematic constraint which works only for a binary
collision (not for multiple collisions).

. . m? . .

Ut =U'" : -(1 DU —=UI™

P U s (e (U - UL

Ut =Ul" — — (1 +e,) (U —U™
m'm/ : :

P, = — -(1 U —=UI™
(L4 ea) (U~ UL
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Multibody dynamics

U’i
Np particles
Newton-Euler equations of dynamics (2D): w"
m ﬁ = ﬁ -+ ﬁext
5 Iw = M+ My
O
= nl bulk or boundary forces
o) ext
.§ F — Z fo resultant of contact forces exerted by
‘é =~ neighboring particles
LLl
Mext

i

moment of external forces ‘ Q

total moment of contact forces ‘
contact vector ‘
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Hence, the equations of dynamics should be written as the
equality of measures

dF' + F . dt
dM’ + M dt

m dU
I dw

Integration over the time increment yields

m (Ut —U~) = 6t F+ 6t F.yy
I (wr—w™) = 0t M+t Meyy
t+ot t45t
where / dF' = F 6t / dM' = M ot
t t

F' is a coarse-grained force and its dynamic content
depends on time resolution.
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Matrix representation

The particles are labelled with integers: i € [1,N,]

The forces and force moments acting on the particles are arranged in a
single high-dimensional column vector represented by a boldface letter. In
the same way, external bulk forces applied on the particles and the particle
velocity components are represented by column vectors. The particle masses
and moments of inertia define a diagonal matrix.:

— F1 — — U]_ —
Fl Ul i} _
ML ol m* 0 0 0 0 0
2 []2 0 m!l 0 0 0 0
F? U2 0 o I' 0 0 0
F = M2 U — (.U2 M p— .
. . O 0 0 m&»% 0 0
: : 0O 0 0 0 m& 0
N, N,
Fzgv U:5V 0O 0 0 0 0 IN»
Fy P Uy P B -
| MNP | | wVP
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The system of equations can then be written as a single matrix
equation:

MUY —U") = 6t(F + Fp)

Fa U_a U+7 Feazt - RBNp M € ]RSNP X RSNP

(6, >0 = f,=0
Signorini \ 5. -0 A {un>0 = f,=0

Up, =0 = f,>0

\

ug >0 = ft — _:ufn
Coulomb ur =0 = —pfn < ft < pfn

u <0 = ft::ufn

Given UU ™ and a time resolution Jt , find U+ and (fna ft)

satisfying the equations of dynamics and frictional contact
inequalities.
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Contact velocities are expressed as a function of particle
velocities :

un:(Ui—Uj)-n

up = (U = U?) -t — (0,2 +a;9) xn

The contacts are labelled with integers a € 1, N,]

The normal and tangential contact velocities can be collected in
a column vector u € R*e

Since the contact velocities ¥ are linear in particle velocities
the transformation of the velocities is an affine application.

u=GU

where (G isa 2N.x 3N, matrix
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Molecular dynamics

Approximating the nonsmooth contact laws by regularized

functions:
%O A A
= ft
o
é wfn
On &t
_:ufn
t
” ‘St :/ Ut dt
)
rud
O

—> force laws fn — fn(5naun) ft — ft(fnagtaut)
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Linear dashpot model

Simplest force law of smooth DEM

fn — knfn T /Ynfn with

o . :

g with &, = —9, &, = uy

S

°

©

ks

S — en = exp{ m”/\/ } binary collision
é

)

k=
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fn can become negative when fn < 0

Correction

— frn = max{0, kn&n + Ynén

Regularized Coulomb law

fi = —sign(uy) - min {|x:&l, o fon }

regularized friction law
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We consider a linear chain of grains governed by linear harmonic
interactions :

SEslensle

m

dQCCj da:j da:j+1 dil?j_l
gz~ (2% = T = i) = (2 a dt  dt

Staionary solution :

r; =jAx+x9 with Ax=L/N
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Time-dependent solution: (t) = ]Ax + w; (t)

w; (t) _ Aesmteiﬁmj/N

Sm = —lbm T \/:u%n _w’rQn

5 , ™M
Wy, = €W, Mm = € g, With €= 2sin —

2N
| k Y
Wo — —y M0 = 5
m 2m

For the wave 1M = /N the frequency has its highest value 2wy

To resolve the motion with sufficient precision, the time step must
be smaller than 1 /27wy

=X 5t<<\/%
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With the Herz law, the contact stiffness, and hence the
characteristic frequency, increases with the load. To choose the time
step, the maximum value of the normal force should be estimated.

In a granular flow, the time step must also be small enough so that
the fastest grain move only a small fraction of of the their size

during one time step : ¢§t < pd/kn

— 5t < .p—d
ek,
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Leap-frog (Verlet) scheme

The velocities are calculated at intermediate times between the
grain positions.

t

rl(t) Ul(t —I— 0t/2) r(t + ot)

integration

Ut +6t/2) = U(t — 6t/2) + a(t) ot

r(t+dt) =r(t)+ U+ 0/2)0t

To calculate the forces and accelerations, it requires the positions
and velocities at time ¢

U(t) = U(t — 6t/2) + a(t — 6t)dt/2
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Gear’s predictor-corrector scheme

Prediction (Taylor expansion of all degrees of freedom)

7 (t + 0t) = 7 (t) + 6t 7(t )+%5t2 %(t)+%5t3 O
7 (t + 0t) = 7 ()+5tr()+15t2%(t)+...
7P (t+ 0t) = 7P(t) + 6t 7 (L) + ..

Force computation (for the predicted values)
Fi(, 07 M, 07 =

Fe(t+6t)  0°(t + 6t)
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Correction
AF = 7¢ — 7P
FE(t 4+ 0t) = FP(t + 6t) + CO%(&)QA%
7E(t + 0t) = FP(t + 6t) + clé(dt)A%
FE(t + 6t) = 7P (t 4 0t) + co AT

7Ot +6t) = 7 (t + 6t) + 5 3(5t) AT

For an expansion of fifth order:

19 3 1 1
_ cl=2" =1 ¢3==

0= 90 A 2 12
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Contact dynamics

Dynamics MUY —U7) =6t(F + Feut)

(6, >0 = f,=0

Signorini < { u, >0 = f,=0
0, =0 A
" U, =0 = f,>0

\

y

ug >0 = fr=—ufy
Coulomb S uy =0 = —ufn < feufn
| Ut <0 = ft — /'Lfn

We need to express the equations of dynamics in contact
variables.
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The contacts are labelled with integers a € [1, N

The normal and tangential contact velocities can be collected in
a column vector u € R*N

In the same way, the normal and tangential contact forces are
represented by a vector f < RZ/Ne

Since the contact velocities u are linear in particle velocities U,
the transformation of the velocities is an affine application.

A similar linear application relates / to F.
u=GU
F=H‘f

G 2N, x 3N, matrix

where

3Np X 2Ne  matrix
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dynamics

HT,Ozi Hioz
u® < > [

contact laws

transfer equations
Equality ofpowers .U = f.-u = H =G7
Contact matrix

The contact matrix is generally singular and its null space has a
dimension at least equal to 2N, — 3N,

Decomposition:  H'* = H'* + H!®

7

T o1 '

@7 ’ 1

us > H; U
)

8%
n
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The equations of dynamics can be transformed into two

= :
equations for each contact:

upt T = S H M (P H]" ) + Floy)
_ T, .
ug T — T = 5tZH A M {%:(H%Bff + H" )+ FL,)
1,7
ul + e, u, ul e up
Up — Ut =
14 €n 1+ €t
1 + €n (0% oa— ao fo ao fo
5t (un — Uy, ) — Wnn n + Wnt ft
> VI AW+ Y HP MY R,
B(#a) ]
L +e o oa— ao ro ao po
5t (uf —ug™) = W f + Wi
> VI AW Y H MR,
B(#a) ]
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Wl Z g eiy r—1,ij gif inverse reduced Inertia
k1ko k1 k2
,J
1 1 c 2 c< 2
oo _ L, L) ()
may,, ma,, Ila ]2a
1 1 c 2 c< 2
Wtozoz _ 4+ 4+ ( 1n) 4+ ( 2n)
may,, ma,, ]1a IQa
ao — Waa — C(lxnc(lxt ancgt
nt tn Ila 12a
. (6 7. 8 / —>(Y
Wlth Cin — C’i ‘N
o _ o
Cit — C,L' ° t
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Alternative representation :

1
Wi Jn +Wae' fe = (1t en) Soup +ay |
| transfer equations
W fe Wi = (Lt ed) g +af
with ) .
1 F F
a _— pr_ (1 o) — a— ext ext p=de’
an n ( +e )5tun +<m2 m1a> n
1 . offsets
o _ px (] o= ext T ext | t_’a
a/t t ( + €t> 5t ut + <m2a mla)
and
1
b = —— YA - . .
n ma, B(%%) 2 1o ﬁ(%;) i coupling terms with
. 1 other particles
LD, AL bl DI
2o B(#a) “ B(#a)
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Iterative resolution

In order to solve the system of transfer equations (in 2D) with
the corresponding complementarity relations, we proceed by an
iterative method which converges to the solution simultaneously

for all contact forces and velocities.

Single contact problem

Determine  f ', f;",u,,u, ata single contact given the values
of the offsets a, and a;' at the same contact: local Singnorini-

Coulomb (SC) problem.
A ft \fn

win

Wy

A

_an
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The two transfer equations are generally coupled and thus the
two intersections can not be established separately.

We consider the inersection of the transfer equations with the
force axis by setting , =y, =0

g = Wii%a, — Wyitay

no a0 oo \2
Wnn th ( nt )

W22 a2 — Wt ag

WHWRE — WiE)?

9@ <0 = fy=f=0 breaking contact

gp > ity = N =wh
sliding contact
g >0 = fo=g9, 9% <-unfy = fi=-nfy

—pfn <gi <upfn = fi=g; rolling contact
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Resolved and unresolved forces

Example of head-on collision under the action of
two parallel forces

Fj ‘ S X
> g -«
Wain frn = (1 + en>gun + an, transfer equation v N
(14 en)= uy + LB et equa Hn
Ay = — e, )— U - 4+ —
n n) 5 Un mr T offset equation

The collision implies U, = 0

== u;[:—enu;
1 mm moFt +my F?
= fa=tn=————(1+e) u, +— :
0t mq1 + mao my + Mo

unresolved force resolved force

In the CD method, the impulsive force decreases with time step.
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b f
Ut =Ul" + 6t o
mi
_ 2 -
Ut =U* + 6t *J
ma
Ul =U* =
> oy B2 F
m1 + Mo

Center-of-mass velocity

m2F1 —|—m1F2

mi + mo

Particles initially at rest
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Multicontact problem

The solution for each contact depends on all other contacts of
the system and it must be determined simultaneously for all
contacts. This is the global Singnorini-Coulomb (SC) problem.

We search the solution as the limit of a sequence
{5 (k), 7 (k), up (k) ug () } a1, N,
{/fa k), fi*(k)}

offset equation L{a (k)
‘——» {fa(k+1), f(k+1)}

single contact problem

The set {f*(k), f*(k)} evolves with k by successive corrections
and it converges to a solution satisfying the transfer equations

and complementarity relations at all potential contacts of the
system.
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The iteration is stopped when a precision criterion is satisfied:

| fHEAD) — (R
fe(k+1)

< Ef Vo

From the converged contact forces, the particle velocities can
be computed by means of the equations of dynamics

This is a robust procedure. Moreover, the information is treated
locally and no large matrices are manipulated during iterations.

The number of required iterations for convergence depends on
the precision, the initialization (first guess) of the forces and the
propagation of the information (ordering).

mercredi 29 juin 2011



[ <f>

Evolution of the probability density of normal forces with iterations. The forces
are normalized by the mean force at the converged state.

3000 I I !
?
2000 |+ -
= |
1000 £, i
\.\
0 - - ———— | m o 9
0 0.005 0.01 0.015 0.02
€
f

The number of iterations (for initially zero forces) as a function of
convergence criterion.

mercredi 29 juin 2011



Time-stepping

The global SC problem may well occur as an event at particular
instances of a granular flow. The iterative resolution method can
then be applied to calculate the contact forces and particle
velocities at those instances. But in dense multicontact granular
media the events cannot be predicted.

In the CD method, the global SC problem is embedded in a
time-stepping scheme. This scheme is based on two features of
the nonsmooth framework:

|) The multicontact SC problem is formulated at the velocity
level for both dynamics and contact laws, and the position-
Signorini condition is accounted for by involving only the
eligible contacts, determined geometrically, in the SC problem.
Hence, in a time-stepping scheme, the contact network should
be defined explicitly from particle positions and it will no more
evolve during a time step.
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2) The right-limit velocities are calculated such that the
complementarity relations will not be violated by the
subsequent motion of the particles. This feature is named
viability lemma by Moreau. It is ensured by the following
condition as a consequence of the velocity-Signorini condition:

0, <0 = u;tz()

Hence, the numerical treatment is implicit and the right-limit
velocities should be used to increment particle positions.
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A typical scheme

t,t+0t]  time step

i i = i Positions and velocities at the beginning
(), 0°(t)} {U" (1), " (1)} of the time step

The left-limit velocities are the velocities at the beginning of the time step:
U= =U'(t)

W' = w'(t)

|) The particles are moved to the half-step configuration:

. . 5t .
P =7 () + 5 U0

2) The contact network is set up from this configuration

{o, 7,17}

S|

3) The global SC problem is solved iteratively for this contact network and the
right-limit particle velocities are calculated. These are the right-limit velocities.

Uit +0t) = U
Wt +0t) = W't
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4) The positions are updated for the remaining half-step:

7 (t+ 0t) = %Jr%ﬁi(wét)
0'(t +6t) = 9;+%wi(t+5t)

This scheme is unconditionally stable due to its implicit nature. Hence, no
damping parameters at any level are needed. For this reason, the time step can be
large.

The time step controls only the position updates. The precision on the velocities
and forces is controlled by the convergence criterion. The time step should rather
be considered as a coarse-graining parameter for nonsmooth dynamics. It should
be reduced if the impulse dynamics at small time scales is of interest.
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Extensions

Rolling resistance: Complementarity relations are introduced
between a torque and a contact spin variable.

Adhesion: The complementarity relations are shifted.

Particle deformability: Elastic interactions are introduced by
associating strain variables to the particles rather than to the
contacts. The strains can be defined either from rigid-body
degrees of freedom or associated with new internal

degrees of freedom.

Particle shape: It is a generic feature of the CD method that, in
contrast to force laws, the nature of the contact
complementarity relations does not depend on the particle
shape. Hence, the solver which handles the resolution of the
global SC problem is independent of the particle shape. The
potential face-face or face-edge contacts are represented by
three or two points which are treated as independent point
contacts by the solver.
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Cohesion = Freezing of relative degrees of freedom between
particles
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A fn A ft AN
ps(fn + fa) el (fr + fa)
fUTn u=t W:
_fa
—ps(fro + fa) —rl(fro + fa)
Signorini Sliding friction law Rolling friction law

W, = W1 — W2

¢  branch-vector length
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Conclusions

Advanced DEM simulations based on the particle-scale dynamics
provide new insights into the physical mechanisms that underly the
rheology of granular materials.

Some complex features are generic and depend only quantitatively
on the composition and nature of interactions.

But the influence of composition and interactions can be evaluated
through the statistical descriptors of the microstructure and force
anisotropy.

DEM can be used with allied methods (LEM, LBM) for the simulation
of immersed and unsaturated granular materials.
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