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Grains, contacts, REV

A granular medium can be regarded as a grain assembly or a contact network

Following an homogenization line, a contact description is more appropriated. The contact is the
basic constitutive unit of the medium.

Grain deformation is concentrated at contact points, and the macroscopic deformability (on the
assembly scale) stems from the relative displacement between grains, involving sliding, rolling and
normal compression.

A granular volume is reputed to be a REV (Representative Volume Element) when both macro-
homogeneous stress and strain fields can be defined.

This requires that all characteristic internal lengths of the medium (grain size, force chain length,
etc.) are small with respect to the specimen size.



Macro-homogeneity and Hill’s Lemma

Astrain field & is macro-homogeneous within a volume V if

v M (X)e oV ﬁ(|\/| ):Z X with ; constanton OV

Then (Hill’s Lemma), for any stress tensor & with zero divergence:

(o:2)=(0):(e)

Astress field o  with zero divergence is macro-homogeneous within a volume V if

v M (ﬁ)e oV IE(M ): ; i with g constanton OV

Then (Hill’'s Lemma), for any strain tensor E

(o:8)=(0):(z)




Keep in mind Macro-homogeneity and Hill’s Lemma

VER

Flelds & and O are macro-homogeneous

Hill’s lemma

(0:6)=(0): (e}




Several scales

3 main scales :
= Microscopic scale

Contact between two adjoining particles (opening, closure, sliding, liquid bridges, bonds, etc.)

» Mesoscopic scale
Intermediate scale corresponding to a discrete set of neighboring particles

(force chains, undergoing the assembly stability ; Oda, 1972 ; Radjai et al., 1998)

= Macroscopic scale

Constitutive relations are written on this scale, to be integrated in FEM codes

(boundary value problems)




General schemes

Local behavior
—
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Tools for homogenization

Ideally, homogenization schemes can be solved if the motion of each particle is described
(particulate approach). This is what is done in DEM.

However:
Computations can be time consuming, and very heavy

No constitutive equation relating both stress and strain tensors

DEM should be regarded as a numerical experimentation tool, rather than an homogenization
technique.

In practice, the balance (or the motion) of each particle is not described:
= The global equilibrium (on the specimen scale) is written (virtual works theorem)
» Equivalence between « macro work » and « sum of micro works »

= A simplified statistical description of contact distribution evolution is introduced (heuristic vision
of fabrics notion)

» Additional hypothesis are required, as the motion of each particle is not considered...



Homogenization / localization scheme

RVE
(Representative -
Volume Element) F, U
O o, &

— b —

de dd dF do
Stress
averaging

Strain localization Local behavior
operator

(Chang, 1992; Cambou, 1993; Chang and Hicher, 2005; Nicot and Darve, 2005; etc)



Directional character

n,(6,9) coSg

Directional contact vector  1i(6,¢)=|n,(0,¢)|=|sin @ cos
n,(8,¢)| |singsind

] \ Contact probability f,,(0,0)=—

e (un ) Ut) Relative displacement of the contact
Un»

nt Contact ﬁ(@,(ﬁ) point

direction
(Fn, Ft) Contact forces resulting from the

relative displacement



Force averaging Discrete formulation

Granular assembly (VER) subjected to a set a external forces applied to boundary particles

Inertial effects are neglected

. ext,p ext,p
jaij 5‘9ij dv = ZFi , (Virtual work theorem)
Vv peoV



Force averaging Discrete formulation

Vo, b= Y R 8]

peoV
V o, og; =V oy og; Hill macro-homogeneity lemma
extp <. ub . : :
o = —55” X; XJP j'" coordinate of external particle ‘p’
P ext,p P o P
peoV
P 1 Fext,p P
O =~ Z i X; Boundary Love-Weber formula
) V J
peocV




Force averaging Discrete formulation

I:iext,p n Z Fiq’p =0 ‘P’ external C(p) : set of particles ‘q’ in contact with ‘p’
qeC(p)
Z F*" =0 ‘p’ internal
qeC(p)

D BT X+ ROP (xip — xiq): 0
peoV g<p
q -
po L SR )= S
& X
O P 1 & c ¢
Gij _\7§Fi i

Contact Love-Weber formula



Force averaging Continuum formulation

1
— Z F IS (Love Formula, 1927)

E (Weber, 1966; Mehrabadi, 1981, etc.)

on a contact « ¢ »

i F. (i) Average contact force along direction N

Spherical particles, radius I

Integration over all the contact directions of the physical space



Local behavior Behavior on the microscopic scale

The local behavior accounts for the constitutive specificity of the material:
Frictional elasto-plastic model (sands, ...)
Cohesive elasto-plastic model (concrete, ...)

Visco-elasto-plastic behavior (snow, ...)

Adjunction of capillary forces (unsaturated soils)



Local behavior Frictional granular materials

Frictional-elastic model ~ dF, =Kk, du,

. . _ ~ du .
dF, = min {F, +k, du ] tan g, (F, +k, dun)}H e da:H £
In elastic regime k., =Kk,
k,, =0

dF, | |k, 0O (] du,
dF | |k, K, dy
In plastic regime k,=0

ki, =tane, k,

3 Parameters : K, K, Dy



Local physical description refinement Unsaturated materials

Existence of liquid bridges in pendular regime

[ ] [ ] n >
|
D e >
intergranular force F9 (ﬁ)
capillary force = (ﬁ) Depends on the distance |

Obtained from Laplace-Young equation

Soulie et al., IINAMG, 2006; Richefeu et al., IINAMG, 2008
Chang and Hicher, IJSS, 2006; Scholtes et al., 2009, IINAMG



Stran energy rate within RVE Kinematic localization

RVE L z
(Representative F, U 1
Volume Element) = =

O o, &

N,, contacts oriented along 0

Using local variables m— e

Using macroscopic variables E, i Cij



Kinernatic localization

Nn
V o, =2r, Z[Z‘i F,C”} n; Love-Weber
Cn=

i

Along each direction n :

Average force |£i N, F = (Ficn)
Ch=1
A Nn
Kinematic variable U N, F U = (Ficn Uicn)
c,=1
1 L 1 L 12
I el (FICn ulCn )i = Z FiCn _ ZulCn
Nn G Nn &= Nn T =il
1
U =— > U”
N, &




Kinematic localization




Kinernatic localization

Z(F, ( 2rg gu nj» 0 Discrete formulation
n
_[ .( —2r, & N, )a)dQ:O Continuous formulation
Q
3 reasons preventing the Y= .
p g U, (f)=2r, & n.

simple relation

i Ilfi(di_zrgéij ”j)wdﬂzO / Z'fl( ngg”nl) L
Q

2 Zlf (u _nggunj) 0 / Vi u—2r g Nn;=0

Np
3 N, lji 7~ Z(uf”) as <Fi Ui>ﬁ # <Fi>ﬁ <Ui>ﬁ along each direction n
c,=1
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Multiscale approach for granular materials
including an intermediate scale
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The H-microdirectional model Homogenization scheme
2D modeling

B [ 5d1\ CON. ) .
o0& &, do
Strain localization Local behavior Stress
operator \505/ \éN Y, averaging




The H-microdirectional model Introduction of an intermediate scale
2D modeling

>l

=l

)X3

Spatial distribution of hexagonal patterns, symmetric with respect to the orientation direction 1

Grains are spherical with the same radius



The H-microdirectional model Computing contact forces
2D modeling

5N1 — _kn ajl

F, ST, =—k, d, S
T|<tang, N,




The H-microdirectional model Fundamental kinematic assumption
2D modeling

d,=—l, denn

\7 1=

d,=-l, o¢tt




Elastic regime

2CO0Sc
2sin o

COS

Elasto-plastic regime
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The H-microdirectional model

Computing stress tensors
2D modeling

Both on the meso and macro scales

For the hexagonal pattern

) Fl 0 } V(ii)5, =4N, d, cos® @ —4T, d, cosa sina+2N, d,
o\n)= -
0 o V(fi)&, = 4N, d, sin® o + 4T, d, cosa sina

For the VER

Q |l

:\%J-we(ﬁ)ﬁl {V(n)a1 0 ) }Edé’ E:{ cos@  sin 9}
2

—-sin@ cosd

Based on the Love-Weber stress averaging



The H-microdirectional model

Deviatoric stress q (kPa)
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The H-microdirectional model
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The H-microdirectional model
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Proportional strain loading paths

0g +2Rog, =0 for different R values

Loading conditions
og, = const

Response analysis versus &




The H-microdirectional model Proportional strain paths

d&, = const k, =1000 KkN/m @, =20 deg
02, =R 08, k, =500 kN/m o, =49deg
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The H-microdirectional model Proportional strain paths

d&, = const k, =1000 KkN/m @, =20 deg
02, =R 08, k, =500 kN/m o, =49deg
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Conclusion

Accounting for a mesoscopic scale appears to be a convenient way to overcome the kinematic
localization procedure

The H-microdirectional model requires only three constitutive parameters to be identified

Very good qualitative agreement along current loading paths

The macroscopic complexity (richness) of the response is due to the spatial distribution of the
hexagons in a variety of mechanical states, not to a local constitutive refinement

Makes it possible to retrieve some of the constitutive features of granular assemblies.

The model can be easily implemented within a FEM code to solve BVP



