
Plan of the rest of this talk .. 

  Extraction of length scales from Grenoble data on 
Hostun sand 

  Results from extraction 
  Inception of Hostun sand and the null hypothesis to 

test length scales are robust, meaningful and real 
  Results from inception 
  Lessons learned and where to next … 
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Complex Systems: Our Approach 
Initial state, triaxial test  
Viggiani & Ando  
(~54,000 grains) Stage	
 1	
 

Stage	
 2	
 



From brains to grains 

  massively parallel information processing  
  10 billion neurons, each connected to other neurons 
through ~10,000 synapses 
  adapts, ‘learns’ by self-organization 
  fault-tolerant & capable of partial recovery from damage 



Construction of complex network 

Nature Reviews Neuroscience 10, 186-198 (2009) 

Physical connections 
Abstract functional 
connections 
(physical connection 
not necessary) 



Hostun data: 
  Currently no information on physical connections 
  Time series not possible as only 12 states 
  Need to manufacture many clones of Ed to achieve 

both the above! 



 Consider simpler data set: 
displacements of 10 
particles in 2D   

  Iteratively connect each 
node to its closest k 
neighbours  

 Choose k to be the 
minimum k needed to 
connect all nodes into a 
single-connected network, 
i.e. one component 

dy 

dx 

Construction of a functional network: k-Net 

Kinematical phase space 



  Try k= 2: connect each node to its two closest neighbours. 
  Check number of components: 2 
  Try k=3 

dy 

dx 

Construction of a functional network: k-Net 

Kinematical phase space 



  One component: hence the final network is 3-Net. 

dy 

dx 

Construction of a functional network: k-Net 

Kinematical phase space 



Complex Networks 
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  Example for contact 
network (Walker & 
Tordesillas IJSS 10; 
Tordesillas PRE 10) 



1. Is there a community structure to the functional 
networks from kinematic fields?   

2. What are the length scales (spatial), if any, from 
such communities?   

3. Which are in the best position to spread 
information (nodes of highest efficiency) to all the 
other nodes in the network?  

Questions about Hostun sand ….. 



Community structures 

  54,000 grains!  Can we 
organize this system into groups of 
grains – each with a common 
attribute and possibly serving a 
similar function? 
  Community structure: “natural 
fault lines” dividing a network into 
communities, i.e. groups of nodes 
in which connections are dense 
within each group and relatively 
sparse between groups 
  Helps to understand structural 
organization 
  First 3D map of protein 
architecture, identifying ~10,000 
groups of structural motifs 
serving similar function from 
trillions of proteins (Kim et al UC 
Berkeley, PNAS 11) 



  The human eye: poor detector of 
community structures or “natural fault 
lines” of a network.  Need an 
algorithm & computer to execute! 

  Active research; existing methods 
are state-of-the-art.  One method: 
maximize community modularity Q 

  Q is a cost function maximized by a 
partitioning of nodes with higher 
density intra-connections compared to 
inter-connections 

Community detection 



Community modularity 
  Given a graph/network let the set of 
nodes be partitioned into k subsets where 
each belongs to one community. The 
community modularity Q of this partition 
is 

   eii is the percentage of number of 
links that has both ends in a community 
Vi  (e.g. blue-blue), and ai is the 
percentage of links that start from a 
community Vi (blue-black, blue-green, 
blue-red, etc.) 

  

€ 

Q = qi
i=1

k

∑       qi = eii − ai
2



  Initially, treat each node as a community. 
  Successively amalgamate groups in pairs, choosing at each 

step the pair which leads to highest increase in Q.   
  Terminate if highest change in Q is negative. 

Algorithm 
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1− 3        δQ =17 /9
2 − 3       δQ =17 /9
3 − 4       δQ = 27 /16
4 − 5       δQ = 27 /16
5 − 6       δQ = 27 /16
5 − 7       δQ = 27 /16
6 − 7       δQ =17 /9

δQ of 1-3, 2-3 and 6-7 
are identically 
maximum: any of these 
connections can be 
chosen 
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Plan of the rest of this talk .. 

  Extraction of length scales from Grenoble data on 
Hostun sand 

  Results from extraction 
  Inception of Hostun sand and the null hypothesis to 

test length scales are robust, meaningful and real 
  Results from inception 
  Lessons learned and where to next … 



1. Is there a community structure to the functional 
networks from kinematic fields?   

2. What are the length scales (spatial), if any, from 
such communities?   

3. Which are in the best position to spread 
information (nodes of highest efficiency) to all the 
other nodes in the network?  

Questions about Hostun sand ….. 
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Community 
boundaries 

  Boundaries described 
figuratively speaking – as  
‘natural faultlines’ in a 
network….    

  But can this actually 
capture the natural 
faultlines in geomaterials? 

RECALL baseline system 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



Number of 
communities 

  k-nets: fluctuations 
about a near constant value 
throughout loading 

  similar range to Hostun 

  C-net has much less 
number of partitions but 
tracks evolution to failure 
well 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



1. Is there a community structure to the functional 
networks from kinematic fields?  YES:  partitions 
into 29-48 communities 

2. What are the length scales (spatial), if any, from 
such communities?  

3. Which are in the best position to spread 
information (nodes of highest efficiency) to all the 
other nodes in the network?  

Questions about Hostun sand ….. 



 Length scales in networks typically 
come from shortest path, i.e. path 
between two nodes with minimum 
number of links 

 Various network measures of dynamics 
and flow in networks are based on 
shortest paths 

 Average path length of a network: the 
average number of links along shortest 
paths for all pairs of nodes.   
 Also known as ‘size of network’ 
 The smaller the better: i.e. more easily 

negotiable hence more efficient flow of 
information through network.   

 Key measure in traffic, road and 
communication networks 

The long and short of “shortest paths” 
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Length scale from individual communities 
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 For each community i, extract subgraph 
(eg adjacency matrix Ai (i=1,2)) 

 Compute average shortest path length 
for each community i,   

Length scales from communities 

1-2 1-3 1-4 2-3 2-4 3-4 Tot Ave 

2 1 2 1 2 1 9 3/2 

5-6 5-7 6-7 Tot Ave 

1 1 1 3 1 

Average across communities: (3/2 + 1)/2 = 5/4 



Average shortest paths (efficiency)���

  Narrow range of 
shortest paths with 
mean ~10D-15D for 
displacement k-Net  
(5D-6D for disp+rot) 

   Measure tied to 
efficiency or how fast 
information flows 
through the network 

Displacement 

Displacement + rotation 



Average shortest paths (efficiency)���
  Like Hostun sand, 
relatively narrow 
range of shortest 
paths and 
displacement k-net 
has (slightly)larger 
length scale 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



Length scales from communities: C-Net 

  mean shortest path length scale from contact network C-Net ~ 
10D throughout loading history (larger than k-nets) 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



1. Is there a community structure to the functional 
networks from kinematic fields?  YES:  partitions 
down to 29-48 communities 

2. What are the length scales (spatial), if any, from 
such communities?  10D-15D displacements; 
5D-6D displacement+rotation 

3. Which are in the best position to spread 
information (nodes of highest efficiency) to all the 
other nodes in the network?  

Questions about Hostun sand ….. 



Closeness Centrality 

Hagmann et al. 08  

  Measures inverse mean 
shortest path from a node to all 
other nodes in network 

  High closeness centrality 
means high efficiency (small 
average shortest path lengths) – 
fastest spread of information – 
from vertex to all others  

  Recall Fornito’s findings, i.e. 
coincides with regions where 
genetics has most influence.  So 
is our ultimate fate determined 
from birth? 



Closeness Centrality 
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d1 jj∑ =16 ⇒ C1 = 7 /16

d2 jj∑ =16 ⇒ C2 = 7 /16

d3 jj∑ =11 ⇒ C3 = 7 /11

d4 jj∑ =10 ⇒ C4 = 7 /10

d5 jj∑ =11 ⇒ C5 = 7 /11

d6 jj∑ =15 ⇒ C6 = 7 /15

d7 jj∑ =15 ⇒ C7 = 7 /15

  Inverse mean shortest path 
from a node to all other nodes 
in network 
  Nodes with high (relative) 
closeness centrality are close/
central to other nodes (low dij) 
so crucial to efficient flow of 
information in the network 
  Node 4 is the “closest” to 
any other node 



Closeness 
centrality 
(k-net) 

Strain 
Interval 
2-4 

Strain 
Interval 
5-8 

Strain 
Interval 
9-12  
(peak- ) 

Red nodes: shortest paths to/from all the other nodes to the node 
under consideration 
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How do we 
know this isnt 
just a happy 
coincidence? 

  Recall baseline system 
and check result is 
reproduced in DEM 
  Compare to contact 
network.  Region of high 
relative closeness 
centrality lies in middle of 
sample (red core): next 
slide 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



  Closeness centrality 
(right) from contact 
network 

Baseline system 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



1. Is there a community structure to the functional 
networks from kinematic fields?  YES:  partitions 
down to 29-48 communities 

2. What are the length scales (spatial), if any, from 
such communities?  10D-15D displacements; 
5D-6D displacement+rotation 

3. Which are in the best position to spread 
information (nodes of highest efficiency) to all the 
other nodes in the network? Nodes in the region 
of the shear band.  Trend prevails from ONSET of 
loading. 

Questions about Hostun sand ….. 



Plan of the rest of this talk .. 

  Extraction of length scales from Grenoble data on 
Hostun sand 

  Results from extraction 
  Inception of Hostun sand and the null hypothesis to 

test length scales are robust, meaningful and real 
  Results from inception 
  Lessons learned and where to next … 



  Randomize wiring inside 
Hostun: repeat many times 
(surrogates) 

  Null Hypothesis H0: 
results on Hostun are a 
product of chance   

  Verdict from statistics of 
Hostun vs surrogates: 

Reject H0 or Fail to reject H0  

‘Inception’ 



Rewiring Algorithm I : preserve degree 
  Can conceive many 
rewiring strategies .. 

  One strategy:  
  Randomly select Y 
nodes (e.g. Y=4) 
  Shuffle one neighbour 
of each node (also 
selected randomly), while 
preserving degree of each 
node 

  Repeat above until X% of 
the nodes in the system are 
rewired 

4cycl	
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TEST 1: Rewire DEM, check community 
structure of k-Net from adjacency matrix 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



TEST 2: For rewired DEM, check community 
structure & boundaries from k-Net 

Original Rewired 

Initial 

Original Rewired 

In strain-softening 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



TEST 3: For rewired DEM, check closeness 
centrality of k-Net 

Original Rewired Original Rewired 

Initial In strain-softening 

Baseline system: 2D DEM, Biaxial test with constant confining pressure, 5098 particles   



TEST 4: Rewire Hostun, check community 
structure of k-Net from adjacency matrix 



TEST 5: For rewired Hostun, check closeness 
centrality 

Original Rewired Original Rewired 

Initial Final 
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On Hostun rheology 

  Intelligent design or a product of 
chance?  

  Not a product of chance. But still 
continuing to check statistics for 
sensitivity.  How many realizations do we 
need to do?  Also more than 101 ways to 
rewire a network? …. At what point do 
we stop? 

  This is just the first steps toward the 
first complete map of the evolution of 
functional and structural connectivities in 
a deforming sand…. ….. 
there is much to do.. 

Image from  
Andò et al 



On Micromechanics 

We are awashed with data!  As 
grain scale data accumulate – from 
DEM and high resolution 
experiments: 

  Where is micromechanics 
headed in material 
characterization? 

  Where is micromechanics 
headed in constitutive modelling?  

  How do we tie developments in 
these two strands together? 



Pesky particles pacified in pixels?���
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