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Granular materials

Industrial and other  Natural materials
anthropic materials

Source: Ando et al. (2011)

Source: wikipedia (2012)
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Discrete Element Method (DEM)

Selected examples:

Sandpile
Larger and cohesive 

Rotating drum
Screw conveyor

Grid-type Structure
Soil+grid (1)(2)

Periodic boundaries
Fluid coupling (cf. projet)

https://www.youtube.com/watch?v=r2sUPDzDVmQ
https://www.youtube.com/watch?v=UcQeOjluGYQ
https://www.youtube.com/watch?v=TWDlf0RlNCU
https://www.youtube.com/watch?v=s7qJ4nk4lkg
https://www.youtube.com/watch?v=udVWPvM_6eI
https://www.youtube.com/watch?v=YW5IsINjCvw
https://www.youtube.com/watch?v=03NEOaTnlKg
https://www.youtube.com/watch?v=xAZuNFliFcw
https://www.youtube.com/watch?v=gH585XaQEcY
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What is a “discrete” model?

* All numerical models in mechanics define a finite number of 
DOFs, they are all “discrete”.

* Here we call “discrete” a model for which the underlying 
conceptual model is discontinuous, as opposed to “continuum” 
mechanics.

* The discrete element method (DEM) is sometimes used even 
when the conceptual basis is continuous (see vision 2 in what 
follows)



Numérique avancé – ENSE3 2017 p. 6

What is a “discrete” model?
Conceptual model

Continuous Discrete

Finite element method (FEM) Molecular dynamics (MD)
Finite volume method (FVM) Discrete element method (DEM)
Finite differences method (FDM) Variants of Cundall's DEM (contact 
Smooth particles hydrodynamics (SPH) dynamics, event driven,...)
Lattice Boltzmann method (LBM)

DEM is not just another XXX element method that would compete with FEM for 
the same engineering applications.

Is hammer better than screw driver?
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What is a “discrete” model?
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What is a “discrete” model?
Yet more semantic...

Molecular Dynamics (Alder, 1959) 
“Molecular dynamics (MD) is a computer simulation of physical movements 
of atoms and molecules. [...] In the most common version, the trajectories of 
molecules and atoms are determined by numerically solving the Newton's 
equations of motion for a system of interacting particles, where forces 
between the particles and potential energy are defined by molecular 
mechanics force fields.” (wikipedia)
Softwares: OpenMM, Amber, LAMMPS,... 

Discrete Element Method (Cundall, 1979 – ISI 2469) 
“A discrete element method (DEM), also called a distinct element method is 
any of family of numerical methods for computing the motion and effect of a 
large number of small particles. Though DEM is very closely related to 
molecular dynamics, the method is generally distinguished by its inclusion 
of rotational degrees-of-freedom as well as stateful contact and often 
complicated geometries (including polyhedra).” (wikipedia)
Softwares: PFC2D/3D, SDEC, YADE-DEM, EsyS-Particle,...

Contact Dynamics (Moreau, 1988)
“Contact dynamics deals with the motion of multibody
systems subjected to unilateral contacts and friction.”
(wikipedia)
Softwares: LMGC90,...

MD ≠ DEM !

Source: Park & Sposito, 2003.

Source: Yade-DEM
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Explicit DEM
Idealized particle shapes

Spheres Polyhedra

source: Yade-DEM source: http://watermanpolyhedron.com/watermanpolyhedra1.html 

Ellipsoids Clusters

source: http://www.ruppweb.org/xray/comp/suptext.htm source: KOZICKI AND TEJCHMAN, 2011 (Yade-DEM)

http://watermanpolyhedron.com/watermanpolyhedra1.html
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Governing Equations

Newtons Law
Translation

Rotation
or

(isotropic case)

Contact Laws

In the general case:           d{f
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Explicit FD scheme

(Source: E. Catalano, PhD, 2012)
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Explicit FD scheme
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Explicit FD scheme

This centered 2nd order explicit scheme is also known as:

*“leap-frog” for the positions are known at times it while      
  velocities are known at times it+t/2

* Störmer's method or Verlet algorithm, especially in the context 
  of MD (Teukolsky, 2007)

It belongs to the family of symplectic integrators for Hamiltonian 
systems. It implies the following properties, that even higher-order 
schemes may not have (e.g. Runge-Kutta):

* Energy conservation over the time steps (with bounded 
  oscillations) 

* Time reversibility
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Classical contact laws
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Classical contact laws

 Kinematic description

(Source: Yade-DEM)
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Classical contact laws

Source: Young Ju Ahn, Response of coupled frictional 
contacts to cyclic loading, PhD dissertation, 2009.

Normal force-displacement relation

* Hertz contact (non-linear elasticity)

* Mindlin and Deresiewicz (inelastic)

Source: wikipedia
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Classical contact laws

Simplified linear elastic law in the normal direction

A convenient definition of K
N

(Source: Yade-DEM)
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Classical contact laws

Simplified linear elastic law: tangential direction

Relative velocity at the contact point:

has the tangential component:

The linear force-displacement relation is integrated 
in time by using u

T
=     t.

Attention must be paid to the global rotation of the contact, which 
must also be reflected in FT 
As for K

N
, K

T
 can be taken as the harmonic average of K

T1
 and K

T2
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Classical contact laws

Coulomb's friction

Could it be simpler?!

(Source: Scholtès L., PhD, 2012)
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Classical contact laws

Additional features:

* normal adhesion (tensile strength)

* shear adhesion (shear strength summed with friction)

* Viscosity

* irreversibility

* etc.

Higher degree laws (6D)

* rotational stiffness (bending and twisting)

* rotational strength (in the form of adhesion + “rolling” friction)
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Classical contact laws

The force-displacement relations and motion equations are all 
defined in the current (deformed) configuration, as in the “updated 
Lagrangian” methods.

Hence there is no limitation in the deformation/displacement.

See this example with Yade

http://www.youtube.com/watch?v=KKVk3YK0nu0
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Implementation issues

* Contact detection

* Stability condition / automatic timestep determination

* Damping
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Contact detection

The new contacts must be checked at each step.
The following naive algorithm scales with N² and needs a 
square root:

At each step:
For i in [1,N]:

For j in [1,N]:
(R

i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ?

(and it is even worst for complex shapes...)
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Contact detection

Bounding boxes let one exclude many potential interactions 
at a reduced cost

(Source: Yade-DEM)

(R
i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ? 
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Contact detection

Sorting in a regular grid results 
in a constant number of checks
per particle, resulting in O(N) cost
(Munjiza et al. 2006)

 (Munjiza et al. 2006)

For i in [1,N]:
For j in [1,N]:

fast check(i,j) ?
(R

i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ? 

For i in [1,N]:
For j in neighbour cells:

fast check(i,j) ?
(R

i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ? 
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Contact detection

If the bounding boxes are larger than the actual size of the bodies, then 
the extra length D* let one define a number of iterations n

min
=D*/(v

max
t) 

in which no new contact can appear: 

At each step:
For i in [1,N]:

For j in [1,N]:
fast check(i,j) ?
(R

i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ? 

If n > n
max

:
For i in [1,N]:

For j in neighbour cells:
fast check(i,j) ?
add virtual interaction (i,j)

A each step:
For (i,j) in virtual interactions:

fast check(i,j) ?
(R

i
 + R

j
) > sqrt(l

x
²+l

y
²+l

z
²) ? (with the real values of R

i
,R

j
)
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Explicit FD scheme

Stability condition

(Source)

https://www.amazon.ca/Handbook-Discrete-Element-Method-Granular/dp/1785480669
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Explicit FD scheme
Stability condition

Recall:
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Explicit FD scheme
Stability condition
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Explicit FD scheme
Stability condition
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Explicit FD scheme
Stability condition
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Explicit FD scheme
Stability condition
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Explicit FD scheme
Stability condition



Numérique avancé – ENSE3 2017 p. 34

Explicit FD scheme
Stability condition
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Damping

Physical origin of dissipation:

* plastic dissipation at contacts

* viscous effects at contacts (e.g. Kelvin's spring-dashpot model, 
lubrication,...)

Plastic dissipation is sometimes very small. Viscous dissipation 
can help stabilizing the particles, but it can be at the price of a 
smaller timestep. 

Numerical (non-physical) dissipation

* Cundall's non-viscous damping

* viscous effects at contact (yes, again!)
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Damping
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Element tests 
How is DEM effectively used?

Vision 1: The conceptual model is particle-based

Model definition

Particles 
* shapes
* Particle Size Distribution
* Contact parameters

Packing
* porosity

Boundary conditions

+ Static variables
* coordination
* initial distribution of forces

Result with complex boundary
conditions
* rockfill,
* silos (e.g. A. Gladky, Yade-DEM),
* mixers (e.g. A. Gladky, Yade-DEM),
* …

Bulk behaviour in {,}
* elastic constants,
* friction coefficient,
* flow rule,
* ...

Complex BVP

or

Element test

http://www.youtube.com/watch?v=fyKqaqjx1uQ
http://www.youtube.com/watch?v=pfQpnxDSbqQ
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Element tests 
How is DEM effectively used?

Vision 2: The conceptual model is continuous

Model definition

Particles 
* shapes
* Particle Size Distribution
* Contact parameters

Packing
* porosity

Boundary conditions

+ Static variables
* coordination
* initial distribution of forces

Bulk behaviour in {,}
* elastic constants,
* friction coefficient,
* flow rule,
* ...

Result with complex boundary
conditions
* structures (soil, rock, concrete),
* composite systems,
* fragmentation of blocks
* ...

Inverse problem

?
then

Complex BVP
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Element tests 
How is DEM effectively used?

Vision 2: The conceptual model is continuous

Missile impacts Fragmentation Fractured rock mass

Examples from Smilauer (2010a) 
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Element tests 
How is DEM effectively used?

Vision 2: The conceptual model is continuous

Why DEM instead of classical continuous methods?

Advantages:
+ Fragmentation and/or creation of contacts
+ unlimited displacements
+ more or less realistic behaviour without defining explicitely all the parameters

Difficulties:
- scale effects
- inversion problem:

Q. “I want to simulate a sand with f=30°, what contact friction should I use?”
A. “No clue. Let you start trial and error, through element testing.”

Examples from Smilauer (2010a) 
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Element tests 
In both visions, the simulations of element tests appear as key 
point
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Element tests 

1. Generate a (random) packing

2. Define and simulate a loading path

3. Analyze the results to get meaningful macro-scale quantities
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Packing generation: deposition
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Packing generation: compaction

Source: Combe G., PhD Dissertation

From the outside...
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Packing generation: compaction

(Source: Tong et al., 2012) 

… or from the inside (particles growth)
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Packing generation: geometric algorithms

* Example in Jerier et al. (2009) using tetrahedral mesh
* Many other algorithms, see for instance Bagi (2005)

(source: Jerier et al. (2009))
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Packing generation: compaction

Speed Control PSD
+

porosity

Isotropic Stable force 
network

Deposition -- - / + - +
Geometric + - + -
Dynamic 
compaction - + + +
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Loading path

  

Boundary conditions

Homogeneous conditions:

T =  n,

or 

u =  x,

or combinations of the above.
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Loading path

  

Boundary conditions
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Loading path

  

Rigid walls:
* imposing displacement is straightforward
* imposing stress can be done with a dynamic method or by servo- 
   control (more efficient)

Periodic boundary conditions (no boundaries!):
* stress and strains are controlled by deforming the period
* inhomogeneous effects are avoided by
  applying the same velocity gradient to
  the period and the particles positions
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Loading path

  

Classical paths

Triaxial compression
* The most classical test on soils

Simple shear
* Inspired by Couette flow. Mostly used with periodic boundary 
conditions (3-periodic or 2-periodic for very large shear)
* Introduces more complexity (hence harder analysis) due to non-
coaxiality

Live examples with Yade
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Post-processing

  

A. {,} can be deduced simply by forces and displacements at the boundaries 
when rigid walls are used.
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Post-processing

  

B. {,} can be defined from internal kinematic and static variables. Averaging 
the microscale definitions gives the same tensors as that defined at the 
boundaries (A). They also serve for analyzing heterogeneous disp./stress fields 
(e.g. shear banding)

Source: Yade DEM, from E. Ando experiments
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Advanced stress-strain probing

  

Source: L. Sibille, PhD dissertation (see also
other papers from same author, e.g. Nicot et al. 2007)
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Caveats
Variability, “Representative Element Volume”, and the extreme 
sensitivity to initial conditions (butterfly effect)
* classical values: N>1k (2D) or N>10k (3D)
* variability is inherent (e.g. single thread vs. multithread)

Source: Chareyre B., PhD Dissertation



Numérique avancé – ENSE3 2017 p. 57

Caveats
Quasistaticity

Strict quasistaticity is never found in granular soils (experimentaly nor 
numericaly). Of real interest is the impact of strain rate on the results. 

In most cases, authors refer to “quasistaticity” in this later sense.

Source: Chareyre B., PhD Dissertation
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Classical results (elastic-frictional model)
Qualitatively similar to experimental behavior of sands, but the shear 
strength of spheres is generally lower (typically, =18° at the critical state) 

Source: Chareyre B., PhD Dissertation
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A quasi-elastic domain can be identified with linear elastic contact laws

Classical results (elastic-frictional model)

Source: Chareyre B., PhD Dissertation



Numérique avancé – ENSE3 2017 p. 61

Coulomb friction rules the bulk behavior for elastic-plastic contacts as long 
as /E < 100

Classical results (elastic-frictional model)

Source: Chareyre B., PhD Dissertation
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* The relation between peak friction and contact friction is highly non-linear.
* More contact friction induces more dilantancy
* Residual friction is almost constant (and very low)
* Realistic bulk friction is obtained at the price of complex shapes or
  moments at contact

Classical results (elastic-frictional model)

Source: Chareyre B., PhD Dissertation
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A critical state is observed, with 
a unique asymptotic behavior at 
large strain 

Approximately  > 10% in 2D,
 > 20% in 3D

Classical results (elastic-frictional model)

Source: Chareyre B., PhD Dissertation
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